Genetic Factors Associated with Individual Life Duration: Heritability

  • Kaare Christensen
  • Anne Maria Herskind
Part of the International Studies in Population book series (ISIP, volume 4)

Lifespans cluster to some degree in families, and in recent years long-lived families have become the focus of many research efforts aiming at understanding the underlying aetiology for the variation in lifespan. Socioeconomic status is clearly associated with lifespan, but genetic factors are also believed to play a substantial role. Heritability is a useful estimate of the overall influence of genetic factors in a population. This chapter will cover the formal definition of heritability, describe design options to obtain heritability estimates, and summarize estimates of the heritability of various measures of human life duration such as lifespan per se, early and late death, and age-specific susceptibility to death (‘frailty’).


Twin Pair Heritability Estimate Twin Study Late Death Frailty Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, M. H., Murphy, E. A., Bolling, D. R., and Abbey, H. (1974) “The familial component in longevity: A study of offspring of nonagenarians. II. Preliminary analysis of the completed study”, John Hopkin Medical Journal, 134(1):1-16.Google Scholar
  2. Akaike, H. (1987) “Factor analysis and AIC”, Psychometrika, 52:317-332.CrossRefGoogle Scholar
  3. Barker, D. J. (1998) Mothers, Babies, and Health in Later Life. Edinburgh: Churchill Livingstone.Google Scholar
  4. Carmelli, D., and Andersen, S. (1981) “A longevity study of twins in the Mormon genealogy”, Progress in Clinical and Biological Research, 69 Pt C:187-200.Google Scholar
  5. Charlesworth, B. (1990) “Mutation-selection balance and the evolutionary advantage of sex and recombination”, Genetic Research, 55(3):199-221.CrossRefGoogle Scholar
  6. Christensen, K., Vaupel, J. W., Holm, N. V., and Yashin, A. I. (1995) “Mortality among twins after age 6: Fetal origins hypothesis versus twin method [see comments]”, British Medical Journal, 310(6977):432-436.Google Scholar
  7. Christensen, K., Holm, N. V., and Vaupel, J. W. (1996) “Alzheimer’s disease in twins [letter; comment]”, Lancet, 347(9006):976.CrossRefGoogle Scholar
  8. Christensen, K., Holm, N. V., McGue, M., Corder, L., and Vaupel, J. W. (1999) “A Danish population-based twin study on general health in the elderly”, Journal of Aging and Health, 11:49-64.CrossRefGoogle Scholar
  9. Christensen, K., McGue, M., Yashin, A. I., Iachine, I. A., Holm, N. V., and Vaupel, J. W. (2000) “Genetic and environmental influences on functional abilities among Danish twins aged 75 years and older”, Journal of Gerontology: Series A Biological Sciences and Medical Sciences, 55A(8): M446-M452.Google Scholar
  10. Christensen, K., Wienke, A., Skytthe, A., Holm, N. V., Vaupel, J. W., and Yashin, A. I. (2001) “Cardiovascular mortality in twins and the fetal origins hypothesis”, Twin Research, 4(5):344-349.CrossRefGoogle Scholar
  11. Cohen, B. H. (1964) “Family pattern of mortality and life-span”, Quarterly Review of Biology, 39:130-181.CrossRefGoogle Scholar
  12. Curtsinger, J. W., Fukui, H. H., Khazaeli, A. A., Kirscher, A., Pletcher, S. D., Promislow, D. E., and Tatar, M. (1995) “Genetic variation and aging”, Annual Review of Genetics, 29:553-575.CrossRefGoogle Scholar
  13. Fabsitz, R. R., Garrison, R. J., Feinleib, M., and Hjortland, M. (1978) “A twin analysis of dietary intake: Evidence for a need to control for possible environmental differences in MZ and DZ twins”, Behaviour Genetics, 8(1): 15-25.CrossRefGoogle Scholar
  14. Falconer, D. S. (1989) Introduction to Quantitative Genetics. (3rd edn.) Essex: Harlow, Longman.Google Scholar
  15. Finch, C. E., and Kirkwood, T. B. L. (2000) Chance, Development, and Aging. Oxford: Oxford University Presss.Google Scholar
  16. Finch, C. E., and Tanzi, R. E. (1997) “Genetics of aging”, Science, 278(5337):407-411.CrossRefGoogle Scholar
  17. Gudmundsson, H., Gudbjartsson, D. F., Frigge, M., Gulcher, J. R., and Stefansson, K. (2000) “Inheritance of human longevity in Iceland”, European Journal of Human Genetics, 8(10):743-749.CrossRefGoogle Scholar
  18. Harris, J. R., Pedersen, N. L., McClearn, G. E., Plomin, R., and Nesselroade, J. R. (1992) “Age differences in genetic and environmental influences for health from the Swedish Adoption/Twin Study of Aging”, Journal of Gerontology, 47(3):213-220.Google Scholar
  19. Herskind, A. M., McGue, M., Holm, N. V., Sorensen, T. I., Harvald, B., and Vaupel, J. W. (1996) “The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 1870-1900”, Human Genetics, 97 (3):319-323.CrossRefGoogle Scholar
