Skip to main content

Abstract

Salt accumulation in soil surfaces, known as soil salinity, could lead to the impairment of plant growth and development and is manifested mostly under irrigated and dryland agriculture. Excess salts in the soil affects plants through osmotic stress; accumulation to toxic levels within the cells; and through the interference with the uptake of mineral nutrients. Rice productivity in several parts of the world is therefore severely limited by salinity on account of the prevalence of irrigation in rice farming. Tolerance to salt toxicity in plants is a genetic and physiologically complex trait. Halophytes (salt tolerant plants) are different from the salt-sensitive glycophytes in terms of peculiarities in their anatomy, ability to sequester otherwise toxic ions, and other physiologic processes. It is logical therefore to infer complexity also at the genetic level on account of the several pathways involved in these mechanisms. These complexities have confounded genetic improvement strategies for salinity tolerance in plants resulting in a paucity of saline tolerant plants, with only about 30 officially released saline tolerant crop varieties world-wide. Only one saline tolerant rice variety, Bicol, has been officially released to farmers. We review strategies being currently employed in the development of saline tolerant rice varieties. These include conventional plant breeding which is hampered by the lack of suitable genetic variation for this trait; the modest progress made through doubled haploidy; and the reliance on somaclonal variation, an unsustainably unpredictable strategy. This review also posits that while genetic transformation has led to the modification of certain physiological indices implicated in salinity tolerance in rice, in isolation, these modifications have not been translated to improved yield under salt stress. A more recently adopted strategy, induced mutagenesis, has led to some promising results. We argue that the production of induced rice mutants holds the greatest promise of these strategies for mitigating the scourge of soil salinity considering the relative ease with which other traits in this crop have been modified using this methodology. The underlying principles of induced mutagenesis; the modes of action of different mutagenic agents; and procedures for the rapid production and detection of mutants are also summarised. In order to enhance efficiency in the production, detection and incorporation of induced mutants into crop improvement programmes, we suggest the coupling of in vitro (such as doubled haploidy and cell suspension cultures) and molecular genetic techniques to this methodology. It is posited also that the efficiency of this process can be greatly enhanced by marker-aided selection while high throughput reverse genetics strategies could lead to the rapid detection of mutation events in target genes. It is concluded that with the plethora of genomics resources available for rice, the use of induced mutations for improving salinity tolerance (and other traits) would rely significantly on the concerted application of efficiency enhancing in vitro techniques and functional genomics strategies (including reverse genetics)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afza, R; Zapata-Arias, F.J; Zwiletitsch, F; Berthold, G; Gregorio G. 1999 Modification of a rapid screening method for rice mutants to NaCl tolerance using liquid nutrient culture. Mutation Breeding News Letter No.144. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Afza, R; Jain, SM; Shu, Q; M. Guzmann, M; Zapata, FJ; Tumimbang, E; Greogorio, G; Mba, C. 2006. Doubled haploidy and induced mutation in breeding for salt tolerance in rice and wheat. Book of Abstracts, The International Conference on “Haploids in Higher Plants III’, Vienna, Austria. February 12–15, 2006.

    Google Scholar 

  • Ahloowalia, BS; Maluszynski, M; Nichterlein, K. 2004. Global impact of mutation-derived varieties. Euphytica 135: 187–204.

    Article  Google Scholar 

  • Amano, E. 2006. Use of Induced Mutants in Rice Breeding in Japan. Plant Mutation Reports 1:21–24. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • An, G; Lee, S; Kim, S-H; Kim, S-R. 2005. Molecular Genetics Using T-DNA in Rice. Plant Cell Physio. 46(1);14–22.

    Article  CAS  Google Scholar 

  • Aneeta; Sanan-Mishra, N; Tuteja, N; Kumar Sopory, S. 2002. Salinity- and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biochem Biophys Res Commun. 296(5):1063–8.

    Article  CAS  Google Scholar 

  • Atanassov, A; Zagorska, N; Boyadijiev, P; Djilianov, D. 1995. In vitro production of haploid plants. World Journal of Microbiology and Biotechnology. 11:400–408.

