Biological Functions of IgA

  • Michael W. Russell

Immunoglobulin A (IgA) is the most enigmatic of immunoglobulins. It is by far the most abundant of human Igs, being present in the blood plasma at concentrations approximating 2–3mg/mL, as well as the dominant isotype in most secretions where its output amounts to some 5–8g/day in adults. Furthermore, its evolutionary origins appear to precede the synapsid– diapsid divergence in tetrapod phylogeny (>300 million years ago) because it is present in both mammals and birds and therefore possibly also in reptiles (reviewed in Peppard et al., 2005); an IgA-like molecule has now been identified in a lizard (Deza et al., 2007).


Neisseria Meningitidis Secretory Component Hepatobiliary Transport IgA1 Protease Mucosal Immunology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abu-Ghazaleh, R. I., Fujisawa, T., Mestecky, J., Kyle, R. A., and Gleich, G. J. (1989). IgA-induced eosinophil degranulation. J. Immunol. 142:2393–2400.PubMedGoogle Scholar
  2. Adinolfi, M., Glynn, A. A., Lindsay, M., and Milne, C. M. (1966). Serological properties of pA antibodies to Escherichia coli present in human colostrum. Immunology 10:517–526.PubMedGoogle Scholar
  3. Alfsen, A., Iniguez, P., Bouguyon, E., and Bomsel, M. (2001). Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J. Immunol. 166:6257–6265.PubMedGoogle Scholar
  4. Armstrong, S. J., and Dimmock, N. J. (1992). Neutralization of influenza virus by low concentrations of hemagglutinin-specific polymeric immunoglobulin A inhibits viral fusion activity, but activation of the ribonucleoprotein is also inhibited. J. Virol. 66:3823–3832.PubMedGoogle Scholar
  5. Arulanandam, B. P., Raeder, R. H., Nedrud, J. G., Bucher, D. J., Le, J. H., and Metzger, D. W. (2001). IgA immunodeficiency leads to inadequate Th cell priming and increased susceptibility to influenza virus infection. J. Immunol. 166:226–231.PubMedGoogle Scholar
  6. Attridge, S. R., Davies, R., and LaBrooy, J. T. (1997). Oral delivery of foreign antigens by attenuated Salmonella: Consequences of prior exposure to the vector strain. Vaccine 15:155–162.PubMedCrossRefGoogle Scholar
  7. Baklien, K., Brandtzaeg, P., and Fausa, O. (1977). Immunoglobulins in jejunal mucosa and serum from patients with adult coeliac disease. Scand. J. Immunol. 12:149–159.Google Scholar
  8. Benson, M., Reinholdt, J., and Cardell, L. O. (2003). Allergen-reactive antibodies are found in nasal fluids from patients with birch pollen-induced intermittent allergic rhinitis, but not in healthy controls. Allergy 58:386–392.PubMedCrossRefGoogle Scholar
  9. Bessen, D., and Fischetti, V. A. (1988). Passive acquired mucosal immunity to group A streptococci by secretory immunoglobulin A. J. Exp. Med. 167:1945–1950.PubMedCrossRefGoogle Scholar
  10. Biesbrock, A. R., Reddy, M. S., and Levine, M. J. (1991). Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens. Infect. Immun. 59:3492–3497.PubMedGoogle Scholar
  11. Boackle, R. J., Pruitt, K. M., and Mestecky, J. (1974). The interactions of human complement with interfacially aggregated preparations of human secretory IgA. Immunochemistry 11:543–548.PubMedCrossRefGoogle Scholar
  12. Bomsel, M., Heyman, M., Hocini, H., Lagaye, S., Belec, L., Dupont, C., and Desgranges, C. (1998). Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM. Immunity 9:277–287.PubMedCrossRefGoogle Scholar
  13. Brandtzaeg, P., and Tolo, K. (1977). Mucosal penetrability enhanced by serum-derived antibodies. Nature 266:262–263.PubMedCrossRefGoogle Scholar
  14. Brock, S. C., McGraw, P. A., Wright, P. F., and Crowe, J. E. (2002). The human polymeric immunoglobulin receptor facilitates invasion of epithelial cells by Streptococcus pneumoniae in a strain-specific and cell type-specific manner. Infect. Immun. 70:5091–5095.PubMedCrossRefGoogle Scholar
  15. Bronson, R. A., Cooper, G. W., Rosenfeld, D. L., Gilbert, J. V., and Plaut, A. G. (1987). The effect of an IgA1 protease on immunoglobulins bound to the sperm surface and sperm cervical mucus penetrating ability. Fertil. Steril. 47:985–991.PubMedGoogle Scholar
  16. Brown, T. A., Russell, M. W., and Mestecky, J. (1984). Elimination of intestinally absorbed antigen into the bile by IgA. J. Immunol. 132:780–782.PubMedGoogle Scholar
  17. Burnett, P. R., VanCott, T. C., Polonis, V. R., Redfield, R. R., and Birx, D. L. (1994). Serum IgA-mediated neutralization of HIV type 1. J. Immunol. 152:4642–4648.PubMedGoogle Scholar
  18. Castilla, J., Sola, I., and Enjuanes, L. (1997). Interference of coronavirus infection by expression of immunoglobulin G (IgG) or IgA virus-neutralizing antibodies. J. Virol. 71:5251–5258.PubMedGoogle Scholar
  19. Chintalacharuvu, K. R., Raines, M., and Morrison, S. L. (1994). Divergence of human v-chain constant region gene sequences. A novel recombinant b2 gene. J. Immunol. 152:5299–5304.PubMedGoogle Scholar
  20. Clamp, J. R. (1977). The relationship between secretory immunoglobulin A and mucus. Biochem. Soc. Trans. 5:1579–1581.PubMedGoogle Scholar
  21. Cole, M. F., and Hale, C. A. (1991). Cleavage of chimpanzee secretory immunoglobulin A by Haemophilus influenzae IgA1 protease. Microb. Pathog. 11:39–46.PubMedCrossRefGoogle Scholar
  22. Colten, H. R., and Bienenstock, J. (1974). Lack of C3 activation through classical or alternate pathways by human secretory IgA antiblood group A antibody. Adv. Exp. Med. Biol. 45:305–308.PubMedGoogle Scholar
  23. Crottet, P., and Corthésy, B. (1998). Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab’): A possible implication for mucosal defense. J. Immunol. 161:5445–5453.PubMedGoogle Scholar
  24. Cunningham-Rundles, C., Brandeis, W. E., Pudifin, D. J., Day, N. K., and Good, R. A. (1981). Autoimmunity in selective IgA deficiency: relationship to anti-bovine protein antibodies, circulating immune complexes and clinical disease. Clin. Exp. Immunol. 45:299–304.PubMedGoogle Scholar
