Cell Regeneration in Lung Injury

  • Z. Bromberg
  • C. S. Deutschman
  • Y. G. Weiss
Conference paper


The acute respiratory distress syndrome (ARDS) is a lethal inflammatory disorder of the lung. Its incidence is estimated at 75 cases per 100,000 population and appears to be increasing [1]. Even with optimal treatment, mortality is about 30% [1, 2, 3]. As such, ARDS represents a major public health problem. The effects of two recent crises created by unusual viral infections of the respiratory tract — the severe acute respiratory syndrome (SARS) epidemic caused by the novel SARS coronavirus [4, 5] and the bird flu [6] highlight the importance of research into ARDS. Both viruses cause an ARDS-like picture. Because lung repair and regeneration contribute substantially to the pathophysiology of ARDS, understanding these processes is essential [7]. This chapter focuses on specific cell populations and markers involved in cell division and regeneration. In addition, a brief review of two pathways intimately associated with cell division is provided because of their potential for pharmacologic manipulation.


Lung Injury Hepatocyte Growth Factor Acute Lung Injury Idiopathic Pulmonary Fibrosis Acute Respiratory Distress Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349PubMedCrossRefGoogle Scholar
  2. 2.
    The Acute Respiratory Distress Syndrome Network Investigators (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  3. 3.
    Brower RG, Lanken PN, MacIntyre N, et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336PubMedCrossRefGoogle Scholar
  4. 4.
    Ksiazek TG, Erdman D, Goldsmith CS, et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966PubMedCrossRefGoogle Scholar
  5. 5.
    Donnelly CA, Fisher MC, Fraser C, et al (2004) Epidemiological and genetic analysis of severe acute respiratory syndrome. Lancet Infect Dis 4:672–683PubMedCrossRefGoogle Scholar
  6. 6.
    Broxmeyer L (2006) Bird flu, influenza and 1918: The case for mutant Avian tuberculosis. Med Hypotheses 67: 1006–1015PubMedCrossRefGoogle Scholar
  7. 7.
    Jia HP, Look DC, Shi L, et al (2005) ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 79:14614–14621PubMedCrossRefGoogle Scholar
  8. 8.
    Geiser T (2003) Mechanisms of alveolar epithelial repair in acute lung injury—a translational approach. Swiss Med Wkly 133:586–590PubMedGoogle Scholar
  9. 9.
    Geiser T, Atabai K, Jarreau PH, Ware LB, Pugin J, Matthay MA (2001) Pulmonary edema fluid from patients with acute lung injury augments in vitro alveolar epithelial repair by an IL-1beta-dependent mechanism. Am J Respir Crit Care Med 163:1384–1388PubMedGoogle Scholar
  10. 10.
    Franks TJ, Chong PY, Chui P, et al (2003) Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum Pathol 34:743–748PubMedCrossRefGoogle Scholar
  11. 11.
    Hwang DM, Chamberlain DW, Poutanen SM, Low DE, Asa SL, Butany J (2005) Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol 18:1–10PubMedCrossRefGoogle Scholar
  12. 12.
    Lang Z, Zhang L, Zhang S, et al (2003) Pathological study on severe acute respiratory syndrome. Chin Med J [Engl] 116:976–980PubMedGoogle Scholar
  13. 13.
    To KF, Tong JH, Chan PK, et al (2004) Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. J Pathol 202:157–163PubMedCrossRefGoogle Scholar
  14. 14.
    Rawlins EL, Hogan BL (2006) Epithelial stem cells of the lung: privileged few opportunities for many? Development 133:2455–2465PubMedCrossRefGoogle Scholar
  15. 15.
    Lawson GW, Van Winkle LS, Toskala E, Senior RM, Parks WC, Plopper CG (2002) Mouse strain modulates the role of the ciliated cell in acute tracheobronchial airway injury-distal airways. Am J Pathol 160:315–327PubMedGoogle Scholar
  16. 16.
