Colloids as Light Scattering and Emission Markers for Analysis of Blood

  • Olavi Siiman


Topics in this review are focused on the author’s specific interests in particle probes for flow cytometry/cell sorting. Five different classes of bead probes for flow cytometric analyses are surveyed. Two of the five classes—light scatter and fluorescence emission/light scatter bead probes— have the longest history of use, and one, the fluorescent beads, is enjoying a renaissance as reagents in multiplex flow analyses. Surface plasmon resonance/light scatter probes have yet to find their niche; however, activity in this area has expanded lately. The relatively new field of luminescence emission/light scatter probes is experiencing growing pains as methods of stabilizing the high emission intensities of highly reactive, semiconductor nanoparticles are perfected. Finally, the future is wide open for expansion into the field of enhanced Raman/light scatter probes. This would add another dimension to flow cytometry, which has not experienced a major modification since the...


Light Scatter Surface Plasmon Resonance Band Semiconductor Nanoparticles CdSe Nanoparticles Sheath Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is thankful to Shuming Nie (Emory University/Georgia Institute of Technology) for his hospitality on a visit to Emory University to perform micro-Raman measurements, and for providing a copy of an article prior to publication and other clarifications, to Douglas Stuart (Emory University) for help with the Raman measurements, to Jorge Quintana (Beckman Coulter, Inc.) for providing powerpoint slides of his presentation on Flow-Cal beads, and to John Maples (Beckman Coulter, Inc.) for his photographs of a Wright’s stain of a blood sample that had been incubated with CD4 antibody–PS latex beads.


  1. 1.
    1. Howard M. Shapiro, Practical Flow Cytometry, 4th edn., Wiley-Liss, New York, NY, 2003.Google Scholar
  2. 2.
    Diagnostic Applications of Latex Technology: Theory and Practice, sponsored by Bangs Laboratories, Inc., and Emerald Diagnostics, Inc., May 19–21, 1999, Indianapolis, IN.Google Scholar
  3. 3.
    The Latex Course™ 2002—Designing Microsphere-Based Tests and Assays, Bangs Laboratories, Inc., June 10–12, 2002, Indianapolis, IN.Google Scholar
  4. 4.
    4. L. J. Kricka and P. Fortina, Clin. Chem. 47 (2001) 1479; 48 (2002) 662; 48 (2002) 1620.Google Scholar
  5. 5.
    5. M. J. Fulwyler, J. D. Perrings, and L. S. Cram, Rev. Sci. Instrum. 44 (1973) 204.Google Scholar
  6. 6.
    M. J. Fulwyler, British Patent No. 1,561,042 (1976).Google Scholar
  7. 7.
    7. P. K. Horan and L. L. Wheeless, Jr., Science 198 (1977) 149.Google Scholar
  8. 8.
    Thomas M. McHugh and Mack J. Fulwyler, in Clinical Flow Cytometry, Principles and Application, K. D. Bauer, R. E. Duque, and T. V. Shankey, eds., Williams & Wilkins, Baltimore, MD, 1993, Chap. 32, p. 535.Google Scholar
  9. 9.
    K. H. Kortright, W. H. Coulter, C. Rodriguez, T. Russell, and R. Paul, U.S. Patent No. 5,223,398 (Jun 29, 1993).Google Scholar
  10. 10.
    T. Russell, K. H. Kortright, W. H. Coulter, C. M. Rodriguez, R. Paul, C. M. Hajek, and J. C. Hudson, U.S. Patent No. 5,231,005 (Jul 27, 1993).Google Scholar
  11. 11.
    T. Russell, C. M. Hajek, C. M. Rodriguez, and W. H. Coulter, U.S. Patent No. 5,260,192 (Nov 9, 1993).Google Scholar
  12. 12.
    K. H. Kortright, W. H. Coulter, C. Rodriguez, T. Russell, and R. Paul, U.S. Patent No. 5,464,752 (Nov 7, 1995).Google Scholar
  13. 13.
