Biochemical Aspects of Coronavirus Replication

  • Luis Enjuanes
  • Fernando Almazán
  • Isabel Sola
  • Sonia Zúñiga
  • Enrique Alvarez
  • Juan Reguera
  • Carmen Capiscol
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 581)


Infectious Bronchitis Virus Nucleocapsid Protein Severe Acute Respiratory Syndrome Heterogeneous Nuclear Ribonucleoprotein Mouse Hepatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Carmo-Fonseca, L. Mendes-Soares, and I. Campos, To be or not to be in the nucleolus, Nat. Cell Biol. 2, E107–E112 (2002).CrossRefGoogle Scholar
  2. 2.
    J. A. Hiscox, The nucleolus - a gateway to viral infection? Arch. Virol. 147, 1077–1089 (2002).CrossRefPubMedGoogle Scholar
  3. 3.
    M. O. Olson, M. Dundr, and A. Szebeni, The nucleolus: an old factory with unexpected capabilities, Trends Cell Biol. 10, 189–196 (2000).CrossRefPubMedGoogle Scholar
  4. 4.
    T. Pederson, The plurifunctional nucleolus, Nucleic Acids Res. 26, 3871–3876 (1998).CrossRefPubMedGoogle Scholar
  5. 5.
    T. Pederson and J. C. Politz, The nucleolus and the four ribonucleoproteins of translation, J. Cell Biol. 148, 1091–1095 (2000).CrossRefPubMedGoogle Scholar
  6. 6.
    T. Wurm, H. Chen, T. Hodgson, P. Britton, G. Brooks, and J. A. Hiscox, Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division, J. Virol. 75, 9345–9356 (2001).CrossRefPubMedGoogle Scholar
  7. 7.
    J. H. You, B. K. Dove, G. Howell, P. Heinen, M. Zambon, and J. A. Hiscox, Sub-cellular localisation of the severe acute respiratory syndrome coronavirus viral RNA binding protein, nucleoprotein, J. Gen. Virol. in press (2005).Google Scholar
  8. 8.
    K. A. Timani, L. Ye, Y. Zhu, Z. Wu, and Z. Gong, Cloning, sequencing, expression, and purification of SARS-associated coronavirus nucleocapsid protein for serodiagnosis of SARS, J. Clin. Virol. 30, 309–312 (2004).CrossRefPubMedGoogle Scholar
  9. 9.
    H. Chen, B. Coote, S. Attree, and J. A. Hiscox, Evaluation of a nucleoprotein-based enzyme-linked immunosorbent assay for the detection of antibodies against infectious bronchitis virus, Avian Pathol. 32, 519–526 (2003).CrossRefPubMedGoogle Scholar
  10. 10.
    M. A. Tijms, Y. van der Meer, and E. J. Snijder, Nuclear localization of non-structural protein 1 and nucleocapsid protein of equine arteritis virus, J. Gen. Virol. 83, 795–800 (2002).PubMedGoogle Scholar
  11. 11.
    R. R. Rowland, R. Kervin, C. Kuckleburg, A. Sperlich, and D. A. Benfield, The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence, Virus Res. 64, 1–12 (1999).CrossRefPubMedGoogle Scholar
  12. 12.
    E. Calvo, D. Escors, J. A. Lopez, et al., Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells, J. Gen. Virol. 86, 2255–2267 (2005).CrossRefPubMedGoogle Scholar
  13. 13.
    X. Yuan, Z. Yao, Y. Shan, et al., Nucleolar localization of non-structural protein 3b, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, Virus Res. in press (2005).Google Scholar
  14. 14.
    Y. van der Meer, E. J. Snijder, J. C. Dobbe, et al., Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication, J. Virol. 73, 7641–7657 (1999).PubMedGoogle Scholar
  15. 15.
    R. van der Most, W. Luytjes, S. Rutjes, and S. J. M. Spaan, Translation but not the encoded sequence is essential for the efficient propagation of the defective interfering RNAs of the coronavirus mouse hepatitis virus, J. Virol. 69, 3744–3751 (1995).PubMedGoogle Scholar
  16. 16.
    Y.-J. Lin, C. L. Liao, and M. M. C. Lai, Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription, J. Virol. 68, 8131–8140 (1994).PubMedGoogle Scholar
  17. 17.