    Article  Google Scholar 

  • Azhar, FM; McNeilly, T. 1988. The genetic basis for salt tolerance in Sorghum bicolor (L) Moench seedlings. Plant Breeding 101:114–121.

    Article  CAS  Google Scholar 

  • Balooch, AW; Soomro, AM; Naqvi, MH; Bughio, HR; Bughio, MS. 2006. Sustainable Enhancement of Rice (Oryza sativa L.) Production Through the Use of Mutation Breeding. Plant Mutation Reports 1:40–42. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Balooch, AW; Soomro, AM; Javed, MA; Bughio, H-ur-R; Alam, SM; Bughio, MS; Mohammed, T; Mastoi, N-ur-N. 2003. Induction of Salt Tolerance in Rice Through Mutation Breeding. Asian Journal of Plant Sciences 2(3):273–276.

    Google Scholar 

  • Bentota, AP. 2006. Mutation Improvement of Rice Variety Bw-267–3 for Red Pericarp Grains and Lodging Resistance. Plant Mutation Reports 1:42–43. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Binh, DQ; Heszsky, LE. 1990. Restoration of the regeneration potential of long term culture in rice (Oryza sativa L) by salt pretreatment. J. Plant Physiol. 136:336–340.

    Google Scholar 

  • Binh, DQ; Heszsky, LE; Gyulai, G; Csillag, A. 1992; Plant regeneration of NaCl-pretreated cells from long-term suspension culture of rice (Oryza sativa L.) in high saline conditions. Plant Cell, Tissue and organ Culture 29:75–82.

    Article  Google Scholar 

  • Bohnert, HJ; Jensen, RG. 1996. Metabolic engineering for increased salt tolerance – the next step. Australian Journal of Plant Physiology 23: 661–666.

    Article  Google Scholar 

  • Brown, DCW; Thorpe, TA. 1995. Crop improvement through tissue culture. World Journal of Microbiology and Biotechnology. 11:409–415.

    Article  Google Scholar 

  • Cheema, AA. 2006. Mutation Breeding for Rice Improvement in Pakistan: Achievements and Impact. Plant Mutation Reports 1:36–39. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Chen, X; Liu, X; Wu, D; Shu, QY. 2006. Recent Progress of Rice Mutation Breeding and Germplasm Enhancement in China. Plant Mutation Reports 1:4–6. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Chopra, VL. 2005. Mutagenesis: Investigating the process and processing the outcome for crop improvement. Current Science. 89(2):353–359.

    Google Scholar 

  • Colbert, T; Till, BJ; Tompa, R; Reynolds, S; Steine, MN; Yeung, AT; McCallum, CM; Comai, L; Henikoff, S. 2001. High-throughput screening for induced point mutations. Plant Physiology. 126(2):480–484.

    Article  Google Scholar 

  • Comai, L; Henikoff, S. 2006. TILLING: Practical single-nucleotide mutation discovery. Plant J. 45: 684–94.

    Article  PubMed  CAS  Google Scholar 

  • Croughan, TP; Stavarek, SJ; Rains, DW, 1978. Selection of a NaCl tolerant line of Cultured Alfalfa, Crop Science, 18:959–963.

    Article  CAS  Google Scholar 

  • Do, KT; Dao, MS; Hung, PQ; Nguyen, TC. Rice Mutation Improvement for Short Duration, High Yield and Tolerance to Adverse Conditions in Mekong Delta of Viet Nam. Plant Mutation Reports 1:49–51. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Don Palmer, CE; Keller, WA. 2005. Overview of Haploidy. In: Kasha, KJ; Keller, WA; Palmer CE 2005. Haploids in Crop Improvement II. Biotechnology in Agriculture and Forestry Series. Springer-Verlag Berlin and Heidelberg GmbH & Co., Germany. Pp 3 – 7.

    Chapter  Google Scholar 

  • El-Bably, AZ. 2002. Advanced and integrated approaches for crop tolerance to poor quality irrigation water in Egypt. In Zdruli P., Steduto P., Kapur S. 7th international meeting on soils with Mediterranean type of climate (selected papers). Bari : CIHEAM-IAMB, p. 363–378 (Options Méditerranéennes : Série A. Séminaires Méditerranéens ; n. 50). 7. International Meeting on: Soils with Mediterranean Type of Climate, 2001/09/23–28, Valenzano (Italy)

    Google Scholar 

  • Evans, HJ; Sparrow, AH. 1961. Nuclear factors effecting radiosensitivity II. Dependence on nuclear and chromosome structure and organization. Brokkhaven Symp. In Biol. Vol 14, 101 – 127.