    13. J. C. Hudson, R. F. Brunhouse, C. Garrison, C. M. Rodriguez, R. Zwerner, and T. R. Russell, Cytometry 22 (1995) 150.Google Scholar
  14. 14.
    O. Siiman, A. Burshteyn, and R. K. Gupta, U.S. Patent No. 5,169,754 (Dec 8, 1992).Google Scholar
  15. 15.
    O. Siiman, A. Burshteyn, and R. K. Gupta, U.S. Patent No. 5,466,609 (Nov 14, 1995).Google Scholar
  16. 16.
    O. Siiman, A. Burshteyn, and R. K. Gupta, U.S. Patent No. 5,639,620 (Jun 17, 1997).Google Scholar
  17. 17.
    O. Siiman, A. Burshteyn, and R. K. Gupta, U.S. Patent No. 5,707,877 (Jan 13, 1998).Google Scholar
  18. 18.
    O. Siiman, A. Burshteyn, and R. K. Gupta, U.S. Patent No. 5,776,706 (Jul 7, 1998).Google Scholar
  19. 19.
    19. O. Siiman, A. Burshteyn, and M. E. Insausti, J. Colloid Interface Sci. 234 (2001) 44.Google Scholar
  20. 20.
    20. O. Siiman and A. Burshteyn, Cytometry 40 (2000) 316.Google Scholar
  21. 21.
    O. Siiman, A. Burshteyn, O. Concepcion, and M. Forman, U.S. Patent No. 5,814,468 (Sep 29, 1998).Google Scholar
  22. 22.
    O. Siiman and A. Burshteyn, U.S. Patent No. 5,062,991 (Nov 5, 1991).Google Scholar
  23. 23.
    23. O. Siiman, J. Wilkinson, A. Burshteyn, P. Roth, and S. Ledis, Bioconjugate Chem. 10 (1999) 1090.Google Scholar
  24. 24.
    24. C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, J. Phys. Chem. 104 (2000) 1141.Google Scholar
  25. 25.
    25. Z. J. Zhang, Z. L. Wang, B. C. Chakoumakos, and J. S. Yin, J. Am. Chem. Soc. 120 (1998) 1800.Google Scholar
  26. 26.
    J. A. Maples, R. H. Raynor, O. Siiman, M. J. Stiglitz, S. F. Healy, Jr., U.S. Patent No. 5,763,204 (Jun 9, 1998) and U.S. Patent No. 5,342,754 (Aug 30, 1994).Google Scholar
  27. 27.
    27. R. J. Schmittling, O. Siiman, N. Kenyon, and W. Bolton, Ann. NY Acad. Sci. 677 (1993) 447.Google Scholar
  28. 28.
    28. N. S. Kenyon, R. J. Schmittling, O. Siiman, A. Burshteyn, and W. E. Bolton, Cytometry 16 (1994) 175.Google Scholar
  29. 29.
    W. H. Coulter, R. K. Zwerner, R. J. Schmittling, and T. R. Russell, U.S. Patent No. 5,576,185 (Nov 19, 1996).Google Scholar
  30. 30.
    30. O. Siiman, A. Burshteyn, J. A. Maples, and J. K. Whitesell, Bioconjugate Chem. 11 (2000) 549.Google Scholar
  31. 31.
    31. J. K. Whitesell and H. K. Chang, Science 261 (1993) 73.Google Scholar
  32. 32.
    32. R.-M. Bohmer and N. J. C. King, Cytometry 5 (1984) 543.Google Scholar
  33. 33.
    33. R. Festin, B. Bjorklund, and T. H. Totterman, J. Immunol. Methods 101 (1987) 23.Google Scholar
  34. 34.
    34. Thomas H. Totterman and Roger Festin, in Colloidal Gold: Principles, Methods and Applications, Vol. 2, M. A. Hayat, ed., Academic Press, San Diego, 1989, Chap. 22, p. 431.Google Scholar
  35. 35.