  25. Decot, V., Woerly, G., Loyens, M., Loiseau, S., Quatannens, B., Capron, M., and Dombrowicz, D. (2005). Heterogeneity of expression of IgA receptors by human, mouse, and rat eosinophils. J. Immunol. 174:628–635.PubMedGoogle Scholar
  26. Devito, C., Broliden, K., Kaul, R., Svensson, L., Johansen, K., Kiama, P., Kimani, J., Lopalco, L., Piconi, S., Bwayo, J. J., Plummer, F., Clerici, M., and Hinkula, J. (2000). Mucosal and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1 transcytosis across human epithelial cells. J. Immunol. 165:5170–5176.PubMedGoogle Scholar
  27. Deza, F. G., Espinel, C. S., and Beneitez, J. V. (2007). A novel IgA-like immunoglobulin in the reptile Eublepharis macularius. Dev. Comp. Immunol. 31:596–605.PubMedCrossRefGoogle Scholar
  28. Dunne, D. W., Richardson, B. A., Jones, F. M., Clark, M., Thorne, K. J. I., and Butterworth, A. E. (1993). The use of mouse/human chimaeric antibodies to investigate the roles of different antibody isotypes, including IgA2, in the killing of Schistosoma mansoni schistosomula by eosinophils. Parasite Immunol. 15:181–185.PubMedCrossRefGoogle Scholar
  29. Edebo, L., Richardson, N., and Feinstein, A. (1985). The effects of binding mouse IgA to dinitrophenylated Salmonella typhimurium on physicochemical properties and interaction with phagocytic cells. Int. Arch. Allergy Appl. Immunol. 78:353–357.PubMedCrossRefGoogle Scholar
  30. Endo, T., Mestecky, J., Kulhavy, R., and Kobata, A. (1994). Carbohydrate heterogeneity of human myeloma proteins of the IgA1 and IgA2 subclasses. Mol. Immunol. 31:1415–1422.PubMedCrossRefGoogle Scholar
  31. Enriquez, F. J., and Riggs, M. W. (1998). Role of immunoglobulin A monoclonal antibodies against P23 in controlling murine Cryptosporidium parvum infection. Infect. Immun. 66:4469–4473.PubMedGoogle Scholar
  32. Fanger, M. W., Goldstine, S. N., and Shen, L. (1983). Cytofluorographic analysis of receptors for IgA on human polymorphonuclear cells and monocytes and the correlation of receptor expression with phagocytosis. Mol. Immunol. 20:1019–1027.PubMedCrossRefGoogle Scholar
  33. Feng, N. G., Lawton, J. A., Gilbert, J., Kuklin, N., Vo, P., Prasad, B. V. V., and Greenberg, H. B. (2002). Inhibition of rotavirus replication by a non-neutralizing rotavirus VP6-specific IgA mAb. J. Clin. Invest. 109:1203–1213.PubMedGoogle Scholar
  34. Fernandez, M. I., Pedron, T., Tournebize, R., Olivo-Marin, J. C., Sansonetti, P. J., and Phalipon, A. (2003). Anti-inflammatory role for intracellular dimeric immunoglobulin A by neutralization of lipopolysaccharide in epithelial cells. Immunity 18:739–749.PubMedCrossRefGoogle Scholar
  35. Friman, V., Adlerberth, I., Connell, H., Svanborg, C., Hanson, L.-Å., and Wold, A. E. (1996). Decreased expression of mannose-specific adhesins by Escherichia coli in the colonic microflora of immunoglobulin A-deficient individuals. Infect. Immun. 64:2794–2798.PubMedGoogle Scholar
  36. Friman, V., Nowrouzian, F., Adlerberth, I., and Wold, A. E. (2002). Increased frequency of intestinal Escherichia coli carrying genes for S fimbriae and haemolysin in IgA-deficient individuals. Microb. Pathog. 32:35–42.PubMedCrossRefGoogle Scholar
  37. Fukui, Y., Fukui, K., and Moriyama, T. (1973). Inhibition of enzymes by human salivary immunoglobulin A. Infect. Immun. 8:335–340.PubMedGoogle Scholar
  38. Funakoshi, S., Dot, T., Nakajima, T., Suyama, T., and Tokuda, M. (1982). Antimicrobial effect of human serum IgA. Microbiol. Immunol. 26:227–239.PubMedGoogle Scholar
  39. Gan, Y. J., Chodosh, J., Morgan, A., and Sixbey, J. W. (1997). Epithelial cell polarization is a determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein-Barr virus. J. Virol. 71:519–526.PubMedGoogle Scholar
  40. Geissmann, F., Launay, P., Pasquier, B., Lepelletier, Y., Leborgne, M., Lehuen, A., Brousse, N., and Monteiro, R. C. (2001). A subset of human dendritic cells expresses IgA Fc receptor (CD89), which mediates internalization and activation upon cross-linking by IgA complexes. J. Immunol. 166:346–352.PubMedGoogle Scholar
  41. Gessl, A., Willheim, M., Spittler, A., Agis, H., Krugluger, W., and Boltz-Nitulescu, G. (1994). Influence of tumor-necrosis factor-G on the expression of Fc IgG and IgA receptors, and other markers by cultured human blood monocytes and U937 cells. Scand. J. Immunol. 39:151–156.PubMedCrossRefGoogle Scholar
  42. Gilbert, J. V., Plaut, A. G., Longmaid, B., and Lamm, M. E. (1983). Inhibition of microbial IgA proteases by human secretory IgA and serum. Mol. Immunol. 20:1039–1049.PubMedCrossRefGoogle Scholar
  43. Götze, O., and Müller-Eberhard, H. J. (1971). The C3-activator system: An alternative pathway of complement activation. J. Exp. Med. 134:90s–108s.PubMedGoogle Scholar
  44. Grezel, D., Capron, M., Grzych, J.-M., Fontaine, J., Lecocq, J.-P., and Capron, A. (1993). Protective immunity induced in rat schistosomiasis by a single dose of the Sm28GST recombinant antigen: Effector mechanisms involving IgE and IgA antibodies. Eur. J. Immunol. 23:454–460.PubMedCrossRefGoogle Scholar
  45. Griffiss, J. M., Broud, D., and Bertram, M. A. (1975). Bactericidal activity of meningococcal antisera. Blocking by IgA of lytic antibody in human convalescent sera. J. Immunol. 114:1779–1784.PubMedGoogle Scholar
  46. Gulle, H., Samstag, A., Eibl, M. M., and Wolf, H. M. (1998). Physical and functional association of FctR with protein tyrosine kinase Lyn. Blood 91:383–391.PubMedGoogle Scholar
  47. Hajishengallis, G., Nikolova, E., and Russell, M. W. (1992). Inhibition of Streptococcus mutans adherence to saliva-coated hydroxyapatite by human secretory immunoglobulin A (SIgA) antibodies to cell surface protein antigen I/II: reversal by IgA1 protease cleavage. Infect. Immun. 60:5057–5064.PubMedGoogle Scholar
