Advertisement

New Results on Weight-Two Motivic Cohomology

  • S. Lichtenbaum
Chapter
Part of the Modern Birkhäuser Classics book series (volume 88)

Abstract

Among Grothendieck’s manifold contributions to algebraic geometry is his emphasis on the search for a universal cohomology theory for algebraic varieties and a conjectured description of it in terms of motives [Ma]. Various authors have recently set out to describe the properties of and conjecturally define a cohomology theory for algebraic varieties, which has been baptized “motivic cohomology” by Beilinson, MacPherson, and Schechtman ([BMS],[Be],[Bl],[T],[L1],[L2]). It is hoped that this theory, when and if it is fully developed, will in some sense be universal and thus provide at least a partial response to Grothendieck’s question.

Keywords

Spectral Sequence Finite Type Torsion Class Distinguished Triangle Quotient Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-H]
    Atiyah, M. and Hirzebruch, F., Analytic cycles on complex manifolds, Topology 1 (1962), 25–45.MathSciNetCrossRefGoogle Scholar
  2. [BBD]
    Beilinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers, Astérisque 100 (1982).Google Scholar
  3. [Be]
    Beilinson, A. A., Height pairings between algebraic cycles. Current Trends in Arithmetical Alg., Geometry, Cont. Math. 67 (1987).Google Scholar
  4. [B1]
    Bloch, S., Algebraic cycles and higher K- theory, Advances in Math. 61 (1986), 267–304.MathSciNetCrossRefGoogle Scholar
  5. [BK]
    Bloch, S. and Kato, K., p-adic étale cohomology, Publ. I.H.E.S. 63 (1986), 107–152.CrossRefGoogle Scholar
  6. [BMS]
    Beilinson, A., MacPherson, R. and Schechtman, V., Notes on motivic cohomology, Duke Math. J. 54 (1987), 679–710.MathSciNetCrossRefGoogle Scholar
  7. [BO]
    Bloch, S. and Ogus, A., Gersten’s conjecture and the homology of schemes, Ann. Sci. Sc. Norm. Sup. IV, Ser. 7 (1974), 181–202.MathSciNetzbMATHGoogle Scholar
  8. [CTR]
    Colliot-Thélène, J.-L. and Raskind, W., H 2-cohomology and the second Chow group, Math. Ann. 270 (1985), 165–199.MathSciNetCrossRefGoogle Scholar
  9. [I]
    Illusie, L., Complexe de la Rham-Witt et Cohomologie crystalline, Ann. Sci. Sc. Norm. Sup. Ser. 12 (1979), 501–661.zbMATHGoogle Scholar
  10. [LI]
    Lichtenbaum, S., Values of zeta-functions at non-negative integers, Number Theory, Noordwijkerhout 1983, Lect. Notes in Math. 1068. Springer-Verlag (1984) 127–138.CrossRefGoogle Scholar
  11. [L2]
    Lichtenbaum, S., The construction of weight-two arithmetic cohomology, Invent. Math. 88 (1987), 183–215.MathSciNetCrossRefGoogle Scholar
  12. [Li]
    Lieberman, D., Numerical and homological equivalence of algebraic cycles on Hodge manifolds, Amer. J. Math. 90 (1968), 366–374.MathSciNetCrossRefGoogle Scholar
  13. [Ma]
    Manin, Ju I., Correspondences, motifs and monoidal transformations, (AMS translation series), Mathematics of the USSR-Sbornik 6 (1968), 439–469. (original in Matematiceskiï Sbornik 77 (119) (1968) 475–507)CrossRefGoogle Scholar
  14. [M]
    Milne, J., Values of zeta functions of varieties over finite fields, Amer. Jour. of Math. 108 (1986), 297–360.MathSciNetCrossRefGoogle Scholar
  15. [MS]
    Mercuriev, A. S., Suslin, A. A., On the K 3of a field, preprint, LOMI (1987).Google Scholar
  16. [So]
    Soulé, C, Opérations en p -théorie algébrique, Canadian J. Math. 37 (1985), 488–550.MathSciNetCrossRefGoogle Scholar
  17. [Su]
    Suslin, A. A., Torsion in K 2of fields, K- theory, 1, (1987) 5–29.Google Scholar
  18. [SGA41/2]
    Deligne, P., et al, Cohomologie Etale, Lecture Notes in Math. 569. Springer-Verlag (1977).CrossRefGoogle Scholar
  19. [T]
    Thomason, R., Survey of algebraic vs étale topological K-theory, (preprint).Google Scholar

Copyright information

© Springer Science+Business Media New York 2007

Authors and Affiliations

  • S. Lichtenbaum
    • 1
  1. 1.Department of Mathematics, White HallCornell UniversityIthacaUSA

Personalised recommendations