    Aliotta JM, Passero M, Meharg J, et al (2005) Stem cells and pulmonary metamorphosis: New concepts in repair and regeneration. J Cell Physiol 204:725–741PubMedCrossRefGoogle Scholar
  17. 17.
    Kim CE, Jackson EL, Woolfenden AE, et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung. Cell 121:823–835PubMedCrossRefGoogle Scholar
  18. 18.
    Simon RH, Pain R III (1995) Participation of pulmonary alveolar epithelial cells in lung inflammation. J Lab Clin Med 126:108–118PubMedGoogle Scholar
  19. 19.
    Kasper M, Haroske G (1996) Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol 11:463–483PubMedGoogle Scholar
  20. 20.
    Koutsourakis M, Keijzer R, Visser P, Post M, Tibboel D, Grosveld F (2001) Branching and differentiation defects in pulmonary epithelium with elevated Gata6 expression. Mech Dev 105:105–114PubMedCrossRefGoogle Scholar
  21. 21.
    Lewis JF, Jobe AH (1993) State of the art: surfactant and the adult respiratory distress syndrome. Am Rev Respir Dis 147:218–233PubMedGoogle Scholar
  22. 22.
    Baker CS, Evans TW, Randle BJ, Haslam PL (1999) Damage to surfactant-specific proteins in acute respiratory distress syndrome. Lancet 353:1232–1237PubMedCrossRefGoogle Scholar
  23. 23.
    Green RE, Wright JR, Steinberg KP, et al (1999) Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med 160:1843–1850Google Scholar
  24. 24.
    Chen CJ, Makino S (2004) Murine coronavirus replication induces cell cycle arrest in G0/G1 phase. J Virol 78:5658–5669PubMedCrossRefGoogle Scholar
  25. 25.
    Dimova DK, Dyson NJ (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24:2810–2826PubMedCrossRefGoogle Scholar
  26. 26.
    Ren S, Rollins BJ (2004) Cyclin C/cdk3 promotes Rb-dependent GO exit. Cell 117:239–251PubMedCrossRefGoogle Scholar
  27. 27.
    Sherr CJ (2000) The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60:3689–3695PubMedGoogle Scholar
  28. 28.
    Alex G, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19:877–890CrossRefGoogle Scholar
  29. 29.
    Miyoshi K, Shillingford JM, Le Provost F, et al (2002) Activation of beta-catenin signaling in differentiated mammary secretory cells induces transdifferentiation into epidermis and squamous metaplasias. Proc Natl Acad Sci USA 99:219–224PubMedCrossRefGoogle Scholar
  30. 30.
    Chilosi M, Poletti V, Zamo A, et al (2003) Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162:1495–1502PubMedGoogle Scholar
  31. 31.
    Mucenski ML, Nation JM, Thitoff AR, et al (2005) Beta catenin regulates differentiation of respiratory epithelial cells in vivo. Am J Physiol Lung Cell Mol Physiol 289:L971–979PubMedCrossRefGoogle Scholar
  32. 32.
    Gomperts BN, Strieter RM (2006) Stem cells and chronic lung disease. Annu Rev Med Aug 3 (Epub ahead of print)Google Scholar
  33. 33.
    Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100:143–155PubMedCrossRefGoogle Scholar
  34. 34.
    Alison MR, Poulsom R, Forbes S, Wright NA (2002) An introduction to stem cells. J Pathol 197:419–423PubMedCrossRefGoogle Scholar
  35. 35.
    Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778PubMedCrossRefGoogle Scholar
  36. 36.
    Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH (2001) Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol 24:662–670PubMedGoogle Scholar
  37. 37.
    Engelhardt JF, Schlossberg H, Yankaskas JR, Dudus L (1995) Progenitor cells of the adult human airway involved in submucosal gland development. Development 121:2031–2046PubMedGoogle Scholar
  38. 38.
    Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161:173–182PubMedGoogle Scholar
  39. 39.
    Kim CF, Jackson EL, Woolfenden AE, et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRefGoogle Scholar
  40. 40.