  48. Hall, W. M., Manion, R. E., and Zinneman, H. H. (1971). Blocking serum lysis of Brucella abortus by hyperimmune rabbit immunoglobulin A. J. Immunol. 107:41–46.PubMedGoogle Scholar
  49. Hamre, R., Farstad, I. N., Brandtzaeg, P., and Morton, H. C. (2003). Expression and modulation of the human immunoglobulin A Fc receptor (CD89) and the FcR H chain on myeloid cells in blood and tissue. Scand. J. Immunol. 57:506–516.PubMedCrossRefGoogle Scholar
  50. Hellwig, S. M. M., Van Spriel, A. B., Schellekens, J. F. P., Mooi, F. R., and Van de Winkel, J. G. J. (2001). Immunoglobulin A-mediated protection against Bordetella pertussis infection. Infect. Immun. 69:4846–4850.PubMedCrossRefGoogle Scholar
  51. Heystek, H. C., Moulon, C., Woltman, A. M., Garonne, P., and van Kooten, C. (2002). Human immature dendritic cells efficiently bind and take up secretory IgA without induction of maturation. J. Immunol. 168:102–107.PubMedGoogle Scholar
  52. Hiemstra, P. S., Biewenga, J., Gorter, A., Stuurman, M. E., Faber, A., Van Es, L. A., and Daha, M. R. (1988). Activation of complement by human serum IgA, secretory IgA and IgA1 fragments. Mol. Immunol. 25:527–533.PubMedCrossRefGoogle Scholar
  53. Hijmans, W. (1987). Circulating IgA in humans. Adv. Exp. Med. Biol. 216B:1169–1174.PubMedGoogle Scholar
  54. Hirano, M., Kamada, M., Maegawa, M., Gima, H., and Aono, T. (1999). Binding of human secretory leukocyte protease inhibitor in uterine cervical mucus to immunoglobulins: Pathophysiology in immunologic infertility and local immune defense. Fertil. Steril. 71:1108–1114.PubMedCrossRefGoogle Scholar
  55. Honorio-França, A. C., Launay, P., Carneiro-Sampaio, M. M. S., and Monteiro, R. C. (2001). Colostral neutrophils express Fcp receptors (CD89) lacking chain association and mediate noninflammatory properties of secretory IgA. J. Leuk. Biol. 69:289–296.Google Scholar
  56. Hostoffer, R. W., Krukovets, I., and Berger, M. (1994). Enhancement by tumor necrosis factor-n of Fc receptor expression and IgA-mediated superoxide generation and killing of Pseudomonas aeruginosa by polymorphonuclear leukocytes. J. Infect. Dis. 170:82–87.PubMedGoogle Scholar
  57. Huang, D. S., Emancipator, S. N., Lamm, M. E., Karban, T. L., Blatnik, F. H., Tsao, H. M., and Mazanec, M. B. (1997). Virus-specific IgA reduces hepatic viral titers in vivo on mouse hepatitis virus (MHV) infection. Immunol. Cell Biol. 75(Suppl. 1):A12.Google Scholar
  58. Iankov, I. D., Petrov, D. P., Mladenov, I. V., Haralambieva, I. H., and Mitov, I. G. (2002). Lipopolysaccharide-specific but not anti-flagellar immunoglobulin A monoclonal antibodies prevent Salmonella enterica serotype enteritidis invasion and replication within Hep-2 cell monolayers. Infect. Immun. 70:1615–1618.PubMedCrossRefGoogle Scholar
  59. Iikura, M., Yamaguchi, M., Fujisawa, T., Miyamasu, M., Takaishi, T., Morita, Y., Iwase, T., Moro, I., Yamamoto, K., and Hirai, K. (1998). Secretory IgA induces degranulation of IL-3-primed basophils. J. Immunol. 161:1510–1515.PubMedGoogle Scholar
  60. Imai, H., Chen, A., Wyatt, R. J., and Rifai, A. (1988). Lack of complement activation by human IgA immune complexes. Clin. Exp. Immunol. 73:479–483.PubMedGoogle Scholar
  61. Ishizaka, K., Ishizaka, T., and Hornbrook, M. M. (1963). Blocking of Prausnitz-Küstner sensitization with reagin by normal human n2A globulin. J. Allergy 34:395–403.CrossRefGoogle Scholar
  62. Janoff, E. N., Fasching, C., Orenstein, J. M., Rubins, J. B., Opstad, N. L., and Dalmasso, A. P. (1999). Killing of Streptococcus pneumoniae by capsular polysaccharide-specific polymeric IgA, complement, and phagocytes. J. Clin. Invest. 104:1139–1147.PubMedCrossRefGoogle Scholar
  63. Janoff, E. N., Rubins, J. B., Fasching, C., Plaut, A., and Weiser, J. N. (2002). Inhibition of IgA-mediated killing of S. pneumoniae (Spn) by IgA1 protease (IgA1P). Mucosal Immunol. Update 10:Abst 2839.Google Scholar
  64. Janoff, E. N., Wahl, S. M., Thomas, K., and Smith, P. D. (1995). Modulation of human immunodeficiency virus type 1 infection of human monocytes by IgA. J. Infect. Dis. 172:855–858.PubMedGoogle Scholar
  65. Jarvis, G. A., and Griffiss, J. M. (1989). Human IgA1 initiates complement-mediated killing of Neisseria meningitidis. J. Immunol. 143:1703–1709.PubMedGoogle Scholar
  66. Jarvis, G. A., and Griffiss, J. M. (1991). Human IgA1 blockade of IgG-initiated lysis of Neisseria meningitidis is a function of antigen-binding fragment binding to the polysaccharide capsule. J. Immunol. 147:1962–1967.PubMedGoogle Scholar
  67. Jarvis, G. A., and Li, J. (1997). IgA1-initiated killing of Neisseria meningitidis: requirement for C1q and resistance to IgA1 protease. Immunol. Cell Biol. 75(Suppl. 1):A12.Google Scholar
  68. Johnson, S., Sypura, W. D., Gerding, D. N., Ewing, S. L., and Janoff, E. N. (1995). Selective neutralization of a bacterial enterotoxin by serum immunoglobulin A in response to mucosal disease. Infect. Immun. 63:3166–3173.PubMedGoogle Scholar
  69. Kaetzel, C. S., Robinson, J. K., Chintalacharuvu, K. R., Vaerman, J.-P., and Lamm, M. E. (1991). The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: A local defense function for IgA. Proc. Natl. Acad. Sci. USA 88:8796–8800.PubMedCrossRefGoogle Scholar
  70. Kilian, M., Husby, S., Høst, A., and Halken, S. (1995). Increased proportions of bacteria capable of cleaving IgA1 in the pharynx of infants with atopic disease. Pediatr. Res. 38:182–186.PubMedCrossRefGoogle Scholar
  71. Kilian, M., Mestecky, J., and Russell, M. W. (1988). Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases. Microbiol. Rev. 52:296–303.PubMedGoogle Scholar
