Medical andTechnological Application of Monodispersed Colloidal Silica Particles

  • Herbert GiescheEmail author


Monodispersed submicrometer-sized silica particles have been studied for a variety of application. Most of these publications are based on the same synthesis technique, the so-called Stöber-process, 1which is modified to some degree in each case in order to “adjust” the particles for the different applications. Stöber silica particles have some very exceptional properties. They can be produced with outstanding uniformity; less than 5% standard deviation of the particle size distribution is standard and values as low as 1% can be achieved (in the particle size range between 100 and 1,000 nm) when the synthesis process is controlled more carefully. This property is only been rivaled by the control over particle size in latex systems. Another major advantage is the ease with which somewhat larger quantities of the material can be produced. This fact makes the commercial aspect of moving from the laboratory results to production interesting for companies. And last but not...


Silica Particle Silica Sphere Colloidal Crystal Pigment Particle Hollow Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    1. Werner Stöber, Arthur Fink, and Ernst Bohn; Controlled growth of monodisperse silica spheres in the micron size range; J. Colloid Interface Sci., 26 (1968) 62–69CrossRefGoogle Scholar
  2. 2.
    2. Herbert Giesche; Hydrolysis of Silicon Alkoxides in Homogeneous Solutions; in: Fine Particles: Synthesis, Characterization, and Mechanism of Growth(Tadao Sugimoto, ed); Marcel Dekker, New York (2000) 126–146 (Chap. 2.1)Google Scholar
  3. 3.
    3. Herbert Giesche; Synthesis of monodispersed silica powders. I. particle properties and reaction kinetics; J. Eur. Ceram. Soc., 14 (1994) 189–204CrossRefGoogle Scholar
  4. 4.
    4. Herbert Giesche; Synthesis of monodispersed silica powders. II. Controlled growth reaction and continuous production process; J. Eur. Ceram. Soc., 14 (1994) 205–214CrossRefGoogle Scholar
  5. 5.
    5. T. Matsoukas and E. Gulari; Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate; J. Colloid Interface Sci., 124 (1988) 252–261CrossRefGoogle Scholar
  6. 6.
    6. T. Matsoukas and E. Gulari; Monomer-addition growth with a slow initiation step: A growth model for silica particles from alkoxides; J. Colloid Interface Sci., 132 (1989) 13–21CrossRefGoogle Scholar
  7. 7.
    7. G. H. Bogush, G. L. Dickstein, P. Lee, K. C. Zukoski, and C. F. Zukoski IV; Studies of the hydrolysis and polymerization of silicon alkoxides in basic alcohol solutions; in: Materials Research Society Symposium Proceedings, Vol. 121, Better Ceramics Through Chemistry III (Jeffrey Brinker C., Clark D. E. & Ulrich D. R., eds); Materials Research Society, Pittsburgh, PA (1988) 57–65Google Scholar
  8. 8.
    8. G. H. Bogush and C. F. Zukoski IV; Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides; J. Colloid Interface Sci., 142 (1991) 1–18CrossRefGoogle Scholar
  9. 9.
    9. G. H. Bogush and C. F. Zukoski IV; Uniform silica particle precipitation: An aggregative growth model; J. Colloid Interface Sci., 142 (1991) 19–34CrossRefGoogle Scholar
  10. 10.
    10. A. van Blaaderen, J. van Geest, and A. Vrij; Monodisperse colloidal silica spheres from tetraalkoxysilanes: Particle formation and growth mechanism; J. Colloid Interface Sci., 154 (1992) 481–501CrossRefGoogle Scholar
  11. 11.
    11. G. H. Bogush, C. J. Brinker, P. D. Majors, and D. M. Smith; Evolution of surface area during the controlled growth of silica spheres; in: Materials Research Society Symposium Proceedings, Vol. 180: Better Ceramics Through Chemistry IV(Zelinski B. J. J., Jeffrey Brinker C., Clark D. E. & Ulrich D. R, eds); Materials Research Society, Pittsburgh, PA (1990) 491–494Google Scholar
  12. 12.
    12. S. Coenen and C. G. De Kruif; Synthesis and growth of colloidal silica particles; J. Colloid Interface Sci., 124 (1988) 104–110CrossRefGoogle Scholar
  13. 13.
    13. A. P. Philipse; Quantitative aspects of the growth of (charged) silica spheres; Colloid Polym. Sci., 266 (1988) 1174–1180CrossRefGoogle Scholar
  14. 14.
    14. C. Kaiser, M. Hanson, H. Giesche, J. Kinkel, and K. K. Unger; Nonporous Silica Microsheres in the Micron and Submicron Range: Manufacture, Characterization and Application; in: Fine Particle Science and Technology From Micro to Nanoparticles, NATO AST Series (E. Pelizetti, ed); Klüwer Academic Publishers, Dordrecht, NL (1996) 71–84CrossRefGoogle Scholar
  15. 15.
    15. Kangtaek Lee, Arun N. Sathyagal, Alon V. McCormick; A closer look at an aggregation model of the Stöber process; Colloids Surf. A: Physicochem. Eng. Asp., 144 (1998) 115–125CrossRefGoogle Scholar
  16. 16.
    16. A. K. van Helden and A. Vrij; Contrast variation in light scatting: Silica spheres dispersed in apolar solvent mixtures; J. Colloid Interface Sci., 76 (1980) 418–433.CrossRefGoogle Scholar
  17. 17.
    17. S. Emmett, S. D. Lubetkin, and B. Vincent; The growth of ordered sediments of monodispersed hydrophobic silica particles; Colloids Surf., 42 (1989) 139–153CrossRefGoogle Scholar
  18. 18.