    35. C. Neagu, K. O. van der Werf, C. A. J. Putman, Y. M. Kraan, B. G. de Grooth, N. F. van Hulst, and J. Greve, J. Struct. Biol. 112 (1994) 32.Google Scholar
  36. 36.
    O. Siiman, A. Burshteyn, and M. Cayer, U.S. Patent No. 5,552,086 (Sep 3, 1996).Google Scholar
  37. 37.
    O. Siiman, K. Gordon, C. M. Rodriguez, A. Burshteyn, J. A. Maples, and J. K. Whitesell, U.S. Patent No. 5,945,293 (Aug 31, 1999).Google Scholar
  38. 38.
    38. O. Siiman and A. Burshteyn, J. Phys. Chem. B 42 (2000) 9795.Google Scholar
  39. 39.
    39. O. Siiman, K. Gordon, A. Burshteyn, J. A. Maples, and J. K. Whitesell, Cytometry 41 (2000) 298.Google Scholar
  40. 40.
    40. Max Born and Emil Wulf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn., Cambridge University Press, Cambridge, 1999.Google Scholar
  41. 41.
    41. Julius Adams Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.Google Scholar
  42. 42.
    42. Craig F. Bohren and Donald F. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York, 1983.Google Scholar
  43. 43.
    43. S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, Science 294 (2001) 137.Google Scholar
  44. 44.
    44. I. D. Walton, S. M. Norton, A. Balasingham, L. He, D. F. Oviso, Jr., D. Gupta, P. A. Raju, M. J. Natan, and R. G. Freeman, Anal. Chem. 74 (2002) 2240.Google Scholar
  45. 45.
    45. J. Yguerabide and E. E. Yguerabide, Anal. Biochem. 262 (1998) 157.Google Scholar
  46. 46.
    J. Yguerabide, E. E. Yguerabide, D. E. Kohne, and J. T. Jackson, U.S. Patent No. 6,214,560 B1 (Apr 10, 2001).Google Scholar
  47. 47.
    47. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, J. Phys. Chem. B 103 (1999) 3854.Google Scholar
  48. 48.
    48. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104 (2000) 10549.Google Scholar
  49. 49.
    49. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105 (2001) 5599.Google Scholar
  50. 50.
    50. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, J. Phys. Chem. B 107 (2003) 7337.Google Scholar
  51. 51.
    51. J. T. Krug, II, G. D. Wang, S. R. Emory, and S. Nie, J. Am. Chem. Soc. 121 (1999) 9208.Google Scholar
  52. 52.
    R. J. Fulton, U.S. Patent No. 5,736,330 (Apr 7, 1998).Google Scholar
  53. 53.
    V. S. Chandler, R. J. Fulton, and M. B. Chandler, U.S. Patent No. 5,981,180 (Nov 9, 1999).Google Scholar
  54. 54.
    M. B. Chandler and D. J. Chandler, U.S. Patent No. 6,268,222 B1 (Jul 31, 2001).Google Scholar
  55. 55.
    D. J. Chandler, B. A. Lambert, J. J. Reber, and S. L. Phipps, U.S. Patent No. 6,514,295 B1 (Feb 4, 2003).Google Scholar
  56. 56.
    D. J. Chandler, U.S. Patent No. 6,528,165 B2 (Mar 4, 2003).Google Scholar
  57. 57.
    57. R. Fulton, R. McDade, P. Smith, L. Kienker, and J. Kettman, Jr., Clin. Chem. 43 (1997) 1749.Google Scholar
  58. 58.
    58. C. Camilla, J. P. Defoort, M. Delaage, R. Auer, J. Quintana, T. Lary, R. Hamelik, S. Prato, B. Casano, M. Martin, and V. Fert, Cytometry Suppl. 8 (1998) 132.Google Scholar
  59. 59.
    59. R. Carson and D. Vignali, J. Immunol. Methods 227 (1999) 41.Google Scholar
  60. 60.
    60. K. L. Kellar, R. R. Kalwar, K. A. Dubois, D. Crouse, W. D. Chafin, and B.-E. Kane, Cytometry 45 (2001) 27.Google Scholar
  61. 61.