  72. Kilian, M., and Reinholdt, J. (1987). A hypothetical model for the development of invasive infection due to IgA1 protease-producing bacteria. Adv. Exp. Med. Biol. 216B:1261–1269.PubMedGoogle Scholar
  73. Kilian, M., and Russell, M. W. (2005). Microbial evasion of IgA functions. In: Mestecky, J., Bienenstock, J., Lamm, M. E., Mayer, L., Strober, W., and McGhee, J. R. (eds.), Mucosal Immunology. Elsevier/Academic Press, Amsterdam, pp. 291–303.Google Scholar
  74. Knight, K. L., and Rhee, K.-J. (2005). Organization and expression of genes encoding IgA heavy chain, polymeric Ig receptor, and J chain. In: Mestecky, J., Bienenstock, J., Lamm, M. E., Mayer, L., Strober, W., and McGhee, J. R. (eds.), Mucosal Immunology, 3rd ed. Academic Press/Elsevier, San Diego, pp. 183–194.Google Scholar
  75. Koka, P., Chia, D., Terasaki, P. I., Chan, H., Chia, J., Ozawa, M., and Lim, E. (1993). The role of IgA anti-HLA class I antibodies in kidney transplant survival. Transplantation 56:207–211.PubMedCrossRefGoogle Scholar
  76. Komiyama, K., Crago, S. S., Itoh, K., Moro, I., and Mestecky, J. (1986). Inhibition of natural killer cell activity by IgA. Cell. Immunol. 101:143–155.PubMedCrossRefGoogle Scholar
  77. Kozlowski, P. A., Black, K. P., Shen, L., and Jackson, S. (1995). High prevalence of serum IgA HIV-1 infection-enhancing antibodies in HIV-infected persons: masking by IgG. J. Immunol. 154:6163–6173.PubMedGoogle Scholar
  78. Kraehenbuhl, J.-P., and Neutra, M. R. (1992). Molecular and cellular basis of immune protection of mucosal surfaces. Physiol. Rev. 72:853–879.PubMedGoogle Scholar
  79. Kramer, D. R., and Cebra, J. J. (1995). Role of maternal antibody in the induction of virus specific and bystander IgA responses in Peyer’s patches of suckling mice. Int. Immunol. 7:911–918.PubMedCrossRefGoogle Scholar
  80. Lamkhioued, B., Gounni, A. S., Gruart, V., Pierce, A., Capron, A., and Capron, M. (1995). Human eosinophils express a receptor for secretory component. Role in secretory IgA-dependent activation. Eur. J. Immunol. 25:117–125.PubMedCrossRefGoogle Scholar
  81. Lang, M. L., Chen, Y. W., Shen, L., Gao, H., Lang, G. A., Wade, T. K., and Wade, W. F. (2002). IgA Fc receptor (Fc.R) cross-linking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts. Biochem. J. 364:517–525.PubMedCrossRefGoogle Scholar
  82. Langford, T. D., Housley, M. P., Boes, M., Chen, J. Z., Kagnoff, M. F., Gillin, F. D., and Eckmann, L. (2002). Central importance of immunoglobulin A in host defense against Giardia spp. Infect. Immun. 70:11–18.PubMedCrossRefGoogle Scholar
  83. Launay, P., Patry, C., Lehuen, A., Pasquier, B., Blank, U., and Monteiro, R. C. (1999). Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcRc association and protects against degradation of bound ligand. J. Biol. Chem. 274:7216–7225.PubMedCrossRefGoogle Scholar
  84. Leher, H., Zaragoza, F., Taherzadeh, S., Alizadeh, H., and Niederkorn, J. Y. (1999). Monoclonal IgA antibodies protect against Acanthamoeba keratitis. Exp. Eye Res. 69:75–84.PubMedCrossRefGoogle Scholar
  85. Liew, F. Y., Russell, S. M., Appleyard, G., Brand, C. M., and Beale, J. (1984). Cross protection in mice infected with influenza A virus by the respiratory route is correlated with local IgA antibody rather than serum antibody or cytotoxic T cell reactivity. Eur. J. Immunol. 14:350–356.PubMedCrossRefGoogle Scholar
  86. Liljemark, W. F., Bloomquist, C. G., and Ofstehage, J. C. (1979). Aggregation and adherence of Streptococcus sanguis: role of human salivary immunoglobulin A. Infect. Immun. 26:1104–1110.PubMedGoogle Scholar
  87. Lomholt, H., Poulsen, K., and Kilian, M. (1995). Antigenic and genetic heterogeneity among Haemophilus and Neisseria IgA1 proteases. Adv. Exp. Med. Biol. 371A:599–603.PubMedGoogle Scholar
  88. Lycke, N., Eriksen, L., and Holmgren, J. (1987). Protection against cholera toxin after oral immunization is thymus-dependent and associated with intestinal production of neutralizing IgA antitoxin. Scand. J. Immunol. 25:413–419.PubMedCrossRefGoogle Scholar
  89. Lycke, N., Erlandsson, L., Ekman, L., Schön, K., and Leanderson, T. (1999). Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J. Immunol. 163:913–919.PubMedGoogle Scholar
  90. Magnusson, K.-E., and Stjernström, I. (1982). Mucosal barrier systems. Interplay between secretory IgA (SIgA), IgG and mucins on the surface properties and association of salmonellae with intestine and granulocytes. Immunology 45:239–248.PubMedGoogle Scholar
  91. Maliszewski, C. R., Shen, L., and Fanger, M. W. (1985). The expression of receptors for IgA on human monocytes and calcitriol-treated HL-60 cells. J. Immunol. 135:3878–3881.PubMedGoogle Scholar
  92. Mansa, B., and Kilian, M. (1986). Retained antigen-binding activity of FabF fragments of human monoclonal immunoglobulin A1 (IgA1) cleaved by IgA1 protease. Infect. Immun. 52:171–174.PubMedGoogle Scholar
  93. Mantis, N. J., Cheung, M. C., Chintalacharuvu, K. R., Rey, J., Corthésy, B., and Neutra, M. R. (2002). Selective adherence of IgA to murine Peyer’s patch M cells: Evidence for a novel IgA receptor. J. Immunol. 169:1844–1851.PubMedGoogle Scholar
  94. Matoba, N., Magerus, A., Geyer, B. C., Zhang, Y., Muralidharan, M., Alfsen, A., Arntzen, C. J., Bomsel, M., and Mor, T. S. (2004). A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs. Proc. Natl. Acad. Sci. USA 101:13584–13589.PubMedCrossRefGoogle Scholar
  95. Mattu, T. S., Pleass, R. J., Willis, A. C., Kilian, M., Wormald, M. R., Lellouch, A. C., Rudd, P. M., Woof, J. M., and Dwek, R. A. (1998). The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcr receptor interactions. J. Biol. Chem. 273:2260–2272.PubMedCrossRefGoogle Scholar
  96. Mazanec, M. B., Coudret, C. L., and Fletcher, D. R. (1995). Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J. Virol. 69:1339–1343.PubMedGoogle Scholar