    18. K. Osseo-Asare and F. J. Arriagada; Synthesis of nanosize particles in reverse microemulsions; in: Ceramic Transactions, Vol. 12, Ceramic Powder Science III (Messing G. L., Hirano S.-i. & Hausner H., eds); The American Ceramic Society, Westerville, OH (1990) 3–16Google Scholar
  19. 19.
    19. Kohji Yoshinaga; Surface modifications of inorganic particles; in: Fine Particles: Synthesis, Characterization, and Mechanism of Growth (Tadao Sugimoto, ed); Marcel Dekker, New York (2000) 626–646 (Chap. 12.1)Google Scholar
  20. 20.
    20. Joachim N. Kinkel; Darstellung and Charakterisierung von Siliziumdioxidträgermaterialien zur Trennung von Biopolymeren durch Hochdruckflüssigchromatographie, Dissertation, Universität Mainz, Germany (1984)Google Scholar
  21. 21.
    21. Michael A. Markovitz, Paul E. Schoen, Paul Kust, and Bruce P. Gaber; Surface acidity and basicity of functionalized silica particles; Colloids Surf. A: Physicochem. Eng. Asp., 150 (1999) 85–94CrossRefGoogle Scholar
  22. 22.
    22. Gunter Büchel, Michael Grün, and Klaus K. Unger; Tailored syntheses of nanostructured silicas: Control of particle morphology, particle size and pore size; Supramol. Sci., 5 (1998) 2530–2539Google Scholar
  23. 23.
    23. H. Giesche, K. K. Unger, U. Müller, and U. Esser; Hysteresis in nitrogen sorption and mercury porosimetry on mesoporous model adsorbents made of aggregated monodisperse silica spheres; Colloids Surf., 37 (1989) 93–113CrossRefGoogle Scholar
  24. 24.
    24. S. Bukowiecki, B. Straube, and K. K. Unger; Pore structure analysis of close-packed silica spheres by means of nitrogen sorption and mercury porosimetry; in: Principles and Applications of Pore Structural Characterization (Haynes J. M. & Rossi-Doria P., eds); Arrowsmith, Bristol (1985) 43–55Google Scholar
  25. 25.
    25. H. Giesche; Interpretation of hysteresis ‘fine-structure’ in mercury-porosimetry measurements; in: Materials Research Society Symposium Proceedings, Volume 371, Advances in Porous Materials (Komarneni S., Smith D. M. & Beck J. S., eds); Materials Research Society, Pittsburgh, PA (1995) 505–510Google Scholar
  26. 26.
    26. D. M. Smith, T. E. Holt, D. P. Gallegos, and D. L. Stermer; Pore structure analysis via NMR, mercury porosimetry, and dynamic methods; in: Advances in Ceramics, Vol. 21, Ceramic Powder Science(Messing G. L., (Joe) Mazdiyasni K. S., McCauley J. W. & Haber R. A., eds); The American Ceramic Society, Columbus, OH (1987) 779–791Google Scholar
  27. 27.
    27. Herbert Giesche, Mercury Porosimetry; in: Handbook of Porous Materials (F. Schüth and K.S.W. Sing, eds); Wiley-VCH, Weinheim (2002) 309–351 (Chap. 2.7)Google Scholar
  28. 28.
    28. Y. Yin, Y. Lu, B. Gates, and Y. Xia; Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures; J. Am. Chem. Soc., 123(36) (2001) 8718–8729CrossRefPubMedGoogle Scholar
  29. 29.
    29. Hiroshi Suzuki, Shigeyuki Takagi, Hideki Morimitsu, and Shin-ichi Hirano; Microstructure control of porous silica glass with monodispersed spherical silica particles; J. Ceram. Soc. Jpn., 100 (1992) 284–287Google Scholar
  30. 30.
    H. Giesche and K. K. Unger; Sintering of monodispersed silica, in: Ceramic Powder Processing Science, Proceedings of the Second International Conference, Berchtesgaden, 1988 (H. Hausner, G. L. Messing, & S. Hirano, eds.); Deutsche Keramische Gesellschaft, Köln (1989) 755-764Google Scholar
  31. 31.
    M. D. Sacks, T. S. Yeh, and S. D. Vora; Effect of green microstructure on sintering of model powder compacts, Ceramic Powder Processing Science, Proceedings of the Second International Conference, Berchtesgarden, FRG, 12-14 Oct 1988 (H. Hausner, G. L. Messing, and S. Hirano, eds.); Deutsche Keramische Gesellschaft, Köln (1989) 693-704Google Scholar
  32. 32.
    32. Michael D. Sacks and Tseung-Yuen Tseng; Preparation of SiO2glass from model powder compacts. I. Formation and characterization of powders, suspensions, and green compacts; J. Am. Ceram. Soc., 67 (8) (1984) 526–532CrossRefGoogle Scholar
  33. 33.
    33. Michael D. Sacks and Tseung-Yuen Tseng; Preparation of SiO2glass from model powder compacts. II. Sintering; J. Am. Ceram. Soc., 67 (8) (1984) 532–537CrossRefGoogle Scholar
  34. 34.
    Michael D. Sacks and Shailesh D. Vora; Preparation of SiO2 glass from model powder compacts. III Enhanced densification by sol infiltration, J. Am. Ceram. Soc., 71 (4) (1988) 245-249Google Scholar
  35. 35.
    35. Michael D. Sacks, Gary W. Scheiffele, Nazim Bozkurt, and Ramesh Raghunathan; Fabrication of ceramics and composites by viscous and transient viscous sintering of composite particles; in: Ceramic Transactions, Ceramic Powder Science IV (Shin-ichi Hirano, Gary L. Messing, & Hans Hausner, eds.); The American Ceramic Society, Westerville, OH (1991) 437–455Google Scholar
  36. 36.
