Advertisement

Coreference In Q&A

  • Jose L. Vicedo
  • Antonio Ferrández
Part of the Text, Speech and Language Technology book series (TLTB, volume 32)

The main aim of this work is to study the application of automatic anaphora or co-reference resolution techniques to Question Answering (QA) systems. Moreover, this chapter includes an overview of anaphora problem, a summary of approaches to anaphora resolution in Natural Language Processing and an analysis of their effectiveness and applicability to QA tasks. This work is complemented with a detailed study of current QA computational systems that apply this kind of techniques and a full evaluation for measuring the effects on QA systems performance when the information that is referenced by pronominal anaphora in documents is not ignored.

Keywords

Noun Phrase Machine Translation Definite Description Question Answering Anaphora Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Allen, J. (1995). Natural Language Understanding. The Benjamin /Cummings Publishing Company, Inc.Google Scholar
  2. Alpha, S., Dixon P., Liao C. & Yang C. (2001). Oracle at TREC 10. In Proceedings of the Tenth Text REtrieval Conference (TREC-10), Gaithersburg, Maryland (USA).Google Scholar
  3. Barbu, C. & Mitkov, R. (2001). Evaluation tool for rule-based anaphora resolution methods. In Proceedings of the 39th Annual Meeting and 10th Conference of the European Chapter of the Association for Computational Linguistics (ACL’2001). 34-41. Toulouse (France).Google Scholar
  4. Byron, D. (2001). The Uncommon Denominator: A Proposal for Consistent Reporting of Pronoun Resolution Results. Computational Linguistics. Special Issue on Anaphora and Ellipsis Resolution. 27 (4): 569-577.Google Scholar
  5. Bean, D. L. & Riloff, E. (1999). Corpus-based Identification of Non-Anaphoric Noun Phrases. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics (ACL), 373-380, Maryland (USA).Google Scholar
  6. Breck E., Burger J., Ferro L., House D., Light M. & Mani, I. (1999). A Sys Called Qanda. In Proceedings of the Eighth Text REtrieval Conference (TREC-8), 499-506, Gaithersburg, Maryland (USA).Google Scholar
  7. Carbonell, J. G. & Brown, R. D. (1988). Anaphora resolution: A multi-strategy approach. In Proceedings of the 12th International Conference on Computational Linguistics (COLING), 96-101, Budapest (Hungary).Google Scholar
  8. Chan, S. W. K. & T’Sou, B. K. (1999). Semantic Inference for Anaphora Resolution: Toward a Framework in Machine Translation. Machine Translation, 14(3/4), 163-190.CrossRefGoogle Scholar
  9. Connoly, D., Burger, J. & Day, D. (1994). A Machine learning approach to anaphoric reference. In Proceedings of the International Conference on New Methods in Language Processing (NEMLAP), 255-261, Manchester (UK).Google Scholar
  10. Ferrández, A., Palomar, M. & Moreno, L. (1999). An empirical approach to Spanish anaphora resolution. Machine Translation, 14(3/4), 191-216.CrossRefGoogle Scholar
  11. Ferrández, A. & Peral, J. (2000). A Computational Approach to Zero-pronouns in Spanish. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (ACL), 166-172, Hong-Kong (China).Google Scholar
  12. Garigliano, R., Urbanowicz, A. & Nettleton, D. J. (1998). University of Durham: Description of the LOLITA System as used for MUC-7. Morgan Kaufman Publishers.Google Scholar
  13. Ge, N., Hale, J. & Charniak, E. (1998). A statistical approach to anaphora resolution. In Proceedings of the Sixth Workshop on Very Large Corpora, 161-170, Montreal (Canada).Google Scholar
  14. Harabagiu, S. & Maiorano, S. (2000). Multilingual coreference resolution. In Proceedings of Conference on Applied Natural Language Processing/North American Chapter of the Association for Computational Linguistics (ANLP-NAACL), 142149, Seattle (USA).Google Scholar