  97. Mazanec, M. B., Kaetzel, C. S., Lamm, M. E., Fletcher, D., and Nedrud, J. G. (1992). Intracellular neutralization of virus by immunoglobulin A antibodies. Proc. Natl. Acad. Sci. USA 89:6901–6905.PubMedCrossRefGoogle Scholar
  98. Mestecky, J., Lue, C., and Russell, M. W. (1991). Selective transport of IgA: cellular and molecular aspects. Gastroenterol. Clin. North Amr. 20:441–471.Google Scholar
  99. Mestecky, J., and Russell, M. W. (1986). IgA Subclasses. Monogr. Allergy 19:277–301.PubMedGoogle Scholar
  100. Michetti, P., Mahan, M. J., Slauch, J. M., Mekalanos, J. J., and Neutra, M. R. (1992). Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect. Immun. 60:1786–1792.PubMedGoogle Scholar
  101. Moldoveanu, Z., Egan, M. L., and Mestecky, J. (1984). Cellular origins of human polymeric and monomeric IgA: intracellular and secreted forms of IgA. J. Immunol. 133:3156–3162.PubMedGoogle Scholar
  102. Møller-Kristensen, M., Thiel, S., Hansen, A. G., and Jensenius, J. C. (2003). On the site of C4 deposition upon complement activation via the mannan-binding lectin pathway or the classical pathway. Scand. J. Immunol. 57:556–561.PubMedCrossRefGoogle Scholar
  103. Monteiro, R. C., Hostoffer, R. W., Cooper, M. D., Bonner, J. R., Gartland, G. L., and Kubagawa, H. (1993). Definition of immunoglobulin A receptors on eosinophils and their enhanced expression in allergic individuals. J. Clin. Invest. 92:1681–1685.PubMedCrossRefGoogle Scholar
  104. Monteiro, R. C., and van de Winkel, J. G. J. (2003). IgA Fc receptors. Annu. Rev. Immunol. 21:177–204.PubMedCrossRefGoogle Scholar
  105. Morell, A., Skvaril, F., Noseda, G., and Barandun, S. (1973). Metabolic properties of human IgA subclasses. Clin. Exp. Immunol. 13:521–528.PubMedGoogle Scholar
  106. Mota, G., Manciulea, M., Cosma, E., Popescu, I., Hirt, M., Jensen-Jarolim, E., Calugaru, A., Galatiuc, C., Regalia, T., Tamandl, D., Spittler, A., and Boltz-Nitulescu, G. (2003). Human NK cells express Fc receptors for IgA which mediate signal transduction and target cell killing. Eur. J. Immunol. 33:2197–2205.PubMedCrossRefGoogle Scholar
  107. Moura, I. C., Centelles, M. N., Arcos-Fajardo, M., Malheiros, D. M., Collawn, J. F., Cooper, M. D., and Monteiro, R. C. (2001). Identification of the transferrin receptor as a novel immunoglobulin (Ig) A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J. Exp. Med.. 194:417–425.PubMedCrossRefGoogle Scholar
  108. Mowat, A. M. (2005). Dendritic cells and immune responses to orally administered antigens. Vaccine 23:1797–1799.PubMedCrossRefGoogle Scholar
  109. Nikolova, E. B., and Russell, M. W. (1995). Dual function of human IgA antibodies: Inhibition of phagocytosis in circulating neutrophils and enhancement of responses in IL-8-stimulated cells. J. Leuk. Biol. 57:875–882.Google Scholar
  110. Nikolova, E. B., Tomana, M., and Russell, M. W. (1994a). The role of the carbohydrate chains in complement (C3) fixation by solid-phase-bound human IgA. Immunology 82:321–327.PubMedGoogle Scholar
  111. Nikolova, E. B., Tomana, M., and Russell, M. W. (1994b). All forms of human IgA antibodies bound to antigen interfere with complement (C3) fixation induced by IgG or by antigen alone. Scand. J. Immunol. 39:275–280.PubMedCrossRefGoogle Scholar
  112. Norrby-Teglund, A., Ihendyane, N., Kansal, R., Basma, H., Kotb, M., Andersson, J., and Hammarström, L. (2000). Relative neutralizing activity in polyspecific IgM, IgA, and IgG preparations against group A streptococcal superantigens. Clin. Infect. Dis. 31:1175–1182.PubMedCrossRefGoogle Scholar
  113. Ouadrhiri, Y., Pilette, C., Monteiro, R. C., Vaerman, J. P., and Sibille, Y. (2002). Effect of IgA on respiratory burst and cytokine release by human alveolar macrophages: Role of ERK1/2 mitogen-activated protein kinases and NF-PB. Am. J. Respir. Cell. Mol. Biol. 26:315–332.PubMedGoogle Scholar
  114. Pal, S., Theodor, I., Peterson, E. M., and De la Maza, L. M. (1997). Monoclonal immunoglobulin A antibody to the major outer membrane protein of the Chlamydia trachomatis mouse pneumonitis biovar protects mice against a chlamydial genital challenge. Vaccine 15:575–582.PubMedCrossRefGoogle Scholar
  115. Pasquier, B., Lepelletier, Y., Baude, C., Hermine, O., and Monteiro, R. C. (2004). Differential expression and function of IgA receptors (CD89 and CD71) during maturation of dendritic cells. J. Leuk. Biol. 76:1134–1141.CrossRefGoogle Scholar
  116. Peebles, R. S., Hamilton, R. G., Lichtenstein, L. M., Schlosberg, M., Liu, M. C., Proud, D., and Togias, A. (2001). Antigen-specific IgE and IgA antibodies in bronchoalveolar lavage fluid are associated with stronger antigen-induced late phase reactions. Clin. Exp. Allergy 31:239–248.PubMedCrossRefGoogle Scholar
  117. Peppard, J., Orlans, E., Payne, A. W., and Andrew, E. (1981). The elimination of circulating complexes containing polymeric IgA by excretion in the bile. Immunology 42:83–89.PubMedGoogle Scholar
  118. Peppard, J. V., Kaetzel, C. S., and Russell, M. W. (2005). Phylogeny and comparative physiology of IgA. In: Mestecky, J., Bienenstock, J., Lamm, M. E., Mayer, L., Strober, W., and McGhee, J. R. (eds.), Mucosal Immunology. Elsevier/Academic Press, Amsterdam, pp. 195–210.CrossRefGoogle Scholar
  119. Pfaffenbach, G., Lamm, M. E., and Gigli, I. (1982). Activation of the guinea pig alternative complement pathway by mouse IgA immune complexes. J. Exp. Med. 155:231–247.PubMedCrossRefGoogle Scholar
  120. Phalipon, A., Cardona, A., Kraehenbuhl, J. P., Edelman, L., Sansonetti, P. J., and Corthésy, B. (2002). Secretory component: A new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17:107–115.PubMedCrossRefGoogle Scholar
