Explanation of the Decline in Mortality among the Oldest-Old: A Demographic Point of View

  • Graziella Caselli
  • James W. Vaupel
  • Anatoli I. Yashin
Part of the International Studies in Population book series (ISIP, volume 4)

In many highly developed countries, remarkable progress has been made in recent decades in reducing death rates, especially at older ages. New statistical data on mortality over time and up to the highest ages have revealed the time and age pattern of these improvements. These data have permitted reliable estimation of the age-trajectory of mortality, which turns out to follow a logistic pattern with deceleration at advanced ages. Individuals are heterogeneous with regard to their chances of death, and the frail tend to die first. Deeper understanding of the age-trajectory of mortality and the pattern of mortality improvements hinges on the development of statistical models that incorporate such mortality selection. This paper surveys the dynamics of mortality over age and time, reviews some “frailty model” approaches to analysing these dynamics, and presents some illustrative findings from studies of Danish twins and of the surface of Italian mortality over age and since 1895. Our goal is to participate in the debate on longevity from a demographic point of view and disclose the underlying features of accelerating human longevity. We are of the opinion that an analysis of this nature could help reveal the triggering factors. The study is a first step towards achieving this goal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Caselli, G. (1996) “Future longevity among the elderly”. In: Caselli, G., Lopez, A. D. (eds.), Health and Mortality Among Elderly Populations. Oxford: Clarendon Press, pp. 235-265.Google Scholar
  2. Caselli, G., and Capocaccia, R. (1989) “Age, period, cohort and early mortality: An analysis of adult mortality in Italy”, Population Studies, 43:133-153.CrossRefGoogle Scholar
  3. Caselli, G., and Egidi, V. (1981) “L’analyse des donn ées multidimensionelles dans l’ étude des r élations entre mortalit é et variables socio- économiques, d’environnement, et de comportement individuel”, Genus, 37(3-4):57-91.Google Scholar
  4. Caselli, G., Vaupel, J. W., and Yashin, A. I. (1985) “Mortality in Italy: Contours of a century of evolution”, Genus, 41:39-55.Google Scholar
  5. Caselli, G., Vaupel, J. W., and Yashin, A. I. (2000) “Longevity, heterogeneity and selection”. Atti della XL Riunione Scientifica della Societ à Italiana di Statistica, pp. 49-72, SIS 2000, Florence, p. 437.Google Scholar
  6. Christensen, K. (1995) “Mortality among twin after age 6: Foetal origins hypothesis versus twin method”, British Medical Journal, 310(6777):432-436.Google Scholar
  7. Clayton, D. G. (1978) “A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence”, Biometrica, 65:141-151.CrossRefGoogle Scholar
  8. Clayton, D. G., and Cuzick, J. (1985) “Multivariate generalizations of the proportional hazards model (with discussion)”, Journal of Royal Statistical Society Series A, 148:82-117.CrossRefGoogle Scholar
  9. Finch, C. E., and Kirkwood, T. B. L. (2000) Chance, Development, and Aging. Oxford: Oxford University Press.Google Scholar
  10. Gompertz, B. (1825) “On the nature of the function expressive of the law of human mortality”, Philosophical Transactions, 27:513-585.CrossRefGoogle Scholar
  11. Hauge, M. (1981) “The Danish twin register”. In: Mednick, S. A., Baert, A. E., Backmann, B. P. (eds.), Prospective Longitudinal Research, An Empirical Basis for the Primary Prevention of Psychiological Disorders. London: Oxford University Press, pp. 218-221.Google Scholar
  12. Horiuchi, S., and Coale, A. (1990) “Age patterns of mortality for older women: An analysis using the age-specific rate of mortality change with age”, Mathematical Population Studies, 42:389-406.Google Scholar
  13. Horiuchi, S., and Wilmoth, J. R. (1998) “Deceleration in the age pattern of mortality at older ages”, Demography, 35(4):391-412.CrossRefGoogle Scholar
  14. Hougaard, P., Bent, H., and Holm, N. V. (1992) “Assessment of dependence in the life times of twins”. In: Klein, G. P., Goel, P. K. (eds.), Survival Analysis: State of the Art. Dordrecht: Kluwer Academic Publishers, pp. 77-97.Google Scholar
  15. ISTAT. (2004) Tavole di mortalit à della popolazione italiana per provincia e per regione di residenza. Anno 2000,
  16. Kannisto, V. (1996) The Advancing Frontier of Survival, Vol. 3, Odense: Odense University Press. (Odense Monographs on Population Aging).Google Scholar
  17. Kirkwood, T. B. L. (1990) “The disposable soma theory of aging”. In: Harrison, D. E., (ed.), Genetic Effects on Aging II. Caldwell: NJ Telford Press, pp. 9-19.Google Scholar
  18. Kirkwood, T. B. L., and Rose, M. R. (1991) “Evolution of senescence: Late survival sacrificed for reproduction”, Philosophical Transactions of the Royal Society of London B. Biological Science, 332:15-24.CrossRefGoogle Scholar