    Boers JE, Ambergen AW, Thunnissen FB (1998) Number and proliferation of basal and parabasal cells in normal human airway epithelium. Am J Respir Crit Care Med 157:2000–2006PubMedGoogle Scholar
  41. 41.
    Ortiz LA, Gambelli F, McBride C, et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100:8407–8411PubMedCrossRefGoogle Scholar
  42. 42.
    Griffiths MJ, Bonnet D, Janes SM (2005) Stem cells of the alveolar epithelium. Lancet 366:249–260PubMedCrossRefGoogle Scholar
  43. 43.
    Reddy R, Buckley S, Doerken M, et al (2004) Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. Am J Physiol Lung Cell Mol Physiol 286:L658–667PubMedCrossRefGoogle Scholar
  44. 44.
    Donnelly SC, Strieter RM, Kunkel SL, et al (1993) Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341:643–647PubMedCrossRefGoogle Scholar
  45. 45.
    Khalil N, Bereznay O, Sporn M, Greenberg AH (1989) Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J Exp Med 170:727–737PubMedCrossRefGoogle Scholar
  46. 46.
    Ortiz LA, Lasky J, Hamilton RF Jr, et al (1998) Expression of TNF and the necessity of TNF receptors in bleomycin-induced lung injury in mice. Exp Lung Res 24:721–743PubMedCrossRefGoogle Scholar
  47. 47.
    Charafeddine L, D’Angio CT, Richards JL, et al (1999) Hyperoxia increases keratinocyte growth factor mRNA expression in neonatal rabbit lung. Am J Physiol 276:L105–L113PubMedGoogle Scholar
  48. 48.
    Morimoto K, Amano H, Sonoda F, et al (2001) Alveolar macrophages that phagocytose apoptotic neutrophils produce hepatocyte growth factor during bacterial pneumonia in mice. Am J Respir Cell Mol Biol 24:608–615PubMedGoogle Scholar
  49. 49.
    Ueda T, Takeyama Y, Hori Y, et al (2000) Hepatocyte growth factor increases in injured organs and functions as an organotrophic factor in rats with experimental acute pancreatitis. Pancreas 20:84–93PubMedCrossRefGoogle Scholar
  50. 50.
    Ware LB, Matthay MA (2002) Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. Am J Physiol Lung Cell Mol Physiol 282: L924–940PubMedGoogle Scholar
  51. 51.
    Cressman DE, Greenbaum LE, DeAngelis RA, et al (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-defkient mice. Science 274:1379–1383PubMedCrossRefGoogle Scholar
  52. 52.
    de Jong KP, van Gameren MM, Bijzet J, et al (2001) Recombinant human interleukin-6 induces hepatocyte growth factor production in cancer patients. Scand J Gastroenterol 36:636–640PubMedCrossRefGoogle Scholar
  53. 53.
    Deutschman CS, Cereda M, Ochroch EA, Raj NR (2006) Sepsis-induced cholestasis, steatosis, hepatocellular injury, and impaired hepatocellular regeneration are enhanced in interleukin-6-/-mice. Crit Care Med 34:2613–2620PubMedCrossRefGoogle Scholar
  54. 54.
    Moodley YP, Scaffidi AK, Misso NL, et al (2003) Fibroblasts isolated from normal lungs and those with idiopathic pulmonary fibrosis differ in interleukin-6/gpl30-mediated cell signaling and proliferation. Am J Pathol 163:345–354PubMedGoogle Scholar
  55. 55.
    Yu M, Zheng X, Witschi H, Pinkerton KE (2002) The role of interleukin-6 in pulmonary inflammation and injury induced by exposure to environmental air pollutants. Toxicol Sci 68:488–497PubMedCrossRefGoogle Scholar
  56. 56.
    White MK, Strayer DS (2002) Survival signaling in type II pneumocytes activated by surfactant protein-A. Exp Cell Res 280:270–279PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2007

Authors and Affiliations

  • Z. Bromberg
    • 1
  • C. S. Deutschman
    • 2
  • Y. G. Weiss
    • 1
  1. 1.Department of Anesthesiology and Critical Care MedicineHadassah Medical OrganizationJerusalemIsrael
  2. 2.Department of Anesthesiology and Critical CareUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations