Coping With Alternate Formulations Of Questions And Answers

  • Brigitte Grau
  • Olivier Ferret
  • Martine Hurault-Plantet
  • Christian Jacquemin
  • Laura Monceaux
  • Isabelle Robba
  • Anne Vilnat
Part of the Text, Speech and Language Technology book series (TLTB, volume 32)

We present in this chapter the QALC system which has participated in the four TREC QA evaluations. We focus here on the problem of linguistic variation in order to be able to relate questions and answers. We present first, variation at the term level which consists in retrieving questions terms in document sentences even if morphologic, syntactic or semantic variations alter them. Our second subject matter concerns variation at the sentence level that we handle as different partial reformulations of questions. Questions are associated with extraction patterns based on the question syntactic type and the object that is under query. We present the whole system thus allowing situating how QALC deals with variation, and different evaluations.


Noun Phrase Parse Tree Question Answering Extraction Pattern Answer Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. Abney, S. (1996), Partial Parsing via Finite-State Cascades. Natural Language Engineering,2 (4), 337-344.CrossRefGoogle Scholar
  2. Aït-Mokhtar, S. & Chanod, J-P. (1997). Incremental finite-state parsing. Proceedings of Applied Natural Language, Washington, DC. Google Scholar
  3. Aït-Mokhtar, S., Chanod, J-P. & Roux, C. (2002). Robustness beyond Shallowness: Incremental Deep Parsing. Natural Language Engineering, special issue on Robust Methods in Analysis of Natural Language Data, to appear.Google Scholar
  4. Alpha, S., Dixon, P., Liao, C. & Yang, C. (2001). Oracle at TREC 10: Filtering and Question-Answering. In: Proceedings of Text retrieval conference, TREC 10. Gaithersburg, MD. NIST Eds, pp. 23Google Scholar
  5. Appelt, D., Hobbs, J., Bear, J., Israel, D., Kameyama, M., Kehler, A. et al. (1995 ) SRI International FASTUS system: MUC-6 test results and analysis. Proceedings of the 6 th Message Understanding Conference (MUC-6), Morgan Kaufman, pp. 237-248.Google Scholar
  6. ARPA. (1992). Advanced Research Projects Agency. Proceedings of the Fourth Message Understanding Conference (MUC-4). San Francisco, California, Morgan Kaufman.Google Scholar
  7. ARPA. (1996). Advanced Research Projects Agency. Proceedings of the Sixth Message Understanding Conference (MUC-6). San Francisco, California, Morgan Kaufman.Google Scholar
  8. Barzilay, R. & McKeown, K. R. (2001). Extracting Paraphrases from a Parallel Corpus. Proceedings of ACL-EACL’01, Toulouse.Google Scholar
  9. Berri, J., Mollá Aliod, D. & Hess M. (1998). Extraction automatique de réponses: implémentations du système ExtrAns. Proceedings of the fifth conference TALN 1998 (Traitement Automatique des Langues Naturelles), Paris, pp. 12-21.Google Scholar
  10. Berwick, R.C. (1991). Principles of principle-based parsing. In Berwick, R.C., Abney, S.P., & Tenny, C. (Eds.), Principle-Based Parsing Computation and Psycholinguistics (pp. 1-38). Kluwer Academic.Google Scholar
  11. Biber, D. (1993). Using Register-Diversified Corpora for General Language Studies, Computational Linguistics, 19 (2), 219-241.Google Scholar
  12. Brill, E. (1993). A Corpus Based Approach To Language Learning, PhD Dissertation, Department of Computer and Information Science, University of Pennsylvania.Google Scholar
  13. Busemann, S. (1996). Best-First Surface Realization, Proceedings of the 8 th International Workshop on Natural Language Generation, Herstmonceux, Great Britain.Google Scholar
  14. Callaway, C.B. & Lester, J.C. (2001). Narrative Prose Generation. Proceedings of the 8th IJCAI 2001, Seattle. Google Scholar
  15. CELEX. (1998). Consortium for Lexical Resources, University of Pennsylvania. From http://www.
  16. Clarke, C.L.A., Cormack, G.V., Kisman, D.I.E. & Lynam, T.R., Question answering by passage selection, Proceedings of the Text retrieval conference, TREC9, Gaithersburg, MD. NIST Eds.Google Scholar
  17. CLR (1998) Consortium for Lexical Resources, NMSUs, Eds., New Mexico. From http://crl.nmsu. edu/cgi-bin/Tools/CLR/clrcat#D3.