    36. T. Shimohira, A. Makishima, K. Kotani, and M. Wakakuwa; Sintering of monodispersed amorphous silica particles; in: Proceedings of International Symposium of Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics (S. Somiya & S. Saito, eds.); Tokyo Institute of Technology, Tokyo (1978) 119–127Google Scholar
  37. 37.
    37. D. W. Johnson Jr., E. M. Rabinovich, J. B. MacChesney, and E. M. Vogel; Preparation of high-silica glasses from colloidal gels. II. Sintering; J. Am. Ceram. Soc., 66 (10) (1983) 688–693CrossRefGoogle Scholar
  38. 38.
    38. Muhsin Ciftcioglu, Douglas M. Smith, and Steven B. Ross; Sintering studies on ordered monodisperse silica compacts: Effect of consolidation; Powder Technol., 69 (2) (1992) 185–193CrossRefGoogle Scholar
  39. 39.
    39. Steven J. Milne, Mohammed Patel, and Eric Dickinson; Experimental studies of particle packing and sintering behaviour of monosize and bimodal spherical silica powders; J. Eur. Ceram. Soc., 11 (1) (1993) 1–7CrossRefGoogle Scholar
  40. 40.
    40. Michael Freemantle; Opal chips: Photonic jewels; Chem. Eng. News, 79 (4), (2001) 55–58CrossRefGoogle Scholar
  41. 41.
    41. Alvaro Blanco, Emmanuel Chomski, Serguei Gratchak, Marta Ibisate, Sajeev John, Stephen W. Leonard, Cefe Lopez, Francisco Meseguer, Hernan Miguez, Jessica P. Mondia, Geoffrey A. Ozin, Ovidiu Toader, and Henry M. van Driel; Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres; Nature, 405 (2000) 437–440CrossRefPubMedGoogle Scholar
  42. 42.
    42. San Ming Yang and Geoffrey A. Ozin; Opal chips: Vectorial growth of colloidal crystal patterns inside silicon wafers; Chem. Commun., 2000(24) (2000) 2507–2508Google Scholar
  43. 43.
    43. Andreas Stein; Sphere templating methods for periodic porous solids; Microporous Mesoporous Mater., 44–45 (2001) 227–239CrossRefGoogle Scholar
  44. 44.
    44. Preston B. Landon and R. Glosser; Self-assembly of spherical colloidal silica along the [100] direction of the FCC lattice and geometric control of crystallite formation; J. Colloid Interface Sci., 276 (2004) 92–96CrossRefPubMedGoogle Scholar
  45. 45.
    45. F. Meseguer, A. Blanco, H. Miguez, F. Garcia-Santamaria, M. Ibisate, and C. Lopez; Synthesis of inverse opals; Colloids Surf., 202 (2002) 281–290CrossRefGoogle Scholar
  46. 46.
    46. V. N. Astratov, Yu. A. Vlasov, O. Z. Karimov, A. A. Kaplyanskii, Yu. G. Musikhin, N. A. Bert, V. N. Bogomolov, and A. V. Prokofiev; Photonic band gaps in 3D ordered FCC silica matrices; Phys. Lett. A, 222() (1996) 349–353CrossRefGoogle Scholar
  47. 47.
    47. V. N. Bogomolov, A. V. Prokofiev, S. M. Samoilovich, E. P. Petrov, A. M. Kapitonov, and S. V. Gaponenko; Photonic band gap effect in a solid state cluster lattice; J. Luminescence, 72–74 (1997) 391–392CrossRefGoogle Scholar
  48. 48.
    48. P. V. Braun and P. Wiltzius; Macroporous materials – Electrochemically grown photonic crystals; Curr. Opin. Colloid Interface Sci., 7(1–2) (2002) 116–123CrossRefGoogle Scholar
  49. 49.
    49. Jes Broeng, Stig E. Barkou, Anders Bjarklev, Jonathan C. Knight, Tim A. Birks, and Philip St. J. Russell; Highly increased photonic band gaps in silica/air structures; Opt. Commn., 156(4–6), (1998) 240–244CrossRefGoogle Scholar
  50. 50.
    50. S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, A. A. Eychmueller, A. L. Rogach, I. I. Kalosha, F. Gindele, and U. Woggon; Spontaneous emission of organic molecules and semiconductor nanocrystals in a photonic crystal; J. Luminescence, 87–89 (2000) 152–156CrossRefGoogle Scholar
  51. 51.
    51. Michail I. Samoilovich, Svetlana M. Samoilovich, Andrey V. Guryanov, Michail Yu. Tsvetkov; Artificial opal structures for 3D-optoelectronics; Microelectron. Eng., 69(2–4) (2003) 237–247CrossRefGoogle Scholar
  52. 52.
    52. V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko; Towards 3D photonic crystals; Synth. Met., 124(1) (2001) 137–139CrossRefGoogle Scholar
  53. 53.
    53. S. Tsunekawa, Yu. A. Barnakov, V. V. Poborchii, S. M. Samoilovich, A. Kasuya, and Y. Nishina; Characterization of precious opals: AFM and SEM observations, photonic band gap, and incorporation of CdS nano-particles; Microporous Mater., 8(–) (1997) 275–282CrossRefGoogle Scholar
  54. 54.
    54. Yu. A. Vlasov, K. Luterova, I. Pelant, B. Hönerlage, and V. N. Astratov; Optical gain and lasing in a semiconductor embedded in a three-dimensional photonic crystal; J. Crystl. Growth, 184–185 (1998) 650–653CrossRefGoogle Scholar
  55. 55.
    55. H. M. Yates, M. E. Pemble, H. Míguez, A. Blanco, C. López, F. Meseguer, and L. Vázquez; Atmospheric pressure MOCVD growth of crystalline InP in opals; J. Crystl. Growth, 193 (1–2) (1998) 9–15CrossRefGoogle Scholar
  56. 56.