    61. M. C. Earley, R. F. Vogt, Jr., H. M. Shapiro, F. F. Mandy, K. L. Kellar, R. Bellisario, K. A. Pass, G. E. Marti, C. C. Stewart, and W. H. Hannon, Cytometry 50 (2002) 239.Google Scholar
  62. 62.
    62. I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, Science 295 (2002) 1695.Google Scholar
  63. 63.
    63. I. Tsagkatakis, S. Peper, and E. Bakker, Anal. Chem. 73 (2001) 315.Google Scholar
  64. 64.
    64. I. Tsagkatakis, S. Peper, R. Retter, M. Bell, and E. Bakker, Anal. Chem. 73 (2001) 6083.Google Scholar
  65. 65.
    65. M. Telting-Diaz and E. Bakker, Anal. Chem. 74 (2002) 5251.Google Scholar
  66. 66.
    66. R. Retter, S. Peper, M. Bell, I. Tsagkatakis, and E. Bakker, Anal. Chem. 74 (2002) 5420.Google Scholar
  67. 67.
    J. Quintana, presented at CD38 Quantitation Conference, Francis F. Mandy, org., National Laboratory for HIV Immunology, Health Canada, Ottawa, Canada, November 1997.Google Scholar
  68. 68.
    68. T. Lindmo, O. Bormer, J. Ugelstad, and K. Nustad, J. Immunol. Methods 126 (1990) 183.Google Scholar
  69. 69.
    69. J. Frengen, R. Schmid, B. Kierulf, K. Nustad, E. Paus, A. Berge, and T. Lindmo, Clin. Chem. 39 (1993) 2174.Google Scholar
  70. 70.
    70. J. Frengen, T. Lindmo, E. Paus, R. Schmid, and K. Nustad, J. Immunol. Methods 178 (1995) 141.Google Scholar
  71. 71.
    71. J. Frengen, K. Nustad, R. Schmid, and T. Lindmo, J. Immunol. Methods 178 (1995) 131.Google Scholar
  72. 72.
    J. Frengen, T. Lindmo, R. Schmid, J. Ugelstad, 70th Colloid and Surface Science Symposium, American Chemical Society, Clarkson University, June 16–19, 1996.Google Scholar
  73. 73.
    M. L. Bell, U.S. Patent No. 6,551,788 (April 22, 2003).Google Scholar
  74. 74.
    74. L. E. M. Miles, D. A. Lipschitz, C. P. Bieber, and J. D. Cook, Anal. Biochem. 61 (1974) 209.Google Scholar
  75. 75.
    75. M. Bele, O. Siiman, and E. Matijevic, Cytometry Suppl. 11 (2002) 128.Google Scholar
  76. 76.
    76. M. Bele, O. Siiman, and E. Matijevic, J. Colloid Interface Sci. 254 (2002) 274.Google Scholar
  77. 77.
    77. J. P. Nolan and F. F. Mandy, Cell. Mol. Biol. 47 (2001) 1241.Google Scholar
  78. 78.
    78. A. Goodey, J. J. Lavigne, S. M. Savoy, M. D. Rodriguez, T. Curey, A. Tsao, G., Simmons, J. Wright, S.-J. Yoo, Y. Sohn, E. V. Anslyn, J. B. Shear, D. P. Neikirk, and J. T. McDevitt, J. Am. Chem. Soc. 123 (2001) 2559.Google Scholar
  79. 79.
    79. J. P. Nolan and L. A. Sklar, Trends in Biotechnology 20 (2002) 9.Google Scholar
  80. 80.
    E. Willis, S. Allauzen, and S. Vlasenko, BioRadiations 111 (2003) 30, and other reports and articles in same issue on the Bio-Plex system, as distributed by Bio-Rad Laboratories, Inc., Hercules, CA 94547.Google Scholar
  81. 81.