    J. Holt, J. Y. Sgro, M. Zuker, and A. Palmenberg, Computer folding of full-length viral genomes: a new toolkit for automated analysis of RNAs longer than 10,000 bases, Seventh International Symposium on positive strand RNA viruses, San Francisco, California, USA (2004).Google Scholar
  18. 18.
    J. Y. Sgro, J. Holt, M. Zuker, and A. Palmenberg, RNA folding of the complete SARS and MHV coronavirus genomes, Seventh International Symposium on positive strand RNA viruses, San Francisco, California, USA (2004).Google Scholar
  19. 19.
    C. Galan, F. Almazan, and L. Enjuanes, Cross-talk between the 5'- and 3'-ends of coronavirus genome, submitted (2005).Google Scholar
  20. 20.
    R. Gosert, A. Kanjanahaluethai, D. Egger, K. Bienz, and S .C. Baker, RNA replication of mouse hepatitis virus takes place at double-membrane vesicles, J. Virol. 76, 3697–3708 (2002).CrossRefPubMedGoogle Scholar
  21. 21.
    D. Escors, J. Ortego, H. Laude, and L. Enjuanes, The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability, J. Virol. 75, 1312–1324 (2001).CrossRefPubMedGoogle Scholar
  22. 22.
    K. Narayanan, A. Maeda, J. Maeda, and S. Makino, Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells, J. Virol. 74, 8127–8134 (2000).CrossRefPubMedGoogle Scholar
  23. 23.
    L. S. Sturman, K. V. Holmes, and J. Behnke, Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid, J. Virol. 33, 449–462 (1980).PubMedGoogle Scholar
  24. 24.
    I. J. Salanueva, J. L. Carrascosa, and C. Risco, Structural maturation of the transmissible gastroenteritis coronavirus, J. Virol. 73, 7952–7964 (1999).PubMedGoogle Scholar
  25. 25.
    C. Risco, M. Muntión, L. Enjuanes, and J. L. Carrascosa, Two types of virus-related particles are found during transmissible gastroenteritis virus morphogenesis, J. Virol. 72, 4022–4031 (1998).PubMedGoogle Scholar
  26. 26.
    J. Ortego, D. Escors, H. Laude, and L. Enjuanes, Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome, J. Virol. 76, 11518–11529 (2002).CrossRefPubMedGoogle Scholar
  27. 27.
    S. G. Robbins, M. F. Frana, J. J. McGowan, J. F. Boyle, and K. V. Holmes, RNA-binding proteins of coronavirus MHV: detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay, Virology 150, 402–410 (1986).CrossRefPubMedGoogle Scholar
  28. 28.
    P. Britton, Coronavirus motif, Nature 353, 394 (1991).CrossRefPubMedGoogle Scholar
  29. 29.
    H. Chen, A. Gill, B. K. Dove, et al., Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance, J. Virol. 79, 1164–1179 (2005).CrossRefPubMedGoogle Scholar
  30. 30.
    R. He, F. Dobie, M. Ballantine, et al., Analysis of multimerization of the SARS coronavirus nucleocapsid protein, Biochem. Biophys. Res. Commun. 316, 476–483 (2004).CrossRefPubMedGoogle Scholar
  31. 31.
    M. Surjit, B. Liu, S. Jameel, V. T. Chow, and S. K. Lal, The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors, Biochem. J. 383, 13–18 (2004).CrossRefPubMedGoogle Scholar
  32. 32.
    R. He, A. Leeson, M. Ballantine, et al., Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus, Virus Res. 105, 121–125 (2004).CrossRefPubMedGoogle Scholar
  33. 33.
    S. A. Stohlman, J. O. Fleming, C. D. Patton, and M. M. C. Lai, Synthesis and subcellular localization of the murine coronavirus nucleocapsid protein, Virology 130, 527–532 (1983).CrossRefPubMedGoogle Scholar
  34. 34.
    M. M. Parker and P. S. Masters, Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein, Virology 179, 463–468 (1990).CrossRefPubMedGoogle Scholar
  35. 35.