  15. Harabagiu S., Moldovan D., Pasca M., Mihalcea R., Surdeanu M., Bunescu R., Gîrju R., Rus, V. & Morarescu P. (2000). FALCON: Boosting Knowledge for Answer Engines. In Proceedings of the Ninth Text REtrieval Conference (TREC-9), 479-488, Gaithersburg, Maryland (USA).Google Scholar
  16. Harabagiu, S., Moldovan, D., Pasca, M., Surdeanu, M., Mihalcea, R., Gîrju, R., Rus, V., Lacatusu, F., Morarescu, P. & Bunescu, R. (2001). Answering complex, list and context questions with LCC’s Question -Answering Server. In Proceedings of the Tenth Text REtrieval Conference (TREC-10), Gaithersburg, Maryland (USA).Google Scholar
  17. Harabagiu, S. & Maiorano, S. (2002). Three Ways to Customize Reference Resolution. In Proceedings of 2002 International Symposium on Reference Resolution for Natural Language Processing, 17-24, Alicante (Spain).Google Scholar
  18. Hirst, G. (1981). Anaphora in Natural Language Understanding. Berlin: Springer-Verlag.Google Scholar
  19. Hovy, E., Hermjakob, U. & Lin, C. (2001). The Use of External Knowledge in Factoid QA. In Proceedings of the Tenth Text REtrieval Conference (TREC-10), Gaithersburg, Maryland (USA).Google Scholar
  20. Humphreys, K., Gaizauskas, R., Azzam, S., Huyck, C. & Mitchell, B. (1998). University of Sheffield: Description of the LaSIE-II System as used for MUC-7. Morgan Kaufman Publishers.Google Scholar
  21. Humphreys, K., Gaizauskas, R., Hepple, M. & Sanderson, M. (1999). University of Sheffield TREC-8 QA System. In Proceedings of the Eighth Text REtrieval Conference (TREC-8), 707-716, Gaithersburg, Maryland (USA).Google Scholar
  22. Ittycheriah, A., Franz, M. & Roukos, S. (2001). IBM’s statistical Question Answering System - TREC-10. In Proceedings of the Tenth Text REtrieval Conference (TREC-10), Gaithersburg, Maryland (USA).Google Scholar
  23. Ittycheriah, A. & Roukos, S. (2002). IBM’s Statistical Question Answering System-TREC 11. In Proceedings of the Eleventh Text REtrieval Conference (TREC-11), Gaithersburg, Maryland (USA).Google Scholar
  24. Kennedy, C. & Boguraev, B. (1996). Anaphora for Everyone: Pronominal Anaphora resolution without a Parser. In Proceedings of the 16th International Conference on Computational Linguistics (COLING), 113-118, Copenhagen (Denmark).Google Scholar
  25. Kupiec, J.M. (1993). MURAX: A robust linguistic approach for question-answering using an on-line encyclopaedia. In Proceedings of the 16th International ACM SIGIR Conference on Research and Development in Information Retrieval, 181-190, Pittsburgh, PA (USA).Google Scholar
  26. Lappin, S. & Leass, H. (1994). An algorithm for pronominal anaphora resolution. Computational Linguistics, 20(4), 535-561.Google Scholar
  27. Lin, C. & Chen, H. (2000). Description of NTU QA and CLIR Systems in TREC-9. In Proceedings of the Ninth Text REtrieval Conference (TREC-9), 389-398, Gaithersburg, Maryland (USA).Google Scholar
  28. Lin, C. & Chen, H. (2001). Description of NTU System at TREC-10. In Proceedings of the Tenth Text REtrieval Conference (TREC-10), Gaithersburg, Maryland (USA).Google Scholar
  29. Litkowski, K.C. (2001). CL Research Experiments in TREC-10 Question Answering. In Proceedings of the Tenth Text REtrieval Conference (TREC-10), Gaithersburg, Maryland (USA).Google Scholar
  30. Mitkov, R. (1999). Multilingual Anaphora Resolution. Machine Translation, 14(3/4), 281-299.CrossRefGoogle Scholar
  31. Mitkov, R. (2002). Anaphora resolution. Longman.Google Scholar
  32. Moldovan, D., Harabagiu, S., Gîrju, R., Morarescu, P., Lacatusu, F., Novischi, A., Badulescu, A. & Bolohan, O. (2002). LCC Tools for Question Answering. In Proceedings of the Eleventh Text REtrieval Conference ( TREC-11), Gaithersburg, Maryland (USA).Google Scholar
  33. Morton, T. S. (1999). Using Coreference in Question Answering. In Proceedings of the Eighth Text REtrieval Conference (TREC-8), 685-688, Gaithersburg, Maryland (USA).Google Scholar