    56. Anvar A. Zakhidov, Ray H. Baughman, Ilyas I. Khayrullin, Igor A. Udod, Mikhail Kozlov, Nayer Eradat, Valy Z. Vardeny, Mihail Sigalas, and Rana Biswas; Three-dimensionally periodic conductive nanostructures: Network versus cermet topologies for metallic PBG; Synth. Met., 116(1–3) (2001) 419–426CrossRefGoogle Scholar
  57. 57.
    57. Anvar A. Zakhidov, Ilyas I. Khayrullin, Ray H. Baughman, Zafar Iqbal, Katsumi Yoshino, Yoshiaki Kawagishi, and Satoshi Tatsuhara; CVD synthesis of carbon-based metallic photonic crystals; NanoStruct. Mater., 12 (1999) 1089–1095CrossRefGoogle Scholar
  58. 58.
    58. Alfons van Blaaderen; From the de Broglie to visible wavelengths: Manipulating electrons and photons with colloids; MRS Bull., 23(10) (1998) 39–43CrossRefGoogle Scholar
  59. 59.
    59. Chad E. Reese, Carol D. Guerrero, Jesse M. Weissman, Kangtaek Lee, and Sanford A. Asher; Synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals; J. Colloid Interface Sci., 232 (2000) 76–80CrossRefPubMedGoogle Scholar
  60. 60.
    60. Sanford A. Asher, John Holtz, Jesse Weissman, and Guisheng Pan; Mesoscopically periodic photonic-crystal materials for linear and nonlinear optics and chemical sensing; MRS Bull., 23(10), (1998) 44–50CrossRefGoogle Scholar
  61. 61.
    61. J. W. Bender, N. J. Wagner; Reversible shear thickening in monodisperse and bidisperse colloidal dispersions; J. Rheol., 40 (1996) 899–916CrossRefGoogle Scholar
  62. 62.
    62. J. F. Brady, J. F. Morris; Microstructure of strongly sheared suspensions and its impact on rheology and diffusion; J. Fluid Mech., 348 (1997) 103–139CrossRefGoogle Scholar
  63. 63.
    63. J. F. Brady; The rheological behavior of concentrated colloidal dispersion; J. Chem. Phys., 99 (1993) 567–581CrossRefGoogle Scholar
  64. 64.
    64. John F. Brady; Computer simulation of viscous suspensions; Chemical Eng. Sci., 56(9) (2001) 2921–2926CrossRefGoogle Scholar
  65. 65.
    65. B. J. Maranzano, N. J. Wagner; The effects of interparticle interactions and particle size on reversible shear thickening: Hard sphere colloidal dispersions; J. Rheol., 45 (2001) 1205–1222CrossRefGoogle Scholar
  66. 66.
    66. B. J. Maranzano, N. J. Wagner, G. Fritz, and O. Glatter; Surface charge of 3-(trimethoxysilyl)propyl methacrylate (TPM) coated Stöber silica colloids by zeta-phase analysis light scattering and small angle neutron scattering; Langmuir, 16 (2000) 10556–10558CrossRefGoogle Scholar
  67. 67.
    67. B. J. Maranzano and N. J. Wagner; The effects of particle size on reversible shear thickening of concentrated colloidal dispersions; J. Chem. Phys., 114 (2001) 10514–10527CrossRefGoogle Scholar
  68. 68.
    68. G. Fritz, B. J. Maranzano, N. J. Wagner, and N. Willenbacher; High frequency rheology of hard sphere colloidal dispersions measured with a torsional resonator; J. Non- Newtonian Fluid Mech., 102 (2002) 149–156CrossRefGoogle Scholar
  69. 69.
    69. Cécile Gehin, Jacques Persello, Daniel Charraut, and Bernard Cabane; Electrorheological properties and microstructure of silica suspensions; J. Colloid Interface Sci., 273 (2004) 658–667CrossRefPubMedGoogle Scholar
  70. 70.
    70. Jae-Hyun So, Seung-Man Yang, Jae Chun Hyun; Microstructure evolution and rheological responses of hard sphere suspensions; Chem. Eng. Sci., 56 (2001) 2967–2977CrossRefGoogle Scholar
  71. 71.
    71. Jae-Hyun So, Seung-Man Yang, Chongyoup Kim, and Jae Chun Hyun; Microstructure and rheological behaviour of electrosterically stabilized silica particle suspensions; Colloids Surf. A: Physicochem. Eng. Asp., 190 (2001) 89–98CrossRefGoogle Scholar
  72. 72.
    72. Hans M. Wyss, Elena Tervoort, Lorenz P. Meier, Martin Müller, and Ludwig J. Gauckler; Relation between microstructure and mechanical behavior of concentrated silica gels; J. Colloid Interface Sci., 273 (2004) 455–462CrossRefPubMedGoogle Scholar
  73. 73.
    73. C. G. de Kruif, E. M. F. van Iersel, and A. Vrij; Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction; J. Chem. Phys., 83 (1985) 4717–4725CrossRefGoogle Scholar
  74. 74.
    74. J. C. v. der Werff and C. G. de Kruif; Hard-sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear rate; J. Rheol., 33 (1989) 421–454CrossRefGoogle Scholar
  75. 75.
    75. J. C. van der Werff, C. G. de Kruif, C. Blom, and J. Mellema; Linear viscoelastic behavior of dense hard-sphere dispersions; Phys. Rev. A, 39 () (1989) 795–807CrossRefGoogle Scholar
  76. 76.
    76. Bruce J. Ackerson; Shear induced order and shear processing of model hard sphere suspensions; J. Rheol., 34() (1990) 553–590CrossRefGoogle Scholar
  77. 77.