    P. S. Masters, Localization of an RNA-binding domain in the nucleocapsid protein of the coronavirus mouse hepatitis virus, Arch. Virol. 125, 141–160 (1992).CrossRefPubMedGoogle Scholar
  36. 36.
    E. Alvarez, M. L. DeDiego, D. Escors, and L. Enjuanes, Role of transmissible gastroenteritis Coronavirus N protein phosphorylation in virus replication, submitted (2005).Google Scholar
  37. 37.
    R. S. Baric, G. W. Nelson, J. O. Fleming, et al., Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription, J. Virol. 62, 4280–4287 (1988).PubMedGoogle Scholar
  38. 38.
    S. R. Compton, D. B. Rogers, K. V. Holmes, D. Fertsch, J. Remenick, and J. J. McGowan, In vitro replication of mouse hepatitis virus strain A59, J. Virol. 69, 2313–2321 (1987).Google Scholar
  39. 39.
    Y.-N. Kim and S. Makino, Characterization of a murine coronavirus defective interfering RNA internal cis-acting replication signal, J. Virol. 69, 4963–4971 (1995).PubMedGoogle Scholar
  40. 40.
    H. Laude and P. S. Masters, in: The Coronaviridae, edited by S. G. Siddell (Plenum Press, New York, 1995) pp. 141–158.Google Scholar
  41. 41.
    G. W. Nelson, S. A. Stohlman, and S. M. Tahara, High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA, J. Gen. Virol. 81, 181–188 (2000).PubMedGoogle Scholar
  42. 42.
    S. A. Stohlman, R. S. Baric, G. N. Nelson, L. H. Soe, L. M. Welter, and R. J. Deans, Specific interaction between coronavirus leader RNA and nucleocapsid protein, J. Virol. 62, 4288–4295 (1988).PubMedGoogle Scholar
  43. 43.
    B. Schelle, N. Karl, B. Ludewig, S. G. Siddell, and V. Thiel, Selective replication of coronavirus genomes that express nucleocapsid protein, J. Virol. 79, 6620–6630 (2005).CrossRefPubMedGoogle Scholar
  44. 44.
    V. Thiel, J. Herold, B. Schelle, and S. G. Siddell, Viral replicase gene products suffice for coronavirus discontinuous transcription, J. Virol. 75, 6676–6681 (2001).CrossRefPubMedGoogle Scholar
  45. 45.
    R. Molenkamp, H. van Tol, B. C. Rozier, Y. van der Meer, W. J. Spaan, and E. J. Snijder, The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription, J. Gen. Virol. 81, 2491–2496 (2000).PubMedGoogle Scholar
  46. 46.
    F. Almazan, C. Galan, and L. Enjuanes, The nucleoprotein is required for efficient coronavirus genome replication, J. Virol. 78, 12683–12688 (2004).CrossRefPubMedGoogle Scholar
  47. 47.
    R. Casais, V. Thiel, S. G. Siddell, D. Cavanagh, and P. Britton, Reverse genetics system for the avian coronavirus infectious bronchitis virus, J. Virol. 75, 12359–12369 (2001).CrossRefPubMedGoogle Scholar
  48. 48.
    V. Thiel, N. Karl, B. Schelle, P. Disterer, I. Klagge, and S. G. Siddell, Multigene RNA vector based on coronavirus transcription, J. Virol. 77, 9790–9798 (2003).CrossRefPubMedGoogle Scholar
  49. 49.
    K. M. Curtis, B. Yount, and R. S. Baric, Heterologous gene expression from transmissible gastroenteritis virus replicon particles, J. Virol. 76, 1422–1434 (2002).PubMedGoogle Scholar
  50. 50.
    S. G. Sawicki and D. L. Sawicki, A new model for coronavirus transcription, Adv. Exp. Med. Biol. 440, 215–220 (1998).PubMedGoogle Scholar
  51. 51.
    M. M. C. Lai and D. Cavanagh, The molecular biology of coronaviruses, Adv. Virus Res. 48, 1–100 (1997).CrossRefPubMedGoogle Scholar
  52. 52.
    S. Alonso, A. Izeta, I. Sola, and L. Enjuanes, Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus, J. Virol. 76, 1293–1308 (2002).PubMedGoogle Scholar
  53. 53.