  20. Hrubec, Z. and Neel, J. V. (1981) “Familial factors in early deaths: Twins followed 30 years to ages 51-61 in 1978”, Human Genetics, 59(1):39-46.CrossRefGoogle Scholar
  21. Iachine, I. A., Holm, N. V., Harris, J. R., Begun, A. Z., Iachina, M. K., Laitinen, M., Kaprio, J., and Yashin, A. I. (1998) “How heritable is individual susceptibility to death? The results of an analysis of survival data on Danish, Swedish and Finnish twins”, Twin Research, 1(4):196-205.CrossRefGoogle Scholar
  22. Jarvik, L., Falek A, Kallmann, F. J., and Lorge, I. (1960) “Survival trends in a senescent twin population”, American Journal of Human Genetics, 12:170-179.Google Scholar
  23. Kerber, R., O’Brien, E., Smith, K., and Cawthon, R. (2001) “Familial excess longevity in Utah genealogies”, Journal of Gerontology, A Biological Sciences Medical Sciences, 56(3):B130-B139.Google Scholar
  24. Ljungquist, B., Berg, S., Lanke, J., McClearn, G. E., and Pedersen, N. L. (1998) “The effect of genetic factors for longevity: A comparison of identical and fraternal twins in the Swedish Twin Registry”, Journal of Gerontology: Series A Biological Sciences, 53(6): M441-M446.Google Scholar
  25. Marenberg, M. E., Risch, N., Berkman, L. F., Floderus, B., and de Faire, U. (1994) “Genetic susceptibility to death from coronary heart disease in a study of twins”, New England Journal of Medicine, 330(15):1041-1046.CrossRefGoogle Scholar
  26. McGue, M., Vaupel, J. W., Holm, N., and Harvald, B. (1993) “Longevity is moderately heritable in a sample of Danish twins born 1870-1880”, Journal of Gerontology, 48(6): B237-B244.Google Scholar
  27. Meyer, P. J. (1991) “Inheritance of longevity evinces no secular trend among members of six New England families born 1650-1874”, American Journal of Human Biology, 3:49-58.CrossRefGoogle Scholar
  28. Neale, M. C., and Cardon, L. R. (1992) Methodology for Genetic Studies of Twins and Families. (1st edn.) Dordrecht: Kluwer Academic Publishers.Google Scholar
  29. Neale, M. C. (1999) Mx: Statistical Modeling : (3rd edn.), Box 710 MCV, Richmond, VA: Department of Psychiatry.Google Scholar
  30. Pearl, R. (1931) “Studies on human longevity IV. The inheritance of longevity”, Human Biology, 3:245-269.Google Scholar
  31. Perls, T. T., Bubrick, E., Wager, C. G., Vijg, J., and Kruglyak, L. (1998) “Siblings of centenarians live longer [letter]”, Lancet, 351(9115):1560-1957.CrossRefGoogle Scholar
  32. Phillips, D. I. (1993) “Twin studies in medical research: Can they tell us whether diseases are genetically determined? [see comments]”, Lancet, 341(8851):1008-1009.CrossRefGoogle Scholar
  33. Plomin, R., DeFries, J. C., McGuffin, P., and McClearn, G. E. (2001) Behavioural Genetics. (4th Ed.), New York: Freeman.Google Scholar
  34. R äihä, I., Kaprio, J., Koskenvuo, M., Rajala, T., and Sourander, L. (1996) “Alzheimer’s disease in Finnish twins”, Lancet, 347(9001):573-578.CrossRefGoogle Scholar
  35. Sørensen, T. I., Nielsen, G. G., Andersen, P. K., and Teasdale, T. W. (1988) “Genetic and environmental influences on premature death in adult adoptees”, New England Journal of Medicine, 318(12):727-732.Google Scholar
  36. V ågerö, D., and Leon, D. (1994) “Ischaemic heart disease and low birth weight: A test of the fetal-origins hypothesis from the Swedish Twin Registry [see comments]”, Lancet, 343(8892):260-263.CrossRefGoogle Scholar
  37. Vaupel, J. W., Manton, K. G., and Stallard, E. (1979) “The impact of heterogeneity in individual frailty on the dynamics of mortality”, Demography, 16(3):439-454.CrossRefGoogle Scholar
  38. Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V., Iachine, I. A., Kannisto, V., Khazaeli, A. A., Liedo, P., Longo, V. D., Zeng, Y., Manton, K. G., and Curtsinger, J. W. (1998) “Biodemographic trajectories of longevity”, Science, 280(5365):855-860.CrossRefGoogle Scholar
  39. Wyshak, G. (1978) “Fertility and longevity in twins, sibs, and parents of twins”, Social Biology, 25(4):315-330.Google Scholar
  40. Yashin, A. I., and Iachine, I. A. (1995) “Genetic analysis of durations: Correlated frailty model applied to survival of Danish twins”, Genetic Epidemiology, 12(5):529-538.CrossRefGoogle Scholar
  41. Yashin, A. I., and Iachine, I. A. (1999) “What difference does the dependence between durations make? Insights for population studies of aging”, Lifetime Data Analysis, 5(1):5-22.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kaare Christensen
    • 1
  • Anne Maria Herskind
    • 2
  1. 1.The Danish Twin Registry, Epidemiology, Institute of Public HealthUniversity of Southern DenmarkDenmark
  2. 2.Odense University HospitalDenmark

Personalised recommendations