    77. D. Andrew R. Jones, Bruce Leary, and David V. Boger; The rheology of a concentrated colloidal suspension of hard spheres; J. Colloid Interface Sci., 147(2) (1991) 479–495CrossRefGoogle Scholar
  78. 78.
    David Andrew Ross Jones; Depletion flocculation of sterically-stabilized particles, PhD thesis, Bristol (1988)Google Scholar
  79. 79.
    L. Marshall and C. F. Zukoski IV; Flow of dispersion near close packing, Material Research Society Symposium, Vol. 155: Processing Science of Advanced Ceramics (I. A. Aksay, G. L. McVay, and D. R. Ulrich, eds.); Materials Research Society, Pittsburgh, PA (1989) 65-72Google Scholar
  80. 80.
    80. Louise Marshall and Charles F. Zukoski IV; Experimental studies on the rheology of hard-sphere suspensions near the glass transition; J. Phys. Chem., 94() (1990) 1164–1171CrossRefGoogle Scholar
  81. 81.
    81. P. N. Pusey and W. van Megen; Phase behaviour of concentrated suspensions of nearly hard colloidal spheres; Nature, 320 (1986) 340–342CrossRefGoogle Scholar
  82. 82.
    William B. Russel; Controlling the rheology of colloidal dispersions through the interparticle potential, Ceramic Transactions, Vol. 12, Ceramic Powder Science III (Garry L. Messing, Shin-ichi Hirano, and Hans Hausner, eds.); The American Ceramic Society, Westerville, Ohio (1990) 361-373Google Scholar
  83. 83.
    83. Joachim Wagner, Tina Autenrieth, and Rolf Hempelmann; Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O4-SiO2core shell particles]; J. Magn. Magn. Mater., 252 (2002) 4–6CrossRefGoogle Scholar
  84. 84.
    84. K. K. Unger, G.Jilge, Janzen R., Giesche H., and Kinkel J. N.; Non-porous microparticulate supports in high- performance liquid chromatography of biopolymers - concepts, realization and prospects; Chromatographia, 22 (1986) 379–80.CrossRefGoogle Scholar
  85. 85.
    85. K. K. Unger, O. Jilge, J. N. Kinkel, and M. T. W. Hearn; Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. II. Performance of non-porous monodisperse 1.5-μm Silica beads in the separation of proteins by reversed-phase gradient elution high-performance liquid; J. Chromatogr. A, 359 (1986) 61–72CrossRefGoogle Scholar
  86. 86.
    86. G. Jilge, R. Janzen, H. Giesche, K. K. Unger, J. N. Kinkel, and M. T. W. Hearn; Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. III. Retention and selectivity of proteins and peptides in gradient elution on non-porous monodisperse 1.5- μm reversed-phase silicas; J. Chromatogr. A, 397 (1987) 71–80CrossRefGoogle Scholar
  87. 87.
    87. R. Janzen, K. K. Unger, H. Giesche, J. N. Kinkel, and M. T. W. Hearn; Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. IV. Mobile phase and surface-mediated effects on recovery of native proteins in gradient elution on non-porous, monodisperse 1.5-μm reversed-phase silicas; J. Chromatogr. A, 397 (1987) 81–89CrossRefGoogle Scholar
  88. 88.
    88. R. Janzen, K. K. Unger, H. Giesche, J. N. Kinkel, and M. T. W. Hearn; Evaluation of advanced silica packings for the separation of biopolymers by high-perforamnce liquid chromatography. V. Performance of non-porous monodisperse 1.5- μm bonded silicas in the separation of proteins by hydrophobic-interaction chromatography; J. Chromatogr. A, 397 (1987) 91–97CrossRefGoogle Scholar
  89. 89.
    89. B. Anspach, K. K. Unger, J. Davies, and M. T. W. Hearn; Affinity chromatography with triazine dyes immobilized onto activated non-porous monodisperse silicas; J. Chromatogr. A, 457 (1988) 195–204CrossRefGoogle Scholar
  90. 90.
    90. G. Jilge, K. K. Unger, U. Esser, H. -J. Schäfer, G. Rathgeber, and W. Müller; Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. VI. Design, chromatographic performance and application of non-porous silica-based anion exchangers; J. Chromatogr. A, 476 (1989) 37–48CrossRefGoogle Scholar
  91. 91.
    91. H. Giesche, K. K. Unger, U. Esser, B. Eray, U. Trüdinger, and J. N. Kinkel; Packing technology, column bed structure and chromatographic performance of 1–2-μm non-porous silicas in high-performance liquid chromatography; J. Chromatogr. A, 465() (1989) 39–57CrossRefGoogle Scholar
  92. 92.
    92. F. B. Anspach, A. Johnston, H.-J. Wirth, K. K. Unger, and M. T. W. Hearn; High-performance liquid chromatography of amino acids, peptides and proteins. XCII. Thermodynamic and kinetic investigations on rigid and soft affinity gels with varying particle and pore sizes; J. Chromatogr. A, 476 (1989) 205–225CrossRefGoogle Scholar
  93. 93.
    93. M. Hanson, K. K. Unger, and G. Schomburg; Non-porous polybutadiene-coated silicas as stationary phases in reversed- phase chromatography; J. Chromatogr. A, 517 (1990) 269–284CrossRefGoogle Scholar
  94. 94.
    94. G. Stegeman, R. Oostervink, J. C. Kraak, H. Poppe, and K. K. Unger; Hydrodynamic chromatography of macromolecules on small spherical non-porous silica particles; J. Chromatogr. A, 506 (1990) 547–561CrossRefGoogle Scholar
  95. 95.