    A. O. Pasternak, E. van den Born, W. J. M. Spaan, and E. J. Snijder, Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis, EMBO J. 20, 7220–7228 (2001).CrossRefPubMedGoogle Scholar
  54. 54.
    G. van Marle, J. C. Dobbe, A. P. Gultyaev, W. Luytjes, W. J. M. Spaan, and E. J. Snijder, Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences, Proc. Natl. Acad. Sci. USA 96, 12056–12061 (1999).CrossRefPubMedGoogle Scholar
  55. 55.
    S. Zúñiga, I. Sola, S. Alonso, and L. Enjuanes, Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis, J. Virol. 78, 980–994 (2004).CrossRefPubMedGoogle Scholar
  56. 56.
    I. Sola, J. L. Moreno, S. Zúñiga, S. Alonso, and L. Enjuanes, Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis, J. Virol. 79, 2506–2516 (2005).CrossRefPubMedGoogle Scholar
  57. 57.
    L. C. van Dinten, J. A. den Boon, A. L. M. Wassenaar, W. J. M. Spaan, and E. J. Snijder, An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription, Proc. Natl. Acad. Sci. USA 94, 991–996 (1997).CrossRefPubMedGoogle Scholar
  58. 58.
    M. A. Tijms and E. J. Snijder, Equine arteritis virus non-structural protein 1, an essential factor for viral subgenomic mRNA synthesis, interacts with the cellular transcription co-factor p100, J. Gen. Virol. 84, 2317–2322 (2003).CrossRefPubMedGoogle Scholar
  59. 59.
    K. A. Ivanov, T. Hertzig, M. Rozanov, et al., Major genetic marker of nidoviruses encodes a replicative endoribonuclease, Proc. Natl. Acad. Sci. USA 101, 12694–12699 (2004).CrossRefPubMedGoogle Scholar
  60. 60.
    E. J. Snijder, P. J. Bredenbeek, J. C. Dobbe, et al., Unique and conserved features of genome and proteome of SARS-coronavirus, and early split-off from the coronavirus group 2 lineage, J. Mol. Biol. 331, 991–1004 (2003).CrossRefPubMedGoogle Scholar
  61. 61.
    G. Zhang, V. Slowinski, and K. A. White, Subgenomic mRNA regulation by a distal RNA element in a (+) -strand RNA virus, RNA 5, 550–561 (1999).CrossRefPubMedGoogle Scholar
  62. 62.
    H. P. Li, X. Zhang, R. Duncan, L. Comai, and M. M. C. Lai, Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA, Proc. Natl. Acad. Sci. USA 94, 9544–9549 (1997).CrossRefPubMedGoogle Scholar
  63. 63.
    K. S. Choi, P. Huang, and M. M. Lai, Polypyrimidine-tract-binding protein affects transcription but not translation of mouse hepatitis virus RNA, Virology 303, 58–68 (2002).CrossRefPubMedGoogle Scholar
  64. 64.
    S. Banerjee, K. Narayanan, T. Mizutani, and S. Makino, Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells, J. Virol. 76, 5937–5948 (2002).CrossRefPubMedGoogle Scholar
  65. 65.
    T. Mizutani, S. Fukushi, M. Saijo, I. Kurane, and S. Morikawa, Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells, Biochem. Biophys. Res. Commun. 319, 1228–1234 (2004).CrossRefPubMedGoogle Scholar
  66. 66.
    T. Furuya and M. M. C. Lai, Three different cellular proteins bind to complementary sites on the 5'-end-positive and 3'-end negative strands of mouse hepatitis virus RNA, J. Virol. 67, 7215–7222 (1993).PubMedGoogle Scholar
  67. 67.
    S. T. Shi, P. Huang, H. P. Li, and M. M. C. Lai, Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus, EMBO J. 19, 4701–4711 (2000).CrossRefPubMedGoogle Scholar
  68. 68.
    P. Huang and M. M. C. Lai, Polypyrimidine tract-binding protein binds to the complementary strand of the mouse hepatitis virus 3' untranslated region, thereby altering RNA conformation, J. Virol. 73, 9110–9116 (1999).PubMedGoogle Scholar
  69. 69.