  19. Klarsfeld, A., and Revah, F. (2000) Biologie de la mort. Paris: Edition Odile Jacob.Google Scholar
  20. Manton, K. G., Vaupel, J. W. (1995) “Survival after the age of 80 in the United States, Sweden, France, England and Japan”, New England Journal of Medicine, 333(18):1232-1235.CrossRefGoogle Scholar
  21. Manton, K. G., and Yashin, A. I. (2000) Mechanisms of Aging and Mortality: A Search for New Paradigms, Denmark: Odense University Press. (Odense Monographs on Population Aging no. 7).Google Scholar
  22. Marigliano, V. (1995) Invecchiamento e longevit à . Roma: CESI.Google Scholar
  23. McGue, M., Vaupel, J. W., Holm, N. V., and Harvald, B. (1993). “Longevity is moderately heritable in a sample of Danish twins born 1870-1880”. Journals of Gerontology Biological Science, 48(6):B237-B244.Google Scholar
  24. Medvedev, Z. A. (1990) “An attempt at a rational classification of theories of ageing”, Biology Review, 65:375-398.CrossRefGoogle Scholar
  25. Neale, M. C., and Cardon, L. R. (1992) Methodology for Genetic Studies of Twins and Familie. Dordrecht: Kluwer Academic Publishers.Google Scholar
  26. Robine, J.-M., Vaupel, J. W., Jeune, B., and Allard, M. (1997) Longevity: To the Limits and Beyond. New York: Springer.Google Scholar
  27. Rose, M. R. (1991) The Evolutionary Biology of Aging. Oxford: Oxford University Press.Google Scholar
  28. Soliani, L., and Lucchetti, E. (1997) Les facteurs genetiques de la mortalite. In: D émographie: analyse et synth èse. Causes et cons équences des évolutions d émographiques, Actes du S éminaire de San Miniato, Vol. I, pp. 71-84, Materiali di studi e di ricerche, numero speciale, Dipartimento di Scienze Demografiche and Institut national d’ études d émographiques-INED, Rome, Paris.Google Scholar
  29. Thacter, A. R., Kannisto, V., and Vaupel, J. W. (1998) The Force of Mortality at Ages 80 to 120, Vol. 5. Odense: Odense University Press. (Odense Monographs on Population Aging).Google Scholar
  30. Vaupel, J. W., and Carey, J. R. (1993) “Compositional interpretations of medfly mortality”, Science, 260:1666-1667.CrossRefGoogle Scholar
  31. Vaupel, J. W., Manton, K. G., and Stallard, E. (1979) “The impact of heterogeneity in individual frailty on the dynamics of mortality”, Demography, 16:439-454.CrossRefGoogle Scholar
  32. Vaupel, J. W., Bent, H., Holm, N., Yashin, A. I., and Xiu, L. (1992) “Survival analysis in genetics: Danish twin data applied to a gerontological question”. In: Klein, J. P., Goel, P. K. (eds.), Survival Analysis: State of the Art. Dordrecht: Kluwer Academic Publishers, pp. 121-140.Google Scholar
  33. Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V., Iachine, I. A., Kannisto, V., Khanzaeli, A. A., Liedo, P., Longo, V. D., Zeng, Y., Manton, K. G., and Curtsinger, J. W. (1998) “Biodemographic trajectories of longevity”, Science, 280:855-860.CrossRefGoogle Scholar
  34. Williams, G. C. (1957) “Pleiotropy, natural selection and the evolution of senescence”, Evolution, 11:398-411.CrossRefGoogle Scholar
  35. Wilmoth, J., Vallin, J., and Caselli, G. (1989) “When does a cohort’s mortality differ from what we might expected?”, Population (english edn.), 12:93-126.Google Scholar
  36. Yashin, A. I., and Iachine, I. A. (1994) “Mortality models with application to twin survival data. In: Halin, J., Karplus, W., Rimane, R. (eds.), CISS-First Joint Conference of International Simulation Societies Proceedings. Zurich, Switzerland: Simulation Councils, Inc. pp. 567-571.Google Scholar
  37. Yashin, A. I., and Iachine, I. A. (1995) “Genetic analysis of durations: Correlated frailty model applied to survival of Danish twins”, Genetic Epidemiology, 12:529-538.CrossRefGoogle Scholar
  38. Yashin, A. I., and Iachine, I. A. (1997) “How frailty models can be used for evaluating longevity limits: Taking advantage of an interdisciplinary approach”, Demography, 34(1):31-48.CrossRefGoogle Scholar
  39. Yashin, A. I., Vaupel, J. W., and Iachine, I. A. (1995) “Correlated individual frailty: An advantageous approach to survival analysis of bivariate data”, Mathematical Population Studies, 5(2):145-159.CrossRefGoogle Scholar
  40. Yashin, A. I., and Manton, K. G. (1997) “Effects of unobserved and partially observed covariate processes on system failure: A review of models and estimation strategies”, Statistical Science, 12(1):20-34.CrossRefGoogle Scholar
  41. Yashin, A. I., Iachine, I. A., Christensen, K., Holm, N. V., and Vaupel, J. W. (1998) “Genetic component of discrete disability traits: An analysis using liability models with age-dependent thresholds”, Behaviour Genetics, 28 (3):207-214.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Graziella Caselli
    • 1
  • James W. Vaupel
    • 2
  • Anatoli I. Yashin
    • 3
  1. 1.Department of DemographyLa Sapienza UniversityItaly
  2. 2.Max Planck Institute for Demographic ResearchGermany
  3. 3.Center for Demographic StudiesDuke UniversityDurhamUSA

Personalised recommendations