    CAS  Google Scholar 

  • Fast Facts 21. Dryland Salinity in Australia - key findings. http://audit.ea.gov.au/ANRA/docs/fast_facts/ fast_facts_21.html. ISBN 0 642 371 091 December 2000.

    Google Scholar 

  • Flowers, T; Troke, P; Yeo, A 1977. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89–121.

    Article  CAS  Google Scholar 

  • Flowers, TJ; Hajibagheri, MA; Clipson, NJW. 1986. Halophytes. Q. Rev. Biol. 61: 313–337.

    Article  Google Scholar 

  • Flowers, TJ; Yeo, AR. 1996. Metabolic engineering for increased salt tolerance – the next step. Australian Journal of Plant Physiology 23: 666–667.

    Google Scholar 

  • Flowers, TJ. 2004. Improving crop salt tolerance. J. Exp. Bot. 55 (396): 307–319.

    Article  Google Scholar 

  • Flowers, TJ; Flowers SA. 2005. Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management 78: 15–24.

    Article  Google Scholar 

  • Garg, A; Kim, JK; Owens, TG; Ranwala, AP; Choi, YDC; Kochian, LV; Wu, RJ. 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences, USA. 99: 15898–15903.

    Article  CAS  Google Scholar 

  • Gilchrist, EJ; Haughn, GW. 2005. TILLING moves beyond functional genomics into crop improvement. Curr Opin Plant Biol. 8(2):211–5.

    Article  CAS  Google Scholar 

  • Gleick, P.H. (Editor). 1993. Water in crisis. Oxford University Press, New York, NY, 473 pp.

    Google Scholar 

  • Greene, EA; Codomo, CA; Taylor, NE; Henikoff, JG; Till, BJ; Reynolds, SH; Enns, LC; Burtner, C; Johnson, JE; Odden, AR; Comai, L; Henikoff S. 2003. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740.

    PubMed  CAS  Google Scholar 

  • Gregorio, GB; Senadhira, D. 1993. Genetic analysis of salinity tolerance in rice. Theor. Appl. Gent. 86: 333–338.

    Google Scholar 

  • Gregorio, GB; Senadhira, D; Mendoza, RD; Manigbas, NL; Roxas, JP; Guerta, CQ. 2002. Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Research 76: 91–101.

    Article  Google Scholar 

  • Henikoff, S; Comai, L. 2003. Single-nucleotide mutations for plant functional genomics. Ann Rev Plant Biol 54:375–401

    Article  CAS  Google Scholar 

  • Henikoff, S; Till, BJ; Comai, L. 2004. TILLING. Traditional Mutagenesis Meets Functional Genomics. Plant Physiol. 135:1–7.

    Article  Google Scholar 

  • Hermelin, T. 1997. SOP’s for radiation services for the induction of mutation in plant breeding. Plant Breeding Unit and Plant Genetics Section. FAO/IAEA Internal report.

    Google Scholar 

  • Heszsky, LE; Nam, LS; Kiss, E; Simon Kiss, I; Lokos, K; Binh, DQ. 1991. in vitro studies on rice in Hungary. In Bajaj YPS(ed) Biotechnology in Agriculture and Forestry, Vol-14, pp 619–641, Rice Springer Verlag, Berlin-Heidelberg- New-York.

    Google Scholar 

  • http://www.ars.usda.gov/is/AR/archive/jul05/genes0705.htm.

    Google Scholar 

  • http://physics.nobel.brainparad.com/wilhelm_conrad_rontgen.html

    Google Scholar 

  • http://nobelprize.org/nobel_prizes/physics/laureates/1903/becquerel-bio.html

    Google Scholar 

  • http://nobelprize.org/nobel_prizes/physics/articles/curie/

    Google Scholar 

  • Hu, H; Dai, M; Yao, J; Xiao, B; Li, X; Zhang, Q; Xiong, L. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS 103(35):12987–12992.