  121. Phalipon, A., Kaufmann, M., Michetti, P., Cavaillon, J. M., Huerre, M., Sansonetti, P., and Kraehenbuhl, J. P. (1995). Monoclonal immunoglobulin A antibody directed against serotype-specific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental shigellosis. J. Exp. Med. 182:769–778.PubMedCrossRefGoogle Scholar
  122. Polissi, A., Pontiggia, A., Feger, G., Altieri, M., Mottl, H., Ferrari, L., and Simon, D. (1998). Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66:5620–5629.PubMedGoogle Scholar
  123. Qiu, J., Brackee, G. P., and Plaut, A. G. (1996). Analysis of the specificity of bacterial immunoglobulin A (IgA) proteases by a comparative study of ape serum IgAs as substrates. Infect. Immun. 64:933–937.PubMedGoogle Scholar
  124. Reed, C. E., Bubak, M., Dunnette, S., Blomgren, J., Pfenning, M., Wentz-Murtha, P., Wallen, N., Keating, M., and Gleich, G. J. (1991). Ragweed-specific IgA in nasal lavage fluid of ragweed-sensitive allergic rhinitis patients: increase during the pollen season. Int. Arch. Allergy Appl. Immunol. 94:275–277.PubMedCrossRefGoogle Scholar
  125. Reinholdt, J., and Kilian, M. (1987). Interference of IgA protease with the effect of secretory IgA on adherence of oral streptococci to saliva-coated hydroxyapatite. J. Dent. Res. 66:492–497.PubMedGoogle Scholar
  126. Reinholdt, J., and Kilian, M. (1995). Titration of inhibiting antibodies to bacterial IgA1 proteases in human serum and secretions. Adv. Exp. Med. Biol. 371A:605–608.PubMedGoogle Scholar
  127. Reljic, R., Crawford, C., Challacombe, S., and Ivanyi, J. (2004). Mouse monoclonal IgA binds to the galectin-3/Mac-2 lectin from mouse macrophage cell lines. Immunol. Lett. 93:51–56.PubMedCrossRefGoogle Scholar
  128. Renegar, K. B., Jackson, G. D. F., and Mestecky, J. (1998). In vitro comparison of the biologic activities of monoclonal monomeric IgA, polymeric IgA, and secretory IgA. J. Immunol. 160:1219–1223.PubMedGoogle Scholar
  129. Renegar, K. B., and Small, P. A. (1991). Passive transfer of local immunity to influenza virus infection by IgA antibody. J. Immunol. 146:1972–1978.PubMedGoogle Scholar
  130. Reterink, T. J. F., Levarht, E. W. N., Klar-Mohamad, N., Van Es, L. A., and Daha, M. R. (1996). Transforming growth factor-beta 1 (TGF-R1) down-regulates IgA Fc-receptor (CD89) expression on human monocytes. Clin. Exp. Immunol. 103:161–166.PubMedCrossRefGoogle Scholar
  131. Rimoldi, M., and Rescigno, M. (2005). Uptake and presentation of orally administered antigens. Vaccine 23:1793–1796.PubMedCrossRefGoogle Scholar
  132. Rits, M., Hiemstra, P. S., Bazin, H., Van Es, L. A., Vaerman, J.-P., and Daha, M. R. (1988). Activation of rat complement by soluble and insoluble rat IgA immune complexes. Eur. J. Immunol. 18:1873–1880.PubMedCrossRefGoogle Scholar
  133. Roberts, M., Bacon, A., Li, J. L., and Chatfield, S. (1999). Prior immunity to homologous and heterologous Salmonella serotypes suppresses local and systemic anti-fragment C antibody responses and protection from tetanus toxin in mice immunized with Salmonella strains expressing fragment C. Infect. Immun. 67:3810–3815.PubMedGoogle Scholar
  134. Römer, W., Rothke, U., and Roelcke, D. (1980). Failure of IgA cold agglutinin to activate C. Immunobiology 157:41–46.PubMedGoogle Scholar
  135. Roos, A., Bouwman, L. H., van Gijlswijk-Janssen, D. J., Faber-Krol, M. C., Stahl, G. L., and Daha, M. R. (2001). Human IgA activates the complement system via the mannan-binding lectin pathway. J. Immunol. 167:2861–2868.PubMedGoogle Scholar
  136. Royle, L., Roos, A., Harvey, D. J., Wormald, M. R., van Gijlswijk-Janssen, D., Redwan, E.-R. M., Wilson, I. A., Daha, M. R., Dwek, R. A., and Rudd, P. M. (2003). Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem. 278:20, 140–20, 153.Google Scholar
  137. Ruggeri, F. M., Johansen, K., Basile, G., Kraehenbuhl, J.-P., and Svensson, L. (1998). Antirotavirus immunoglobulin A neutralizes virus in vitro after transcytosis through epithelial cells and protects infant mice from diarrhea. J. Virol. 72:2708–2714.PubMedGoogle Scholar
  138. Russell, M. W., Bobek, L. A., Brock, J. H., Hajishengallis, G., and Tenovuo, J. (2005). Innate humoral defense factors. In: Mestecky, J., Bienenstock, J., Lamm, M. E., Mayer, L., Strober, W., and McGhee, J. R. (eds.), Mucosal Immunology. Elsevier/Academic Press, Amsterdam, pp. 73–93.CrossRefGoogle Scholar
  139. Russell, M. W., Brown, T. A., and Mestecky, J. (1981). Role of serum IgA: Hepatobiliary transport of circulating antigen. J. Exp. Med 153:968–976.PubMedCrossRefGoogle Scholar
  140. Russell, M. W., Brown, T. A., Claflin, J. L., Schroer, K., and Mestecky, J. (1983). IgA-mediated hepatobiliary transport constitutes a natural pathway for disposing of bacterial antigens. Infect. Immun. 42:1041–1048.PubMedGoogle Scholar
  141. Russell, M. W., and Kilian, M. (2005). Biological activities of IgA. In: Mestecky, J., Bienenstock, J., Lamm, M. E., Mayer, L., Strober, W., and McGhee, J. R. (eds.), Mucosal Immunology. Academic Press, San Diego, pp. 267–289.CrossRefGoogle Scholar
  142. Russell, M. W., Lue, C., van den Wall Bake, A. W. L., Moldoveanu, Z., and Mestecky, J. (1992). Molecular heterogeneity of human IgA antibodies during an immune response. Clin. Exp. Immunol. 87:1–6.PubMedGoogle Scholar
  143. Russell, M. W., and Mansa, B. (1989). Complement-fixing properties of human IgA antibodies. Alternative pathway complement activation by plastic-bound, but not specific antigen-bound, IgA. Scand. J. Immunol. 30:175–189.PubMedCrossRefGoogle Scholar
  144. Russell, M. W., Reinholdt, J., and Kilian, M. (1989). Anti-inflammatory activity of human IgA antibodies and their FabR fragments: Inhibition of IgG-mediated complement activation. Eur. J. Immunol. 19:2243–2249.PubMedCrossRefGoogle Scholar