  18. Collins, M. (1996). A New Statistical Parser Based on Bigram Lexical Dependencies. Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics, ACL-96, pp.184-191.Google Scholar
  19. Fabre, C. & Jacquemin, C. (2000). Boosting variant recognition with light semantics. Proceedings of COLING 2000, Luxemburg, pp. 264-270.Google Scholar
  20. Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press.Google Scholar
  21. Ferret, O., Grau, B., Hurault-Plantet, M., Illouz, G., Jacquemin, C. (2001). Document selection refinement based on linguistic features for QALC, a question answering system, Proceedings of the Euroconference on Recent Advances in Natural language Processing (RANLP), Tsigov Chark, Bulgaria.Google Scholar
  22. Gaizauskas, R. & Wilks, Y. (1997). Information Extraction: Beyond Document Retrieval. Technical report CS-97-10, Department of Computer Science, University of Sheffield, UK.Google Scholar
  23. van Halteren H., Zavrel J. and Daelemans W. (1998) Improving Data Driven Wordclass Tagging by System Combination, ACL-COLING’98, pp. 491-497.Google Scholar
  24. Harabagiu, S., Pasca, M., Maiorano, J. (2000). Experiments with Open-Domain Textual Question Answering. Proceedings of Coling’2000, Saarbrucken, Germany.Google Scholar
  25. Harabagiu, S., Moldovan, D., Pasca, M., Surdeanu, M., Mihalcea, R., Girju, R., Rus, V., Lactusu, F., Morarescu, P., Bunescu, R. (2001) Answering Complex, List and Context Questions with LCC’s Question-Answering Server, Proceedings of the Text retrieval conference, TREC 10, Gaithersburg, MD. NIST Eds., pp. 355-361.Google Scholar
  26. Hobbs, J.R. (1993). The Generic Information Extraction System. Proceedings of the Fifth Message Understanding Conference (MUC-5) (pp. 87-91), Morgan Kaufman.Google Scholar
  27. Hobbs Appelt, Bear Israel, Kameyama Stickel & Tyson (1996). FASTUS: A Cascaded Finite-State Transducer for Extracting Information from Natural-Language Text, in: Roche and Schabes, eds., Finite State Devices for Natural Language Processing, MIT Press, Cambridge MA.Google Scholar
  28. Hovy, E. (1996). Language generation, overview. In Survey of the State of the Art in Human Language Technology (chap. 4.1). From
  29. Hovy, E., Hermjacob, U. & Lin C-Y., Ravichandran, D. (2001a). Towards Semantics-Based Answer Pinpointing, DARPA Human Technology Conference (HLT), San Diego.Google Scholar
  30. Hovy, E., Hermjacob, U. & Lin C-Y. (2001b). The Use of External Knowledge in Factoid QA. Proceedings of the Text retrieval conference, TREC 10, Gaithersburg, MD. NIST Eds. pp. 644-652.Google Scholar
  31. Hull, D. (1996). Stemming algorithms: A case study for detailed evaluation, Journal of the American Society for Information Science, 47 (1), 70-84.CrossRefGoogle Scholar
  32. Ittycheriah, A., Franz, M., Zhu, W-J. & Ratnaparkhi A. (2000), IBM’s statistical Question Answering System. Pre-proceedings of TREC9, Gaithersburg, MD, NIST Eds, pp. 60-65.Google Scholar
  33. Ittycheriah, A., Franz, M. & Roukos, S. (2001). IBM’s Statistical Question Answering System - TREC-10. Proceedings of the Text retrieval conference, TREC 10, Gaithersburg, MD. NIST Eds.Google Scholar
  34. Jacquemin, C. (1999). Syntagmatic and paradigmatic representations of term variation. Proceedings of ACL’99, pp. 341-348.Google Scholar
  35. Jacquemin, C. (2001). Spotting and Discovering Terms through NLP. Cambridge, MA: MIT Press.Google Scholar
  36. Justeson, J. & Katz, S. (1995). Technical terminology: some linguistic properties and an algorithm for identification in text. Natural Language Engineering , 1, 9-27.CrossRefGoogle Scholar
  37. Lehnert, W. (1977). Human and computational question answering. Cognitive Science 1, 47-63.CrossRefGoogle Scholar