    Article  CAS  Google Scholar 

  • Ismachin, M; Sobrizal. 2006. A Significant Contribution of Mutation Techniques to Rice Breeding in Indonesia. Plant Mutation Reports 1:18–21. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Jain SM; Sopory SK; Veilleux RE. 1996. In vitro haploid production in higher plants. Vol. 1–5. Kluwer. The Netherlands

    Google Scholar 

  • Jain, SM. 2005. Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tissue and Organ Culture 82:113–123.

    Article  CAS  Google Scholar 

  • Jeon, J-S; Lee, S; Jung, K-H; Jun, S-H; Jeong, D-H; Lee, J; Kim, C; Jang, S; Lee, S; Yang, K; Nam, J; An, K; Han, M-J; Sung, R-J; Choi, H-S; Yu, J-H; Choi, J-H; Cho, S-Y; Cha, S-S; Kim, S-I; An, G. 2000. T-DNA insertional mutagenesis for functional genomics in rice. The Plant Journal. 22(6):561–570.

    Google Scholar 

  • Jia, G-X; Zhu, Z-Q; Chang, F-Q; Li, Y-X. 2002. Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Reports 21(2):141–146.

    Google Scholar 

  • Kasha, KJ; Maluszynski, MM. 2003. Production of doubled haploids in crop plants. An Introduction. In: Maluszynski, M; Kasha, KJ; Forster, BP; Szarejko, I Doubled Haploid Production in Crop Plants: A Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands /Boston, USA/London, UK. Pp 1–4. 428pp.

    Google Scholar 

  • Kasha, KJ; Keller, WA; Palmer, CE 2005. Haploids in Crop Improvement II. Biotechnology in Agriculture and Forestry Series. Springer-Verlag Berlin and Heidelberg GmbH & Co., Germany.300pp.

    Book  Google Scholar 

  • Kefu, Z; Hai, F; San, Z; Jie, S. 2003. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Sci 165: 837–844.

    Article  CAS  Google Scholar 

  • Kodym, A; Afza, R. 2003. Physical and Chemical Mutagenesis. In: Erich Grotewold (ed.). Plant Functional Genomics. Humana Press, Totowa, New Jersey, USA. pp189–204.

    Chapter  Google Scholar 

  • Konzak, C.F., Mikaelsen, K., Sigurbjörnsson, B. Burtscher, A. 1967. Recommended standard procedures for irradiating, cultivating and measuring cereal seeds to determine the effects of neutron irradiation in the neutron-seed-irradiation program. In: Neutron irradiation of seeds (Technical Reports Series, No.76), IAEA, Vienna, 103–107.

    Google Scholar 

  • Krysan, P; Young, JC; Sussman, MR. 1999. T-DNA as an Insertional Mutagen in Arabidopsis. The Plant Cell 11: 2283–2290.

    Article  PubMed  CAS  Google Scholar 

  • Krysan, PJ; Young, JC; Tax, F; Sussman, MR. 1996. Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc. Natl. Acad. Sci. USA. 93:8145–8150.

    Article  PubMed  CAS  Google Scholar 

  • Lamond, RE; Whitney, DA. 1992. Management of Saline and Sodic Soils.MF-1022. Kansas State University, Cooperative Extension Service, Manhattan, Kansas. 4pp.

    Google Scholar 

  • Lee, SY; Cheong, JI; Kim, TS. 2003. Production of doubled haploids through anther culture of M1 rice plants derived from mutagenized fertilized egg cells. Plant Cell Reports 22(3):218–223.

    Article  CAS  Google Scholar 

  • Lee, KS. 1995. Variability and genetics of salt tolerance in japonica rice (Oryza sativa L.). Ph.D Thesis. University of the Philippines, Los Baños, Philippines.

    Google Scholar 

  • Lee, KS; Senadhira, D; Gregorio, GB. 1996. Genetic analysis of salinity tolerance in japonica rice. SABRAO J. 28(2):7–13.

