Advertisement

Représentations p-adiques des corps locaux (1ère partie)

  • Jean-Marc Fontaine
Chapter
Part of the Modern Birkhäuser Classics book series

Abstract

Soient p un nombre premier, k un corps parfait de caractéristique p, W = W(k) l’anneau des vecteurs de Witt à coefficients dans k et K0 son corps des fractions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [Ab89]
    Abraskin, V. A., Ramification in étale cohomology, manuscrit, 1989.Google Scholar
  2. [Ax70]
    Ax, J., Zeros of polynomials over local fields. The Galois action, J. Algebra 15 (1970), 417–428.MathSciNetCrossRefGoogle Scholar
  3. [BK89]
    Bloch S., and Kato, K., L-functions and Tamagawa numbers of motives, preprint, 1989.Google Scholar
  4. [Bu88]
    Séminaire sur les périodes p-adiques, IHES, Bures-sur-Yvette, 1988, en préparation.Google Scholar
  5. [Co79]
    Coleman, R., Division values in local fields, Inv. Math 53 (1979), 91–116.MathSciNetCrossRefGoogle Scholar
  6. [C082]
    Coleman, R., Dilogarithms, regulators and p-adic Abelian integrals, Inv. Math 69 (1982), 171–208.CrossRefGoogle Scholar
  7. [Co85]
    Coleman, R., Torsion points on curves and p-adic Abelian integrals, Ann. of Math. 121 (1985), 111–168.MathSciNetCrossRefGoogle Scholar
  8. [Co87]
    Coleman, R., letter to B. Mazur, March 1987.Google Scholar
  9. [De72]
    Demazure, M., Lectures on p-divisible groups, Lecture Notes in Math. 302, Springer, Berlin, 1972.CrossRefGoogle Scholar
  10. [DM82]
    Deligne, P. and Milne, J. S., Tannakian categories, in Hodge Cycles, Motives and Shimura Varieties, Lecture Notes in Math. 900, Springer, Berlin, 1982, 101–228.CrossRefGoogle Scholar
  11. [Fa88a]
    Faltings, G., Crystalline cohomology and p-adic Galois representations, preprint 1988.Google Scholar
  12. [Fa88b]
    Faltings, G., F-isocrystals on open varieties, results and conjectures, preprint 1988.Google Scholar
  13. [Fo77]
    Fontaine, J.-M., Groupes p-divisibles sur les corps locaux, Astérisque, 47–58. Soc. Math, de France, Paris, 1977zbMATHGoogle Scholar
  14. [Fo83a]
    Fontaine, J.-M., Cohomologie de de Rham, cohomologie cristalline et représentations p-adiques, in Algebraic Geometry Tokyo-Kyoto, Lecture Notes in Math. 1016, Springer, Berlin, 1983, 86–108.CrossRefGoogle Scholar
  15. [Fo83b]
    Fontaine, J.-M., Representations p-adiques, Proc. Int. Congress Math., (1983), Warsaw, 475–486.Google Scholar
  16. [FL82]
    Fontaine, J.-M. and Laffaille, G., Construction de représentations p-adiques, Ann. Scient. E.N.S., 4° série, 15 (1982), 547–608.zbMATHGoogle Scholar
  17. [FM87]
    Fontaine, J.-M. and Messing, W., p-adic periods and p-adic étale cohomology, Contemporary Math. 67 (1987), 179–207.CrossRefGoogle Scholar
  18. [FW79]
    Fontaine, J.-M. and Wintenberger, J.-P., Le “corps des normes” de certaines extensions algébnques de corps locaux, C.R.A.S. 288 (1979), 367–370.zbMATHGoogle Scholar
  19. [Gr70]
    Grothendieck A., Groupes de Barsotti-Tate et cristaux, Actes Congrès Int. Math. Nice 1970, t.l, Gauthiers-Villars, Paris, 1971.Google Scholar
  20. [Ka89]
    Kato, K., The explicit reciprocity law and the cohomology of Fontaine-Messing, Bull. Soc. Math. France. à paraître.Google Scholar
  21. [La78]
    Lang, S., Cyclotomic Fields. Springer, Berlin, 1978.CrossRefGoogle Scholar
  22. [Sa72]
    Saavedra Rivano, N., Catégories Tannakiennes, Lecture Notes in Maths 265. Springer, Berlin, 1972.CrossRefGoogle Scholar
  23. [Sen80]
    Sen, S., Continuous cohomology and p-adic Galois representations, Inv. Math. 62 (1980), 89–116.MathSciNetCrossRefGoogle Scholar
  24. [Se58]
    Serre, J.-P., Classe des corps cyclotomiques, Séminaire Bourbaki, exp. 174, (1958), Benjamin, New York, 1966.Google Scholar
  25. [Se68]
    Serre, J.-P., Corps locaux, 2°éd., Hermann, Paris, 1968.zbMATHGoogle Scholar
  26. [Wi83]
    Wintenberger, J.-P., Le corps des normes de certaines extensions infinies des corps locaux; applications, Ann. Sci. E.N.S. 16 (1983), 59–89.MathSciNetzbMATHGoogle Scholar
  27. [Wit37]
    Witt, E., Zyklische Körper und Algebren der Charakteristik p vom Grad p n, Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Characteristik p (sic), J. reine ang. Math. 176 (1937), 126–140.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Jean-Marc Fontaine
    • 1
  1. 1.Centre d’Orsay Département de Mathématiques - Bât. 425Université de Paris-SudOrsay CedexFrance

Personalised recommendations