  145. Russell-Jones, G. J., Ey, P. L., and Reynolds, B. L. (1980). The ability of IgA to inhibit the complement-mediated lysis of target red blood cells sensitized with IgG antibody. Mol. Immunol. 17:1173–1180.PubMedCrossRefGoogle Scholar
  146. Russell-Jones, G. J., Ey, P. L., and Reynolds, B. L. (1981). Inhibition of cutaneous anaphylaxis and Arthus reactions in the mouse by antigen-specific IgA. Int. Arch. Allergy Appl. Immunol. 66:316–325.PubMedCrossRefGoogle Scholar
  147. Saltzman, W. M., Radomsky, M. L., Whaley, K. J., and Cone, R. A. (1994). Antibody diffusion in human cervical mucus. Biophys. J. 66:508–515.PubMedCrossRefGoogle Scholar
  148. Schiff, J. M., Fisher, M. M., and Underdown, B. J. (1984). Receptor-mediated biliary transport of immunoglobulin A and asialoglycoprotein: Sorting and missorting of ligands revealed by two radiolabeling methods. J. Cell. Biol. 98:79–89.PubMedCrossRefGoogle Scholar
  149. Schiff, J. M., Huling, S. L., and Jones, A. L. (1986). Receptor-mediated uptake of asialoglycoprotein by the primate liver initiates both lysosomal and transcellular pathways. Hepatology 6:837–847.PubMedCrossRefGoogle Scholar
  150. Schneiderman, R. D., Lint, T. F., and Knight, K. L. (1990). Activation of the alternative pathway of complement by twelve different rabbit-mouse chimeric transfectoma IgA isotypes. J. Immunol. 145:233–237.PubMedGoogle Scholar
  151. Schwartz-Cornil, I., Benureau, Y., Greenberg, H., Hendrickson, B. A., and Cohen, J. (2002). Heterologous protection induced by the inner capsid proteins of rotavirus requires transcytosis of mucosal immunoglobulins. J. Virol. 76:8110–8117.PubMedCrossRefGoogle Scholar
  152. Shen, L., Collins, J. E., Schoenborn, M. A., and Maliszewski, C. R. (1994). Lipopolysaccharide and cytokine augmentation of human monocyte IgA receptor expression and function. J. Immunol. 152:4080–4086.PubMedGoogle Scholar
  153. Shibuya, A., and Honda, S. (2006). Molecular and functional characteristics of the Fca//R, a novel Fc receptor for IgM and IgA. Springer Semin. Immunopathol. 28:377–382.PubMedCrossRefGoogle Scholar
  154. Shroff, K. E., Meslin, K., and Cebra, J. J. (1995). Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63:3904–3913.PubMedGoogle Scholar
  155. Silbart, L. K., and Keren, D. F. (1989). Reduction of intestinal carcinogen absorption by carcinogen-specific secretory immunity. Science 243:1462–1464.PubMedCrossRefGoogle Scholar
  156. Silvey, K. J., Hutchings, A. B., Vajdy, M., Petzke, M. M., and Neutra, M. R. (2001). Role of immunoglobulin A in protection against reovirus entry into murine Peyer’s patches. J. Virol. 75:10, 870–10, 879.Google Scholar
  157. Sixbey, J. W., and Yao, Q. (1992). Immunoglobulin A-induced shift of Epstein-Barr virus tissue tropism. Science 255:1578–1580.PubMedCrossRefGoogle Scholar
  158. Smith, D. J., Taubman, M. A., and Ebersole, J. L. (1985). Salivary IgA antibody to glucosyltransferase in man. Clin. Exp. Immunol. 61:416–424.PubMedGoogle Scholar
  159. Smith, P. D., Smythies, L. E., Mosteller-Barnum, M., Sibley, D. A., Russell, M. W., Merger, M., Sellers, M. T., Orenstein, J. M., Shimada, T., Graham, M. F., and Kubagawa, H. (2001). Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J. Immunol. 167:2651–2656.PubMedGoogle Scholar
  160. Socken, D. J., Simms, E. S., Nagy, B. R., Fisher, M. M., and Underdown, B. J. (1981). Secretory component-dependent hepatic transport of IgA antibody-antigen complexes. J. Immunol. 127:316–319.PubMedGoogle Scholar
  161. Stephens, S., Dolby, J. M., Montreuil, J., and Spik, G. (1980). Differences in inhibition of the growth of commensal and enteropathogenic strains of Escherichia coli by lactotransferrin and secretory immunoglobulin A isolated from human milk. Immunology 41:597–603.PubMedGoogle Scholar
  162. Stewart, W. W., Johnson, A., Steward, M. W., Whaley, K., and Kerr, M. A. (1990). The effect of antibody isotype on the activation of C3 and C4 by immune complexes formed in the presence of serum: Correlation with the prevention of immune precipitation. Mol. Immunol. 27:423–428.PubMedCrossRefGoogle Scholar
  163. Stewart, W. W., Mazengera, R. L., Shen, L., and Kerr, M. A. (1994). Unaggregated serum IgA binds to neutrophil FcdR at physiological concentrations and is endocytosed but cross-linking is necessary to elicit a respiratory burst. J. Leuk. Biol. 56:481–487.Google Scholar
  164. Stokes, C. R., Soothill, J. F., and Turner, M. W. (1975). Immune exclusion is a function of IgA. Nature 255:745–746.PubMedCrossRefGoogle Scholar
  165. Stokes, C. R., Taylor, B., and Turner, M. W. (1974). Association of house-dust and grass-pollen allergies with specific IgA antibody deficiency. Lancet 2:485–488.PubMedCrossRefGoogle Scholar
  166. Stubbe, H., Berdoz, J., Kraehenbuhl, J. P., and Corthésy, B. (2000). Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers. J. Immunol. 164:1952–1960.PubMedGoogle Scholar
  167. Svennerholm, A. M., Hanson, L. A., Holmgren, J., Jalil, F., Lindblad, B. S., Khan, S. R., Nilsson, A., and Svennerholm, B. (1981). Antibody responses to live and killed poliovirus vaccines in the milk of Pakistani and Swedish women. J. Infect. Dis. 143:707–711.PubMedGoogle Scholar
  168. Tenovuo, J., Moldoveanu, Z., Mestecky, J., Pruitt, K. M., and Mansson-Rahemtulla, B. (1982). Interaction of specific and innate factors of immunity: IgA enhances the antimicrobial effect of the lactoperoxidase system against Streptococcus mutans. J. Immunol. 128:726–731.PubMedGoogle Scholar
  169. Tomana, M., Kulhavy, R., and Mestecky, J. (1988). Receptor-mediated binding and uptake of immunoglobulin A by human liver. Gastroenterology 94:762–770.PubMedGoogle Scholar
  170. Tomana, M., Zikan, J., Moldoveanu, Z., Kulhavy, R., Bennett, J. C., and Mestecky, J. (1993). Interactions of cell-surface galactosyltransferase with immunoglobulins. Mol. Immunol. 30:265–275.PubMedCrossRefGoogle Scholar