    Google Scholar 

  • Lee, SY; Lee, JH; Kwon, TO. 2003. Selection of salt-tolerant doubled haploids in rice anther culture, Plant Cell. Tiss. Org. Cult. 74(2):143–149

    Article  Google Scholar 

  • Li, SN; Heszsky, LE. 1986. Testing of salt tolerance and regeneration in callus (n, 2n) of rice. In: Horn, W, Jensen, JC. Odenbach, W & Schieder, JO (eds): Genetic manipulation in Plant Breeding. Pp 617–619 Walter de Gruyter and Co, Berlin-New York.

    Google Scholar 

  • Maluszynski, M; Nichterlein, K; van Zanten, L; Ahloowalia, BS. 2000. Officially released mutant varieties – the FAO/IAEA database Mutation Breeding Reviews. The Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria. Pp 88.

    Google Scholar 

  • Maluszynski, M; Kasha, KJ; Forster, BP; Szarejko, I. 2003. Doubled Haploid Production in Crop Plants: A Manual. Kluwer Academic Publishers, Dordrecht/Boston, USA/London, UK. 428pp.

    Google Scholar 

  • Maluszynski, M; Kasha, KJ; Szarejko, I. 2003. Published doubled haploid protocols in plant species. In: Maluszynski, M; Kasha, KJ; Forster, BP; Szarejko, I. 2003. Doubled Haploid Production in Crop Plants: A Manual. Kluwer Academic Publishers, Dordrecht The Netherlands/Boston, USA/London, UK. Pp 309–335.

    Google Scholar 

  • Mansour, MMF; Salama, KHA; Al-Mutawa, MM. 2003. Transport proteins and SALT tolerance in plants. Plant Science 164: 891–900.

    Article  CAS  Google Scholar 

  • McCallum, CM; Comai, L; Greene, EA; Henikoff, S. 2000. Targeted screening for induced mutations. Nature Biotechnology. 18(4):455–7.

    Google Scholar 

  • McCallum CM; Comai, L; Greene, EA; Henikoff, S. 2000. Targeting Induced Local Lesions in Genomes (TILLING) for plant functional genomics. Plant Physiol. 123(2):439–442.

    Article  Google Scholar 

  • McKinney, EC; Ali, N; Traut, A; Feldmann, KA; Belostotsky, DA; McDowell, JM; Meagher, RB. 1995. Sequence-based identification of T-DNA insertion mutation in Arabidopsis: Actin mutants act2–1 and act4–1. Plant J. 8:613–622.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, B; Akbar, M; Seshu, DV. 1990. Genetic studies on salinity tolerance in rice towards better productivity in salt-affected soils. In: Proceedings of the Papers Presented at the Rice Research Seminar, July 12, 1990. IRRI, Los Ba nos, Philippines

    Google Scholar 

  • Moeljopawiro, S; Ikehashi H. 1981. Inheritance of salt resistance in rice. Euphytica 30: 291–300.

    Article  Google Scholar 

  • Mohamad, O; Mohd. Nazir, B; Alias I; Azlan, S; Abdul Rahim, H; Abdullah, MZ; Othman, O; Hadzim, K; Saad, A; Habibuddin, H; Golam F. 2006. Development of Improved Rice Varieties Through the Use of Induced Mutations in Malaysia. Plant Mutation Reports 1:27–34. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Montelone, BA. 1998. Mutation, Mutagens, and DNA Repair. http://www-personal.k-state.edu/ bethmont/mutdes.html. Division of Biology, Kansas State University, USA.

    Google Scholar 

  • Murashige, T; Skoog, F. 1965. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant., 18: 473–497.

    Article  Google Scholar 

  • Nakajima, K. 1991. Biotechnology for crop improvement and production in Japan. Paper presented at the Regional Expert Consultation on the Role of Biotechnology in Crop Production, FAO Regional Office for Asia and the Pacific, Bangkok, June 18–21, 1991. pp21.

    Google Scholar 

  • New, KT. 2006. Rice Mutation Breeding for Varietal Improvement in Myanmar. Plant Mutation Reports 1:34–36. International Atomic Energy Agency, Vienna, Austria

    Google Scholar 

  • Ng, PC; Henikoff, S. 2003. SIFT: predicting amino acid changes that affect protein function. Nucl. Acids Res., 31:3812–3814.