    95. F. B. Anspach, A. Johnston, H.-J. Wirth, K. K. Unger, and M. T. W. Hearn; High-performance liquid chromatography of amino acids, peptides and proteins. XCV. Thermodynamic and kinetic investigations on rigid and soft affinity gels with varying particle and pore sizes: Comparison of thermodynamic parameters and the adsorption behaviour of proteins evaluated from bath and frontal analysis experiments; J. Chromatogr. A, 499 (1990) 103–124CrossRefGoogle Scholar
  96. 96.
    96. H. J. Wirth, K. K. Unger, and M. T. W. Hearn; High- performance liquid chromatography of amino acids, peptides and proteins. CIX. Investigations on the relation between the ligand density of Cibacron Blue immobilized porous and non-porous sorbents and protein-binding capacities and association constants; J. Chromatogr. A, 550 (1991) 383–395CrossRefGoogle Scholar
  97. 97.
    97. Michael Hanson and Klaus K. Unger, Colin T. Mant, and Robert S. Hodges; Polymer-coated reversed-phase packings with controlled hydrophobic properties. I. Effect on the selectivity of protein separations; J. Chromatogr. A, 599(1–2), (1992) 65–75CrossRefGoogle Scholar
  98. 98.
    98. Michael Hanson, Klaus K. Unger, Renaud Denoyel, and Jean Rouquerol; Interactions of lysozyme with hydrophilic and hydrophobic polymethacrylate stationary phases in reversed phase chromatography (RPC); J. Biochem. Biophys. Methods, 29(3–4) (1994) 283–294CrossRefPubMedGoogle Scholar
  99. 99.
    99. Béatrice de Collongue-Poyet, Claire Vidal-Madjar, Bernard Sebille, and Klaus K. Unger; Study of conformational effects of recombinant interferon γ-adsorbed on a non- porous reversed-phase silica support; J. Chromatogr. B: Biomed. Sci. Appl., 664(1), (1995) 155–161CrossRefGoogle Scholar
  100. 100.
    100. Michael Hanson, Klaus K. Unger, Colin T. Mant, and Robert S. Hodges; Optimization strategies in ultrafast reversed-phase chromatography of proteins; TrAC Trends Anal. Chem., 15(2), (1996) 102–110Google Scholar
  101. 101.
    101. T. Issaeva, A. Kourganov, K. Unger; Super-high-speed liquid chromatography of proteins and peptides on non-porous Micra NPS-RP packings; J. Chromatogr. A, 846 (1999) 13–23CrossRefGoogle Scholar
  102. 102.
    102. K. Wagner, K. Racaityte, K.K. Unger, T. Miliotis, L.E. Edholm, R. Bischoff, G. Marko-Varga; Protein mapping by two- dimensional high performance liquid chromatography; J. Chromatogr. A, 893 (2000) 293–305CrossRefPubMedGoogle Scholar
  103. 103.
    103. B. A. Grimes, S. Ludtke, K. K. Unger, A. I. Liapis; Novel general expressions that describe the behavior of the height equivalent of a theoretical plate in chromatographic systems involving electrically-driven and pressure-driven flows; J. Chromatogr. A, 979 (2002) 447–466CrossRefPubMedGoogle Scholar
  104. 104.
    104. A. van Blaaderen and A. Vrij; Synthesis and characterization of colloid dispersions of fluorescent, monodispersed silica spheres; Langmuir, 8 (1992) 2921–2931CrossRefGoogle Scholar
  105. 105.
    105. J. D. Wells, L. K. Koopal, and A. de Keizer; Monodisperse, nonporous, spherical silica particles; Colloids Surf. A: Physicochem. Eng. Asp., 166 (2000) 171–176CrossRefGoogle Scholar
  106. 106.
    106. Howard A. Ketelson, Robert Pelton, and Michael A. Brook; Surface and colloidal properties of hydrosilane-modified Stöber silica; Colloids Surf. A: Physicochem. Eng. Asp., 132 (1998) 229–239CrossRefGoogle Scholar
  107. 107.
    107. Hoon Choi and I-Wei Chen; Surface-modified silica colloid for diagnostic imaging; J. Colloid Interface Sci., 258 (2003) 435–437CrossRefGoogle Scholar
  108. 108.
    108. Yoshio Kobayashi, Kiyoto Misawa, Masaki Kobayashi, Motohiro Takeda, Mikio Konno, Masanobu Satake, Yoshiyuki Kawazoe, Noriaki Ohuchi, and Atsuo Kasuya; Silica-coating of fluorescent polystyrene microspheres by a seeded polymerization technique and their photo-bleaching property; Colloids Surf. A: Physicochem. Eng. Asp., 242 (2004) 47–52CrossRefGoogle Scholar
  109. 109.
    109. Yinhan Gong, Yanqiao Xiang, Bingfang Yue, Guoping Xue, Jerald S. Bradshaw, Hian Kee Lee, and Milton L. Lee; Application of diaza-18-crown-6-capped b-cyclodextrin bonded silica particles as chiral stationary phases for ultrahigh pressure capillary liquid chromatography; J. Chromatogr. A, 1002 (2003) 63–70CrossRefPubMedGoogle Scholar
  110. 110.
    110. Mitsuhiro Nakamura, Kouseki Hirade, Tadashi Sugiyama, and Yoshihiro Katagiri; High-performance liquid chromatographic assay of zonisamide in human plasma using a non- porous silica column; J. Chromatogr. B, 755 (2001) 337–341CrossRefGoogle Scholar
  111. 111.
    111. J.J. Kirkland, F.A. Truszkowski, C.H. Dilks Jr., and G.S. Engel; Superficially porous silica microspheres for fast high-performance liquid chromatography of macromolecules; J. Chromatogr. A, 890 (2000) 3–13CrossRefPubMedGoogle Scholar
  112. 112.