    H.-P. Li, P. Huang, S. Park, and M. M. C. Lai, Polypyrimidine tract-binding protein binds to the leader RNA of mouse hepatitits virus and serves as a regulator of viral transcription, J. Virol. 73, 772–777 (1999).PubMedGoogle Scholar
  70. 70.
    C. Galan, L. Enjuanes, and F. Almazan, A point mutation within the replicase gene differentially affects coronavirus genome versus minigenome replication, submitted (2005).Google Scholar
  71. 71.
    A. L. Bothwell, D. W. Ballard, W. M. Philbrick, et al., Murine polypyrimidine tract binding protein. Purification, cloning, and mapping of the RNA binding domain, J. Biol. Chem. 266, 24657–24663 (1991).PubMedGoogle Scholar
  72. 72.
    M. M. C. Lai, Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription, Virology 244, 1–12 (1998).CrossRefPubMedGoogle Scholar
  73. 73.
    L. Cartegni, M. Maconi, E. Morandi, F. Cobianchi, S. Riva, and G. Biamonti, hnRNP A1 selectively interacts through its Gly-rich domain with different RNA-binding proteins, J. Mol. Biol. 59, 337–348 (1996).CrossRefGoogle Scholar
  74. 74.
    Y. Wang and X. Zhang, The nucleocapsid protein of coronavirus mouse hepatitis virus interacts with the cellular heterogeneous nuclear ribonucleoprotein A1 in vitro and in vivo, Virology 265, 96–109 (1999).CrossRefPubMedGoogle Scholar
  75. 75.
    X. Zhang and M. M. C. Lai, Interactions between the cytoplasmic proteins and the intergenic (promoter) sequence of mouse hepatitis virus RNA: correlation with the amounts of subgenomic mRNA transcribed, J. Virol. 69, 1637–1644 (1995).PubMedGoogle Scholar
  76. 76.
    X. Zhang, H. P. Li, W. Xue, and M. M. C. Lai, Formation of a ribonucleoprotein complex of mouse hepatitis virus involving heterogeneous nuclear ribonucleoprotein A1 and transcription-regulatory elements of viral RNA, Virology 264, 115–124 (1999).CrossRefPubMedGoogle Scholar
  77. 77.
    D. Peng, C. A. Koetzner, and P. S. Masters, Analysis of second-site revertants of a murine coronavirus nucleocapsid protein deletion mutant and construction of nucleocapsid protein mutants by targeted RNA recombination, J. Virol. 69, 3449–3457 (1995).PubMedGoogle Scholar
  78. 78.
    D. Peng, C. A. Koetzner, T. McMahon, Y. Zhu, and P. Masters, Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins, J. Virol. 69, 5475–5484 (1995).PubMedGoogle Scholar
  79. 79.
    S. Zúñiga, I. Sola, J. L. Moreno, and L. Enjuanes, Coronavirus nucleocapsid protein is an RNA chaperone. Implications for transcription regulation, submitted (2005).Google Scholar
  80. 80.
    K. S. Choi, A. Mizutani, and M. M. C. Lai, SYNCRIP, a member of the heterogeneous nuclear ribonucleoprotein family, is involved in mouse hepatitis virus RNA synthesis, J. Virol. 78, 13153–13162 (2004).CrossRefPubMedGoogle Scholar
  81. 81.
    M. A. Tijms, L. C. van Dinten, A. E. Gorbalenya, and E. J. Snijder, A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus, Proc. Natl. Acad. Sci. USA 98, 1889–1894 (2001).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Luis Enjuanes
    • 1
  • Fernando Almazán
    • 2
  • Isabel Sola
    • 3
  • Sonia Zúñiga
    • 4
  • Enrique Alvarez
    • 5
  • Juan Reguera
    • 6
  • Carmen Capiscol
    • 7
  1. 1.Centro Nacional de BiotecnologíaCSICSpain
  2. 2.Centro Nacional de BiotecnologíaCSICSpain
  3. 3.Centro Nacional de BiotecnologíaCSICSpain
  4. 4.Centro Nacional de BiotecnologíaCSICSpain
  5. 5.Centro Nacional de BiotecnologíaCSICSpain
  6. 6.Centro Nacional de BiotecnologíaCSICSpain
  7. 7.Centro Nacional de BiotecnologíaCSICSpain

Personalised recommendations