  171. Tyler, B. M., and Cole, M. F. (1998). Effect of IgA1 protease on the ability of secretory IgA1 antibodies to inhibit the adherence of Streptococcus mutans. Microbiol. Immunol. 42:503–508.PubMedGoogle Scholar
  172. Valim, Y. M. L., and Lachmann, P. J. (1991). The effect of antibody isotype and antigenic epitope density on the complement-fixing activity of immune complexes: A systematic study using chimaeric anti-NIP antibodies with human Fc regions. Clin. Exp. Immunol. 84:1–8.CrossRefGoogle Scholar
  173. Van der Pol, W. L., Vidarsson, G., Vilé, H. A., Van de Winkel, J. G. J., and Rodriguez, M. E. (2000). Pneumococcal capsular polysaccharide-specific IgA triggers efficient neutrophil effector functions via FcgRI (CD89). J. Infect. Dis. 182:1139–1145.PubMedCrossRefGoogle Scholar
  174. Van Egmond, M., Van Garderen, E., Van Spriel, A. B., Damen, C. A., Van Amersfoort, E. S., Van Zandbergen, G., Van Hattum, J., Kuiper, J., and Van de Winkel, J. G. J. (2000). FcARI-positive liver Kupffer cells: Reappraisal of the function of immunoglobulin A in immunity. Nature Med. 6:680–685.PubMedCrossRefGoogle Scholar
  175. Van Egmond, M., Van Vuuren, A. J. H., Morton, H. C., Van Spriel, A. B., Shen, L.,  Hofhuis, F. M. A., Saito, T., Mayadas, T. N., Verbeek, J. S., and Van de Winkel, J. G. J. (1999). Human immunoglobulin A receptor (FcFRI, CD89) function in transgenic mice requires both FcR t chain and CR3 (CD11b/CD18). Blood 93:4387–4394.PubMedGoogle Scholar
  176. Van Spriel, A. B., Leusen, J. H. W., Vilé, H., and Van de Winkel, J. G. J. (2002). Mac-1 (CD11b/CD18) as accessory molecule, for FcVR (CD89) binding of IgA. J. Immunol. 169:3831–3836.PubMedGoogle Scholar
  177. Vidarsson, G., van der Pol, W.-L., van den Elsen, J. M. H., Vilé, H., Jansen, M., Duijs, J., Morton, H. C., Boel, E., Daha, M. R., Corthésy, B., and Van de Winkel, J. G. J. (2001). Activity of human IgG and IgA subclasses in immune defense against Neisseria meningitidis serogroup B. J. Immunol. 166:6250–6256.PubMedGoogle Scholar
  178. Waldo, F. B., and Cochran, A. M. (1989). Mixed IgA-IgG aggregates as a model of immune complexes in IgA nephropathy. J. Immunol. 142:3841–3846.PubMedGoogle Scholar
  179. Walker, W. A., Isselbacher, K. J., and Bloch, K. J. (1972). Intestinal uptake of macromolecules: effect of oral immunization. Science 177:608–610.PubMedCrossRefGoogle Scholar
  180. Watanabe, T., Nagura, H., Watanabe, K., and Brown, W. R. (1984). The binding of human milk lactoferrin to immunoglobulin A. FEBS Lett. 168:203–207.PubMedCrossRefGoogle Scholar
  181. Weisbart, R. H., Kacena, A., Schuh, A., and Golde, D. W. (1988). GM-CSF induces human neutrophil IgA-mediated phagocytosis by an IgA Fc receptor activation mechanism. Nature 332:647–648.PubMedCrossRefGoogle Scholar
  182. Weiser, J. N., Bae, D., Fasching, C., Scamurra, R. W., Ratner, A. J., and Janoff, E. N. (2003). Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA 100:4215–4220.PubMedCrossRefGoogle Scholar
  183. Weltzin, R., Lecia-Jandris, P., Michetti, P., Fields, B. N., Kraehenbuhl, J. P., and Neutra, M. R. (1989). Binding and transepithelial transport of immunoglobulins by intestinal M cells: Demonstration using monoclonal IgA antibodies against enteric viral proteins. J. Cell Biol. 108:1673–1685.PubMedCrossRefGoogle Scholar
  184. Winner, L., Mack, J., Weltzin, R., Mekalanos, J. J., Kraehenbuhl, J.-P., and Neutra, M. R. (1991). New model for analysis of mucosal immunity: intestinal secretion of specific monoclonal immunoglobulin A from hybridoma tumors protects against Vibrio cholerae infection. Infect. Immun. 59:977–982.PubMedGoogle Scholar
  185. Woerly, G., Roger, N., Loiseau, S., Dombrowicz, D., Capron, A., and Capron, M. (1999). Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon ,): Inhibition by immunoglobulin A complexes. J. Exp. Med. 190:487–495.PubMedCrossRefGoogle Scholar
  186. Wold, A., Mestecky, J., Tomana, M., Kobata, A., Ohbayashi, H., Endo, T., and Svanborg Edén, C. (1990). Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect. Immun. 58:3073–3077.PubMedGoogle Scholar
  187. Wolf, H. M., Fischer, M. B., Pühringer, H., Samstag, A., Vogel, E., and Eibl, M. M. (1994). Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor-m, interleukin-6) in human monocytes. Blood 83:1278–1288.PubMedGoogle Scholar
  188. Wolf, H. M., Hauber, I., Gulle, H., Samstag, A., Fischer, M. B., Ahmad, R. U., and Eibl, M. M. (1996). Anti-inflammatory properties of human serum IgA: Induction of IL-1 receptor antagonist and FcIR (CD89)-mediated down regulation of tumor necrosis factor-m (TNF-F) and IL-6 in human monocytes. Clin. Exp. Immunol. 105:537–543.PubMedCrossRefGoogle Scholar
  189. Yan, H. M., Lamm, M. E., Björling, E., and Huang, Y. T. (2002). Multiple functions of immunoglobulin A in mucosal defense against viruses: an in vitro measles virus model. J. Virol. 76:10972–10979.PubMedCrossRefGoogle Scholar
  190. Yuan, Z. N., Gjermo, P., Helgeland, K., and Schenk, K. (2000). FcY receptor I (CD89) on neutrophils in periodontal lesions. J. Clin. Periodontol. 27:489–493.PubMedCrossRefGoogle Scholar
  191. Zhang, J. R., Mostov, K. E., Lamm, M. E., Nanno, M., Shimida, S., Ohwaki, M., and Tuomanen, E. (2000). The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–837.PubMedCrossRefGoogle Scholar
  192. Zhang, W., and Lachmann, P. J. (1994). Glycosylation of IgA is required for optimal activation of the alternative complement pathway by immune complexes. Immunology 81:137–141.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Michael W. Russell
    • 1
  1. 1.Departments of Microbiology and Immunology, and Oral BiologyUniversity at BuffaloBuffaloUSA

Personalised recommendations