    112. Duš an Berek, Son Hoai Nguyen, and Gérard Hild; Molecular characterization of block copolymers by means of liquid chromatography: I. Potential and limitations of full adsorption–desorption procedure in separation of block copolymers; Eur. Polym. J., 36(6) (2000) 1101–1111CrossRefGoogle Scholar
  113. 113.
    113. Klaus Rissler; Separation of polyesters by gradient reversed-phase high-performance liquid chromatography on a 1.5 μm non-porous column; J. Chromatogr. A, 871 (2000) 243–258CrossRefPubMedGoogle Scholar
  114. 114.
    114. Anja P. Kohne and T. Welsch; Coupling of a microbore column with a column packed with non-porous particles for fast comprehensive two-dimensional high-performance liquid chromatography; J. Chromatogr. A, 845 (1999) 463–469CrossRefGoogle Scholar
  115. 115.
    115. Wen-Chien Lee; Protein separation using non-porous sorbents; J. Chromatogr. B, 699 (1997) 29–45CrossRefGoogle Scholar
  116. 116.
    116. Fabrice Mangani, Genevieve Luck, Christophe Fraudeau, and Eric Verette; On-line column-switching high-performance liquid chromatography analysis of cardiovascular drugs in serum with automated sample clean-up and zone-cutting technique to perform chiral separation; J. Chromatogr. A, 762 (1997) 235–241CrossRefPubMedGoogle Scholar
  117. 117.
    117. E. Venema, J. C. Kraak, H. Poppe, and R. Tijssen; Packed-column hydrodynamic chromatography using 1-μm non- porous silica particles; J. Chromatogr. A, 740(2) (1996) 159–167CrossRefGoogle Scholar
  118. 118.
    118. Wen-Chien Lee and Chien-Yi Chuang; Performance of pH elution in high-performance affinity chromatography of proteins using non-porous silica; J. Chromatogr. A, 721(1) (1996) 31–39CrossRefGoogle Scholar
  119. 119.
    119. Qi-Ming Mao, Ian G. Prince, and Milton T. W. Hearn; High-performance liquid chromatography of amino acids, peptides and proteins. CXXXIX. Impact of operating parameters in large-scale chromatography of proteins; J. Chromatogr. A, 691(1–2) (1995) 273–283CrossRefPubMedGoogle Scholar
  120. 120.
    120. Vittorio Brizzi and Danilo Corradini; Rapid analysis of somatostatin in pharmaceutical preparations by HPLC with a micropellicular reversed-phase column; J. Pharm. Biomed. Anal., 12(6) (1994) 821–824CrossRefGoogle Scholar
  121. 121.
    121. Q. M. Mao, R. Stockmann, I. G. Prince, and M. T. W. Hearn; High-performance liquid chromatography of amino acids, peptides and proteins. CXXVI. Modeling of protein adsorption with non-porous and porous particles in a finite bath; J. Chromatogr. A, 646(1) (1993) 67–80CrossRefGoogle Scholar
  122. 122.
    122. Gerrit Stegeman, Johan C. Kraak, and Hans Poppe; Dispersion in packed-column hydrodynamic chromatography; J. Chromatogr. A, 634(2) (1993) 149–159CrossRefGoogle Scholar
  123. 123.
    123. Noriyuki Nimura, Hiroko Itoh, Toshio Kinoshita, Norikazu Nagae, and Mitsugu Nomura; Fast protein separation by reversed-phase high-performance liquid chromatography on octadecylsilyl-bonded non-porous silica gel: Effect of particle size of column packing on column efficiency; J. Chromatogr. A, 585(2) (1991) 207–211CrossRefGoogle Scholar
  124. 124. .
    124. K. C. Vrancken, L. de Coster, P. van der Voort, and P. J. Grobert; J. Colloid Interface Sci., 170 (1995) 71CrossRefGoogle Scholar
  125. 125.
    125. H. Ben Ouda, H. Hommel, A. P. Legrand, H. Balard, and E. Papirer; J. Colloid Interface Sci., 122 (1988) 441CrossRefGoogle Scholar
  126. 126.
    126. K. Bridger and B. Vincent; Eur. Polym.J., 16 (1980) 1017CrossRefGoogle Scholar
  127. 127.
    127. R. D. Badley, W. T. Ford, F. J. McEnroe, and R. A. Assink; Surface modification of colloidal silica; Langmuir, 6 (1990) 792CrossRefGoogle Scholar
  128. 128.
    Christian Kaiser; Dissertation, Universität Mainz, Germany (1996)Google Scholar
  129. 129.
    Ch. Kaiser, G. Buechel, S. Luedtke, I. Lauer, and K. K. Unger; Processing of microporous/mesoporous submicron-size silica spheres by means of a template-supported synthesis, Characterization of Porous Solids IV(B. Mc Enaney, T. J. Mays, J. Rouquerol, F. Rogriguez-Reinoso, K.S.W. Sing, & K.K. Unger, eds;The Royal Society of Chemistry, London (1997) 406-412Google Scholar
  130. 130.
    M. Grün, G. Büchel, D. Kumar, K. Schumacher, B. Bidlingmaier, and K. K. Unger; Rational design, tailored synthesis and characterisation of ordered mesoporous silicas in the micron and submicron size range, in Characterization of Porous Solids V (K. K. Unger, G. Kreysa and J. P. Baselt, eds), Stud. Surf. Sci. Catal. 128; Elsevier, Amsterdam (2000) 155Google Scholar
  131. 131.
    131. K. K. Unger, D. Kumar, M. Grün, G. Büchel, S. Lüdtke, Th. Adam, K. Schumacher, and S. Renker; Synthesis of spherical porous silicas in the micron and submicron size range – Challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations; J. Chromatogr. A 892 (2000) 47–55CrossRefPubMedGoogle Scholar
  132. 132.