    O. Siiman, C. Smith, P. Roth, A. Burshteyn, and R. Raynor, U. S. Patent No. 5,891,741 (Apr 6, 1999).Google Scholar
  82. 82.
    O. Siiman, A. Burshteyn, J. Wilkinson, and R. Mylvaganam, U. S. Patent No. 5,994,089 (Nov 30, 1999).Google Scholar
  83. 83.
    O. Siiman, A. Burshteyn, R. Mylvaganam, R. Raynor, P. Roth, C. Smith, and J. Wilkinson, U. S. Patent No. 6,387,622 (May 14, 2002).Google Scholar
  84. 84.
    S. Ledis, C. Healy, and O. Siiman, U.S. Patent application filed (Aug 1, 2003).Google Scholar
  85. 85.
    85. C. Smith, J. Wilkinson, P. Roth, and O. Siiman, Cytometry Suppl. 9 (1998) 56.Google Scholar
  86. 86.
    86. R. Mylvaganam, J. Wilkinson, C. Healy, W. Bolton, and O. Siiman, Cytometry Suppl. 9 (1998) 117.Google Scholar
  87. 87.
    87. O. Siiman, A. Burshteyn, O. Concepcion, and M. Forman, Cytometry 44 (2001) 30.Google Scholar
  88. 88.
    O. Siiman, U.S. Patent Application Pub. No. US 2002/0142289 A1 published (Oct 3, 2002).Google Scholar
  89. 89.
    Ed Harlow and David Lane, Antibodies – A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, Chap. 14.Google Scholar
  90. 90.
    90. T. W. J. Huizinga, M. de Haas, M. Kleijer, J. H. Nuijens, D. Roos, and A. E. G. Kr. von dem Borne, J. Clin. Invest. 86 (1990) 416.Google Scholar
  91. 91.
    91. T. W. J. Huizinga, R. W. A. M. Kuijpers, M. Kleijer, T. W. J. Schulpen, H. T. M. Cuypers, D. Roos, and A. E. G. Kr. von dem Borne, Blood 76 (1990) 1927.Google Scholar
  92. 92.
    92. H. B. Fleit, C. D. Kobasiuk, C. Daly, R. Furie, P. C. Levy, and R. O. Webster, Blood 79 (1992) 2721.Google Scholar
  93. 93.
    93. P. Antal-Szalmas, I. Szollosi, G. Lakos, E. Kiss, I. Csipo, A. Sumegi, S. Sipka, J. A. G. van Strijp, K. P. M. van Kessel, and G. Szegedi, Cytometry 45 (2001) 115.Google Scholar
  94. 94.
    94. S. Delaire, A. Elhabazi, A. Bensussan, and L. Boumsell, Cell. Mol. Life Sci. 54 (1998) 1265.Google Scholar
  95. 95.
    95. A. Elhabazi, S. Delaire, A. Bensussan, L. Boumsell, and G. Bismuth, J. Immunol. 166 (2001) 4341.Google Scholar
  96. 96.
    96. S. Delaire, C. Billard, R. Tordjman, A. Chedotal, A. Elhabazi, A. Bensussan, and L. Boumsell, J. Immunol. 166 (2001) 4348.Google Scholar
  97. 97.
    97. X. Wang, A. Kumanogoh, C. Watanabe, W. Shi, K. Yoshida, and H. Kikutani, Blood 97 (2001) 3498.Google Scholar
  98. 98.
    98. A. Elhabazi, A. Marie-Cardine, I. Chabbert-de Ponnat, A. Bensussan, and L. Boumsell, Crit. Rev. Immunol. 23 (2003) 65.Google Scholar
  99. 99.
    99. A. N. Barclay, M. H. Brown, S. K. A. Law, A. J. McKnight, M. G. Tomlinson, and P. A. van der Merwe, The leukocyte antigen facts book, 2nd edn., Academic Press, San Diego, 1997, Sect. II, pp. 132–593.Google Scholar
  100. 100.
    100. N. Stahl, D. R. Borchelt, K. Hsaio, and S. B. Prusiner, Cell 51 (1987) 229.Google Scholar
  101. 101.