  34. Morton, T. S. (2000). Coreference for NLP Applications. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (ACL), 173-180, Hong-Kong (China).Google Scholar
  35. Nakaiwa, H. & Shirai, S. (1996). Anaphora Resolution of Japanese Zero Pronouns with Deictic Reference. In Proceedings of the 16th International Conference on Computational Linguistics (COLING), 812-817, Copenhagen (Denmark).Google Scholar
  36. Oard, D., Wang, J., Lin, D. & Soboroff, I. (1999). TREC-8 Experiments at Maryland: CLIR, QA and Routing. In Proceedings of the Eighth Text REtrieval Conference (TREC-8), 623-636, Gaithersburg, Maryland (USA).Google Scholar
  37. Oh, J., Lee, K., Chang, D., Seo, C. & Choi, K. (2001). TREC-10 Experiments at KAIST: Batch Filtering and Question Answering. In Proceedings of the Tenth Text REtrieval Conference (TREC-10), Gaithersburg, Maryland (USA).Google Scholar
  38. Orasan, C., Evans, R. & Mitkov, R. (2000). Enhancing preference-based anaphora resolution with genetic algorithms. In Proceedings of NLP-2000, 185-195, Patras (Greece).Google Scholar
  39. Palomar, M., Ferrández, A., Moreno, L., Martínez-Barco, P., Peral, J., Saiz-Noeda, M. & Muñoz, R. (2001). An Algorithm for Anaphora Resolution in Spanish Texts. Computational Linguistics. Special Issue on Anaphora and Ellipsis Resolution, 27(4), 545-567.Google Scholar
  40. Paul, M., Yamamoto, K. & Sumita, E. (1999). Corpus-based anaphora resolution towards antecedent preference. In Proceedings of the ACL Workshop on Coreference and Its Applications, 47-52, College Park, MD (USA).Google Scholar
  41. Poesio, M. & Vieira, R. (1998). A Corpus-Based Investigation of Definite Description Use. Computational Linguistics, 24(2), 183-216.Google Scholar
  42. Prager, J., Chu-Carroll, J. & Czuba, K. (2001). Use of WordNet Hypernyms for Answering What-Is Questions. In Proceedings of the Tenth Text REtrieval Conference (TREC-10), Gaithersburg, Maryland (USA).Google Scholar
  43. Reinhart, T. (1983). Anaphora and Semantic Interpretation. Croom Helm Backenham, Kent.Google Scholar
  44. Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison Wesley. New York.Google Scholar
  45. Strube, M. & Hahn, U. (1999). Functional centering: Grounding referential coherence in information structure. Computational Linguistics, 25(3), 309-344.Google Scholar
  46. Tetreault, J. R. (2001). A Corpus-Based Evaluation of Centering and Pronoun Resolution. Computational Linguistics. Special Issue on Anaphora and Ellipsis Resolution, 27(4), 507-520.Google Scholar
  47. Vicedo, J.L. & Ferrández, A. (2000). Importance of Pronominal Anaphora resolution in Question Answering systems. In Proceedings of the 38 th Annual Meeting of the Association for Computational Linguistics (ACL), 555-562, Hong Kong (China).Google Scholar
  48. Vicedo, J.L. & Ferrández, A. (2000b). A semantic approach to Question Answering systems. In Proceedings of the Ninth Text REtrieval Conference (TREC-9), 511-516, Gaithersburg, Maryland (USA).Google Scholar
  49. Vicedo, J.L., Ferrández, A. & Llopis, F. (2001). University of Alicante at TREC-10. In Proceedings of the Tenth Text REtrieval Conference (TREC-10), Gaithersburg, Maryland (USA).Google Scholar
  50. Webber, B. (1979). A formal approach to discourse anaphora. New York: Garland Publishing.Google Scholar
  51. Wee Meng Soon, Hwee Tou Ng, Daniel Chung Yong Lim. (2001). A Machine Learning Approach to Coreference Resolution of Noun Phrases. Computational Linguistics. Special Issue on Anaphora and Ellipsis Resolution, 27(4), 521-544.Google Scholar
  52. Yang, H. & Chua T. (2002). The Integration of Lexical Knowledge and External Resources for Question Answering. In Proceedings of the Eleventh Text REtrieval Conference (TREC-11), Gaithersburg, Maryland (USA).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Jose L. Vicedo
    • 1
  • Antonio Ferrández
    • 1
  1. 1.Departamento de Lenguajes y Sistemas InformáticosUniversity of AlicanteSpain

Personalised recommendations