Kazhdan-Lusztig Conjecture for A Symmetrizable Kac-Moody Lie Algebra

  • Masaki Kashiwara
Part of the Modern Birkhäuser Classics book series


In recent years, with the progress of mathematical physics, it becomes more and more important to study systems with infinite freedom. In [K], we studied the flag variety of Kac-Moody Lie algebras, as a typical case of an infinite-dimensional manifold. By that study, it is revealed that the most natural language of scheme introduced by A. Grothendieck is again the most appropriate algebraic tool to deal with an infinite-dimensional manifold.


Exact Sequence Verma Module High Weight Vector Flag Variety Flag Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [EGA]
    A. Grothendieck and J. Dieudonné, Eléments de Géométric Algébrique, I–IV, Publ. Math. I.H.E.S.Google Scholar
  2. [SGA]
    A. Grothendieck et al, Séminaire de Géométrie algébrique.Google Scholar
  3. [B-B]
    A. Beilinson and J. Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris 292 (1981), 15–18.MathSciNetzbMATHGoogle Scholar
  4. [B-K]
    J-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic system, Invent. Math.64 (1981), 387–410.MathSciNetCrossRefGoogle Scholar
  5. [D-G-K]
    V. Deodhar, O. Gabber and V. Kac, Structure of some categories of infinite-dimensional Lie algebras, Adv. in Math.45 (1982), 92–116.MathSciNetCrossRefGoogle Scholar
  6. [K-K]
    V. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. in Math.34 (1979), 97–108.MathSciNetCrossRefGoogle Scholar
  7. [K]
    M. Kashiwara, The flag manifold of Kac-Moody Lie algebra, Amer. J. of Math.111 (1989).Google Scholar
  8. [K’]
    M. Kashiwara, Representation theory and D-modules on flag varieties, Proc. of Orbites unipotentes... (to appear in Astérisque) and R.I.M.S. preprint 622.Google Scholar
  9. [K-L]
    D. A. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math.53 (1979), 165–184.MathSciNetCrossRefGoogle Scholar
  10. [Kempf]
    G. Kempf, The Grothendieck-Cousin complex of an induced representation, Adv. in Math.29 (1978), 310–396.MathSciNetCrossRefGoogle Scholar
  11. [S.K]
    S. Kumar, 1. Demazure character formula in arbitrary Kac-Moody setting, Invent. Math.89 (1987), 395–423. 2. Bernstein-Gelfand-Gelfand resolution for arbitrary Kac-Moody setting, preprint.MathSciNetCrossRefGoogle Scholar
  12. [M]
    O. Mathieu, Formule de caractères pour les algèbres de Kac-Moody générales, Astérisque (1988) 159–160.Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  • Masaki Kashiwara
    • 1
  1. 1.R.I.M.S.Kyoto UniversityKyotoJapan

Personalised recommendations