    Article  PubMed  CAS  Google Scholar 

  • Oldeman, LR; Hakkeling, RTA; Sombroek, WG. 1991. World Map of the Status of Human-Induced Soil Degradation: An Explanatory Note, Second revised version. Wageningen: International Soil and Reference Center, The Netherlands, and Nairobi, Kenya: International Soil Reference and Information Centre/United Nations Environment Programme.

    Google Scholar 

  • Patnaik, D; Chaudhary, D; Rao, GJN. 2006. Genetic Improvement of Long Grain Aromatic Rices through Mutation Approach. Plant Mutation Reports 1:11–16. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Pandey, GK; Reddy, VS; Reddy, MK; Deswal, R; Bhattacharya, A; Sopory, SK. 2002. Transgenic tobacco expressing Entamoeba histolytica calcium binding protein exhibits enhanced growth and tolerance to salt stress. Plant Sci. 162: 41–47

    Article  CAS  Google Scholar 

  • Perry, JA; Wang, TL; Welham, TJ; Gardner, S; Pike, JM; Yoshida, S; Parniske, M. 2003. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonica. Plant Physiol. 131: 866–71.

    Article  PubMed  CAS  Google Scholar 

  • Quijano-Guerta, C; Kirk, GJD. 2002. Tolerance of rice germplasm to salinity and other soil chemical stresses in tidal wetlands. Field Crops Research 76: 111–21.

    Article  Google Scholar 

  • Reddy, PJ; Vaidyanath, K. 1986. In vitro characterization of salt stress effects and the selection of salt tolerant plants in rice (Oryza sativa L.) Theor.Appl.Genet.71. 757–760.

    Article  Google Scholar 

  • Roberts, G. 2003. Effects of mutations. http://www.bact.wisc.edu/Bact370/effectsofmut.html.

    Google Scholar 

  • Ryu, C-H; You, J-H; Kang, H-G; Hur, J; Kim, Y-H; Han, M-J; An, K; Chung, B-C; Lee, C-H; An, G. 2004 Generation of T-DNA gene tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol Biol 54: 489–502.

    Article  PubMed  CAS  Google Scholar 

  • Sairam, RK; Tyagi, A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86(3):407–421.

    Google Scholar 

  • Senadhira, D; Zapata-Arias, FJ; Gregorio, GB; Alejar, MS; De la Cruz, HC; Padolina, TF; Galvez, AM. 2002. Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Research 76:103–110.

    Article  Google Scholar 

  • Sessions, A; Burke, E; Presting, G; Aux, G; McElver, J; Patton, D; Dietrich, B; Ho, P; Bacwaden, J; Ko, C; Clarke, JD; Cotton, D; Bullis, D; Snell, J; Miguel, T; Hutchison, D; Kimmerly, B; Mitzel, T; Katagiri, F; Glazebrook, J; Law, M; Goff, SA. 2002. A high-throughput Arabidopsis reverse genetics system.The Plant Cell 2985–2994

    Google Scholar 

  • Shikazono, N; Suzuki, C; Kitamura, S; Watanabe, H; Tano, S; Tanaka, A. 2005. Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J. Exp. Bot. 56 (412): 587–596.

    Article  Google Scholar 

  • Singla-Pareek, SL; Reddy, MK; Sopory, SK. 2003. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. PNAS 100(25):14672–14677.

    Article  CAS  Google Scholar 

  • Slade, AJ; Fuerstenberg, SI; Loeffler, D; Steine, MN; Facciotti, D. 2004. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat. Biotech. On-line version doi:10.1038/nbt1043.

    Google Scholar 

  • Subbarao, GV; Johansen, C; Kumar Rao, JVDK; Jana, MK. 1990. Salinity tolerance in F1 hybrids of pigeonpea and a tolerant wild relative. Crop Science 30: 785–788.

    Article  CAS  Google Scholar 

  • Taylor, NE; Greene, EA. 2003. PARSESNP: A tool for the analysis of nucleotide polymorphisms. Nucl. Acids Res. 31:3808–3811.