  38. Lin, D. & Pantel, P. (2001). Discovery of Inference Rules for Question-Answering. Natural Language Engineering 7 (4).Google Scholar
  39. McKeown, K. (1985). Discourse strategies for generating natural-language text, Artificial Intelligence, 27, 1-41.CrossRefGoogle Scholar
  40. McRoy, S.W., Channarukul, S., & Ali, S.S. (2000). YAG: A Template-Based Generator for Real-Time Systems (System demonstration), Proceedings of the First International Natural Language Generation Conference (INLG), Mitze Ramon, Israel.Google Scholar
  41. Poibeau, T. (2002). Extraction d’information à base de connaissances hybrides. Thèse de l’université Paris-Nord.Google Scholar
  42. Prager J., Brown, E., Radev, D. & Czuba, K. (2000), One Search Engine or two for Question-Answering, Proceedings of the Text retrieval conference, TREC9, Gaithersburg, MD. NIST Eds, pp. 250-254.Google Scholar
  43. Riloff, E. (1996). Automatically Generating Extraction Patterns from Untagged Text, Proceedings of the 13 th National Conference on Artificial Intelligence (AAAI-96), pp. 1044-1049.Google Scholar
  44. Robin, J. (1994). Revision-based generation of natural language summaries providing historical background: corpus-based analysis, design, implementation and evaluation. Ph.D. Thesis. CUCS-034-94, Columbia University, Computer Science Department, New York, USA. 357p.Google Scholar
  45. Sager, N. (1981). Natural Language Information Processing, Addison-Wesley, Reading. Google Scholar
  46. Schmid, H. (1999). Improvements in Part-of-Speech Tagging with an Application To German. In Armstrong, S., Chuch, K.W., Isabelle, P., Tzoukermann, E. & Yarowski, D. (Eds.), Natural Language Processing Using Very Large Corpora, Dordrecht: Kluwer Academic Publisher.Google Scholar
  47. Schwarz, C. (1988). The TINA Project: text content analysis at the Corporate Research Laboratories at Siemens. Proceedings of Intelligent Multimedia Information Retrieval Systems and Management (RIAO’88), Cambridge, MA, pp. 361-368.Google Scholar
  48. Schwenk, H. & Gauvain, J.-L. (2000). Improved ROVER using Language Model Information. Proceedings of ISCA ITRW Workshop on Automatic Speech Recognition: Challenges for the new Millenium, pp. 47-52, Paris.Google Scholar
  49. Sleator, D.D. & Temperley, D. (1991). Parsing English with a Link Grammar. Technical report CMU-CS-91-196, Carnegie Mellon University, School of Computer Science.Google Scholar
  50. Soubbotin, M.M. & Soubbotin, S.M. (2001). Patterns of Potential Answer Expressions as Clues to the Right Answers. Proceedings of the Text retrieval conference, TREC 10, Gaithersburg, MD. NIST Eds.Google Scholar
  51. Spark Jones, K. & Tait, J. (1984). Automatic search term variant generation. Journal of documentation, 40 (1), 50-66.CrossRefGoogle Scholar
  52. Spark Jones, K. (1999). The role of NLP in text retrieval. In T. Strzalkowski (Ed.) Natural Language Information Retrieval (pp. 1-24). Boston, MA, Kluwer.Google Scholar
  53. Wehrli, E. (1992). The IPS system. In C. Boitet (Ed.) Coling-92, GETA, pp. 870-874.Google Scholar
  54. Yangarber, R. & Grishman, R. (2000). Extraction Pattern Discovery through Corpus Analysis. Proceedings of the 2nd International Conference on Language Resources and Evaluation (LREC 2000), Workshop: Information Extraction meets Corpus Linguistics.Google Scholar
  55. Zock, M. & Sabah, G. (2002). La génération automatique de textes. In M. Fayol (Ed.) La production du langage, Coll. Sciences du Langage, Hermes.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Brigitte Grau
    • 1
  • Olivier Ferret
    • 1
  • Martine Hurault-Plantet
    • 1
  • Christian Jacquemin
    • 1
  • Laura Monceaux
    • 1
  • Isabelle Robba
    • 1
  • Anne Vilnat
    • 1
  1. 1.LIMSI (CNRS)France

Personalised recommendations