    132. Yurong Ma, Limin Qi, Jiming Ma, Yongqing Wu, Ou Liu, and Humin Cheng; Large-pore mesoporous silica spheres: Synthesis and application in HPLC; Colloids Surf. A: Physicochem. Eng. Asp., 229 (2003) 1–8CrossRefGoogle Scholar
  133. 133.
    133. R. Vacassy, R. J. Flatt, H. Hofmann, K. S. Choi, and K. S. Singh; Synthesis of microporous silica spheres; J. Colloid Interface Sci., 227(2) (2000) 302–315CrossRefPubMedGoogle Scholar
  134. 134.
    134. Shoji Kaneko, Hiroshi Saitoh, Yoshio Maejima, and Motoshi Nakamura; Adsorption characteristics of organic dyes in aqueous solutions on mixed-oxide gels silica-containing mixed- oxide gels; Anal. Lett., 22 (6) (1989) 1631–1641CrossRefGoogle Scholar
  135. 135.
    Francoise M. Winnik and Barkev Keoshkerian (Xerox); Ink jet inks containing colored silica particles, US Pat. 4,877,451 (1989)Google Scholar
  136. 136.
    136. Francoise M. Winnik, Barkev Keoshkerian, J. Roderick Fuller, and Peter G. Hostra; New water-dispersible silica- based pigments: Synthesis and characterization; Dyes Pigments, 14(2) (1990) 101–112CrossRefGoogle Scholar
  137. 137.
    137. H. Giesche and E. Matijevic; Well defined pigments. I. monodispersed silica-acid dyes systems; Dyes Pigments; 17 (1991) 323–340CrossRefGoogle Scholar
  138. 138.
    138. T. Jesionowski; Synthesis of organic-inorganic hybrids via adsorption of dye on an aminosilane-functionalised silica surface; Dyes Pigments, 55(2–3) (2002) 133–141CrossRefGoogle Scholar
  139. 139.
    139. Teofil Jesionowski, Monika Pokora, Modzimierz Tylus, Aleksandra Dec, and Andrzej Krysztafkiewicz; Effect of N-2- (aminoethyl)-3-aminopropyltrimethoxysilane surface modification and C.I. Acid Red 18 dye adsorption on the physicochemical properties of silica precipitated in an emulsion route, used as a pigment and a filler in acrylic paints; Dyes Pigments, 57(1) (2003) 29–41CrossRefGoogle Scholar
  140. 140.
    140. S. Eiden-Assmann, B. Lindlar, and G. Maret; Synthesis and characterization of colloidal fluorescent mesoporous silica particles; J. Colloid Interface Sci., 271(1) (2004) 120–123CrossRefPubMedGoogle Scholar
  141. 141.
    141. Marjan Bele, Olavi Siiman, and Egon Matijevic; Preparation and flow cytometry of uniform silica-fluorescent dye microspheres; J. Colloid Interface Sci., 254 (2002) 274–282CrossRefGoogle Scholar
  142. 142.
    142. Wan Peter Hsu, Rongchi Yu, and Egon Matijevic; Well- defined colloidal pigments. II. Monodispersed inorganic spherical particles containing organic dyes; Dyes Pigments; 19 (1992) 179–201CrossRefGoogle Scholar
  143. 143.
    143. W. P. Hsu, R. Yu, E. Matijevic; Paper whiteners. I. Titania coated silica; J. Colloid Interface Sci., 156 (1993) 56–65CrossRefGoogle Scholar
  144. 144.
    144. Qunyan Li and Peng Dong; Preparation of nearly monodisperse multiply coated submicrospheres with a high refractive index; J. Colloid Interface Sci., 261 (2003) 325–329CrossRefPubMedGoogle Scholar
  145. 145.
    145. Xiao-an Fu and Syed Qutubuddin; Preparation and characterization of titania nanocoating on monodisperse silica particles; Colloids Surf., 186 (2001) 245–250CrossRefGoogle Scholar
  146. 146.
    146. X. Gao, K. M. Yu, K. Y. Tam, and S. C. Tsang; Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier; Chem. Commun., 24 (2003) 2998–2999CrossRefGoogle Scholar
  147. 147.
    Jinquan Cao, Yongxian Wang, Junfeng Yu, Jiaoyun Xia, Chunfu Zhang, Duanzhi Yin, and Urs O. Häfeli; Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy, J. Magn. Magn. Mater., in press Google Scholar
  148. 148.
    148. J. F. Chen, H. M. Ding, J. X. Wang, and L. Shao; Preparation and characterization of porous hollow silica nanoparticles for drug delivery applications; Biomaterials, 25(4) (2004) 723–727CrossRefPubMedGoogle Scholar
  149. 149.
    149. F. Caruso, R. A. Caruso, and H. Mohwald; Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating; Science, 282(5391) (1998) 1111–1114CrossRefPubMedGoogle Scholar
  150. 150.
    150. C. Charnay, S. Begu, C. Tourne-Peteilh, L. Nicole, D. A. Lerner, and J. M. Devoisselle; Inclusion of ibuprofen in mesoporous templated silica: Drug loading and release property; Eur. J. Biopharm., 57(3) (2004) 533–540CrossRefGoogle Scholar
  151. 151.
    151. H. Xu, F. Yan, E. E. Monson, and R. Kopelman; Roomtemperature preparation and characterization of poly(ethylene glycol)-coated silica nanoparticles for biomedical applications; J. Biomed. Mater. Res., 66(4) (2003) 870–879CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Ceramic Engineering and ScienceNew York State College of Ceramics at Alfred UniversityAlfredUSA

Personalised recommendations