    Article  CAS  Google Scholar 

  • Thomson, WW; Faraday, CD; Cross JW. 1988. Salt glands. In: Baker, DA; Hall JL Solute Transport in Plant Cells and Tissues. Longman Scientific and Technical, Harlow, Essex, England pp. 498–537

    Google Scholar 

  • Till, BJ; Reynolds, SH; Greene, EA; Codomo, CA; Enns, LC; Johnson, JE; Burtner, C; Odden, AR; Young, K; Taylor, NE; Henikoff, JG; Comai, L; Henikoff, S. 2003. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res. 13(3):524–530.

    Article  CAS  Google Scholar 

  • Till, BJ; Reynolds, SH; Weil, C; Springer, N; Burtner, C; Young, K; Bowers, E; Codomo, CA; Enns, LC; Odden, AR; Greene, EA; Comai, L; Henikoff, S. 2004. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol. 28; 4:12.

    Article  CAS  Google Scholar 

  • Till, BJ; Burtner, C; Comai, L; Henikoff, S. 2004. Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 32(8):2632–2641.

    Article  CAS  Google Scholar 

  • Till, BJ; Colbert, T; Tompa, R; Enns, L; Codomo, C; Johnson, J; Reynolds, SH; Henikoff, JG; Greene, EA; Steine, MN; Comai, L; Henikoff, S. 2003. High-throughput TILLING for functional genomics, in Plant Functional Genomics: Methods and Protocols, ed. Grotewald, E. Humana Press, 236:205–220.

    CAS  Google Scholar 

  • Tran, DQ; Dao, TTB; Nguyen, HD; Lam, QD; Bui, HT; Nguyen, VB; Nguyen, VX; Le, VN; Do, HA; Phan, P. 2006. Rice Mutation Breeding in Institute of Agricultural Genetics, Viet Nam. Plant Mutation Reports 1:47–49. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Van Harten, AM. 1998. Mutation Breeding. Theory and practical Applications. Cambridge, U.K.: New York, Cambridge University Press, 111–127.

    Google Scholar 

  • Veena; Reddy, SV; Sopory, SK. 1999. Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. The Plant J. 17(4):385–395.

    Article  Google Scholar 

  • Wincov, I. 1996. Characterization of rice (Oryza sativa L.) plants regenerated from salt tolerant cell-lines. Plant Science 113 105–111;

    Article  Google Scholar 

  • Yeo, AR; Yeo, ME; Flowers TJ. 1987. The contribution of an apoplastic pathway to sodium uptake in rice roots in saline conditions. J. Exp. Bot. 38: 1141–1153.

    Article  CAS  Google Scholar 

  • Yoshida, S; Forno, DA; Cock, JH; Gomez, KA. 1976. Laboratory manual for physiological Studies of rice. IRRI, Las Banos, Laguna, Philippines. Pp 83.

    Google Scholar 

  • Zapata-Arias, FJ; Torrizo, LB; Ando, A. 1995. Current developments in biotechnology for genetic improvement: the case of rice (Oryza saliva L.). World Journal of Microbiology and Biotechnology. 11:393–399.

    Article  CAS  Google Scholar 

  • Zapata-Arias, FJ. 2003. Laboratory protocol for anther culture technique in rice. In: Maluszynski, M; Kasha, KJ; Forster, BP; Szarejko, I. 2003. Doubled Haploid Production in Crop Plants: A Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands / Boston, USA / London, UK. Pp

    Google Scholar 

  • Zerr, T; Henikoff, S. 2005. Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res. 33(9):2806–2812.

    Article  CAS  Google Scholar 

  • Zhang, H-X; Blumwald, E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature biotech. 19: 765–768.

    Article  CAS  Google Scholar 

  • Zhu, XD; Chen, HQ; Shan, JX. 2006. Nuclear Techniques for Rice Improvement and Mutant Induction in China National Rice Research Institute. Plant Mutation Reports 1:7–10. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mba, C., Afza, R., Jain, S.M., Gregorio, G.B., Zapata-Arias, F.J. (2007). Induced Mutations For Enhancing Salinity Tolerance in Rice. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_17

Download citation

Publish with us

Policies and ethics