    101. M. A. J. Ferguson, J. Cell Sci. 112 (1999) 2799.Google Scholar
  102. 102.
    102. A. P. Alivisatos, Scientific American 285 (2001) 66.Google Scholar
  103. 103.
    103. H. Mattoussi, J. Am. Chem. Soc. 122 (2000) 12142.Google Scholar
  104. 104.
    104. S. Empedocles and M. Bawendi, Acc. Chem. Res. 32 (1999) 389.Google Scholar
  105. 105.
    105. M. Nirmal and L. Brus, Acc. Chem. Res. 32 (1999) 407.Google Scholar
  106. 106.
    106. L. E. Brus and J. K. Trautman, Phil. Trans. R. Soc. Lond. 353A (1995) 313.Google Scholar
  107. 107.
    107. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc. 119 (1997) 7019.Google Scholar
  108. 108.
    108. J. W. Linnett, Wave Mechanics and Valency, Wiley, New York, NY, 1960, Chap. II.Google Scholar
  109. 109.
    Christopher B. Murray, Synthesis and Characterization of II–VI Quantum Dots and Their Assembly into 3D Quantum Dot Superlattices, Ph. D. thesis, Massachusetts Institute of Technology (Sep 1995).Google Scholar
  110. 110.
    110. P. E. Lippens and M. Lannoo, Phys. Rev. B 39 (1989) 10935.Google Scholar
  111. 111.
    111. L. Spanhel, M. Haase, H. Weller, and A. Henglein, J. Am. Chem. Soc. 109 (1987) 5649.Google Scholar
  112. 112.
    112. Ch.-H. Fischer, J. Lilie, H. Weller, L. Katsikas, and A. Henglein, Ber. Bunsenges. Phys. Chem. 93 (1989) 61.Google Scholar
  113. 113.
    A. Henglein, 70th Colloid and Surface Science Symposium, American Chemical Society, Clarkson University, June 16–19, 1996.Google Scholar
  114. 114.
    114. L. Qu and X. Peng, J. Am. Chem. Soc. 124 (2002) 2049.Google Scholar
  115. 115.
    115. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science 281 (1998) 2013.Google Scholar
  116. 116.
    116. W. C. W. Chan and S. Nie, Science 281 (1998) 2016.Google Scholar
  117. 117.
    117. M. E. Ackerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, Proc. Natl. Acad. Sci. USA 99 (2002) 12617.Google Scholar
  118. 118.
    118. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, Nature Biotechnol. 21 (2003) 41.Google Scholar
  119. 119.
    119. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, Nature Biotechnol. 21 (2003) 47.Google Scholar
  120. 120.
    120. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, Science 300 (2003) 1434.Google Scholar
  121. 121.
    121. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, Science 298 (2002) 1759.Google Scholar
  122. 122.
    122. A. Watson, X. Wu, and M. Bruchez, BioTechniques 34 (2003) 296.Google Scholar
  123. 123.
    123. T. M. Jovin, Nature Biotechnol. 21 (2003) 32.Google Scholar
  124. 124.
    See, for example, their website at and their newsletter article, K. Barovsky, Intellectual Property: Illuminating the Path to Licensing Compliance, Quantum Dot eVision, May 19, 2003.Google Scholar
  125. 125.
    125. M. Han, X. Gao, J. Z. Su, and S. Nie, Nature Biotechnol. 19 (2001) 631.Google Scholar
  126. 126.
    126. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, Curr. Opinion Biotech. 13 (2002) 40.Google Scholar
  127. 127.
    127. H. Xu, M.Y. Sha, E. Y.Wong, J. Uphoff, Y. Xu, J. A. Treadway, A. Truong, E. O’Brien, S. Asquith, M. Stubbins, N. K. Spurr, E. H. Lai, and W. Mahoney, Nucleic Acids Res. 31 (2003) e43.Google Scholar
  128. 128.
