Mustela Vison ACE2 Functions as a Receptor for Sars-Coronavirus

  • Lindsay K. Heller
  • Laura Gillim-Ross
  • Emily R. Olivieri
  • David E. Wentworth
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 581)


Severe Acute Respiratory Syndrome Severe Acute Respiratory Syndrome York State Department Severe Acute Respiratory Syndrome Outbreak Severe Acute Respiratory Syndrome Coronavirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. V. Holmes, in: Fields Virology, vol. 1, edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, and B. Roizman, (Lippincott Williams & Wilkins, Philadelphia, 2001), pp. 1187-1203Google Scholar
  2. 2.
    Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003, World Health Organization, (2004)
  3. 3.
    Y. Guan, B. J. Zheng, Y. Q. He, et al., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China, Science 302, 276-278 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    H. D. Song, C. C. Tu, G. W. Zhang, et al., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human, Proc. Natl. Acad. Sci. USA 102, 2430-2435 (2005)CrossRefPubMedGoogle Scholar
  5. 5.
    B. E. E. Martina, B. L. Haagmans, T. Kuiken, et al., SARS virus infection of cats and ferrets, Nature 425, 915 (2003)CrossRefPubMedGoogle Scholar
  6. 6.
    D. Wu, C. Tu, C. Xin, et al., Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates, J. Virol. 79, 2620-2625 (2005)CrossRefPubMedGoogle Scholar
  7. 7.
    L. Gillim-Ross, J. Taylor, D. R. Scholl, et al., Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR, J. Clin. Microbiol. 42, 3196-3206 (2004)CrossRefPubMedGoogle Scholar
  8. 8.
    E. C. Mossel, C. Huang, K. Narayanan, et al., Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication, J. Virol. 79, 3846-3850 (2005)CrossRefPubMedGoogle Scholar
  9. 9.
    W. Li, M. J. Moore, N. Vasilieva, et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426, 450-454 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    S. A. Jeffers, S. M. Tusell, L. Gillim-Ross, et al., CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus, Proc. Natl. Acad. Sci. USA 101, 15748-15753 (2004)CrossRefPubMedGoogle Scholar
  11. 11.
    P. Towler, B. Staker, S. G. Prasad, et al., ACE2 structures reveal a large hinge-bending motion important for inhibitor binding and catalysis, J. Biol. Chem. 279, 17996-18007 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    W. Li, C. Zhang, J. Sui, et al., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2, EMBO J. 24, 1634-1643 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Lindsay K. Heller
    • 1
  • Laura Gillim-Ross
    • 2
  • Emily R. Olivieri
    • 3
  • David E. Wentworth
    • 4
  1. 1.New York State Department of HealthAlbanyUSA
  2. 2.New York State Department of HealthAlbanyUSA
  3. 3.State University of New YorkAlbanyUSA
  4. 4.State University of New YorkAlbanyUSA

Personalised recommendations