    128. I. Sondi, O. Siiman, S. Koester, and E. Matijevic, Langmuir 16 (2000) 3107.Google Scholar
  129. 129.
    129. W. Hyun, R. H. Daniels, C. Z. Hotz, and M. Bruchez, Cytometry Suppl. 10 (2000) 182.Google Scholar
  130. 130.
    O. Siiman, unpublished results.Google Scholar
  131. 131.
    131. N. N. Mamedova, N. A. Kotov, A. L. Rogach, and J. Studer, NanoLetters 1 (2001) 281.Google Scholar
  132. 132.
    132. D. M. Willard, L. L. Carillo, J. Jung, and A. van Orden, NanoLetters 1 (2001) 469.Google Scholar
  133. 133.
    133. S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, NanoLetters 2 (2002) 817.Google Scholar
  134. 134.
    134. D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84 (1977) 1.Google Scholar
  135. 135.
    135. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, J. Chem. Soc., Faraday Trans. 2 75 (1979) 790.Google Scholar
  136. 136.
    136. O. Siiman and W. P. Hsu, J. Chem. Soc., Faraday Trans. 1 82 (1986) 851.Google Scholar
  137. 137.
    137. M. Faraday, Philos. Trans. Roy. Soc. London 147 (1857/58) 145.Google Scholar
  138. 138.
    138. M. Kerker, J. Colloid Interface Sci. 112 (1986) 302.Google Scholar
  139. 139.
    139. M. Kerker, Proc. Roy. Inst. London 61 (1989) 229.Google Scholar
  140. 140.
    John M. Thomas, Michael Faraday and the Royal Institute (The Genius of Man and Place), Adam Hilger (IOP Publishing Ltd.), Bristol, England, 1991, p. 81.Google Scholar
  141. 141.
    141. M. Kerker, Cytometry 4 (1983) 1.Google Scholar
  142. 142.
    142. Y.-W. C. Cao, R. Jin, and C. A. Mirkin, Science 297 (2002) 1536.Google Scholar
  143. 143.
    143. S. Nie and S. R. Emory, Science 275 (1997) 1102.Google Scholar
  144. 144.
    144. Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, Proc. Natl. Acad. Sci. USA 100 (2003) 8638.Google Scholar
  145. 145.
    145. H. Feilchenfeld and O. Siiman, J. Phys. Chem. 90 (1986) 4590.Google Scholar
  146. 146.
    146. O. Siiman and H. Feilchenfeld, J. Phys. Chem. 92 (1988) 453.Google Scholar
  147. 147.
    147. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, Nature 347 (1990) 301.Google Scholar
  148. 148.
    148. G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, Biophys. J. 60 (1991) 1046.Google Scholar
  149. 149.
    149. G. J. Puppels, H. S. P. Garritsen, J. A. Kummer, and J. Greve, Cytometry 14 (1993) 251.Google Scholar
  150. 150.
    150. Michel Manfait and Igor Nabiev, Applications in Medicine, in Raman Microscopy Developments and Applications, G. Turrell and J. Corset, eds., Academic Press Ltd., London, UK, 1996, Chap. 9, p. 379.Google Scholar
  151. 151.
    151. T. Vo-Dinh, L. R. Allain, and D. L. Stokes, J. Raman Spectrosc. 33 (2002) 511.Google Scholar
  152. 152.
    Intel and Fred Hutchinson Cancer Research Center to Explore the Use of Nanotechnology Tools for Early Disease Detection, News Release, Stanford, CA, Oct 23, 2003, as posted on website Scholar
  153. 153.
    W. E. Doering and S. Nie, Anal.Chem., web release date: 03 Oct 2003; DOI: 10.1021/ac034672u.Google Scholar
  154. 154.
    154. S. P. Mulvaney, M. D. Musick, C. D. Keating, and M. J. Natan, Langmuir 19 (2003) 4784.Google Scholar
  155. 155.
    155. P. Hildebrandt and M. Stockburger, J. Phys. Chem. 88 (1984) 5935.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.DavieUSA

Personalised recommendations