Advertisement

Structure and Dynamics of Sars Coronavirus Main Proteinase (MPRO)

  • Rolf Hilgenfeld
  • Kanchan Anand
  • Jeroen R. Mesters
  • Zihe Rao
  • Xu Shen
  • Hualiang Jiang
  • Jinzhi Tan
  • Koen H. G. Verschueren
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 581)

Keywords

Severe Acute Respiratory Syndrome Active Conformation Severe Acute Respiratory Syndrome Conformational Rearrangement Inactive Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. A. Groneberg, R. Hilgenfeld, and P. Zabel, Molecular mechanisms of severe acute respiratory syndrome (SARS), Respir. Res. 6, 8-23 (2005).CrossRefPubMedGoogle Scholar
  2. 2.
    V. Thiel, K. A. Ivanov, A. Putics, et al. , Mechanisms and enzymes involved in SARS coronavirus genome expression, J. Gen. Virol. 84, 2305-2315 (2003).CrossRefPubMedGoogle Scholar
  3. 3.
    A. E. Gorbalenya, E. V. Koonin, A. P. Donchenko, and V. M. Blinov, Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid analysis, Nucl. Acids Res. 17, 4847-4861 (1989).CrossRefPubMedGoogle Scholar
  4. 4.
    K. Anand, J. Ziebuhr, P. Wadhwani, J. R. Mesters, and R. Hilgenfeld, Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs, Science 300, 1763-1767 (2003).CrossRefPubMedGoogle Scholar
  5. 5.
    B. Xiong, C. S. Gui, X. Y. Xu, et al. , A 3D model of SARS-CoV 3CL proteinase and its inhibitors design by virtual screening, Acta Pharmacol. Sin. 24, 497-504 (2003).Google Scholar
  6. 6.
    K. Anand, H. Yang, M. Bartlam, Z. Rao, and R. Hilgenfeld, in: Coronaviruses with Special Emphasis on First Insights Concerning SARS, edited by A. Schmidt, M. H. Wolff, and O. Weber (Birkhäuser, Basel, 2005), pp. 173-199.CrossRefGoogle Scholar
  7. 7.
    H. Yang, W. Xie, X. Xue, et al. , Design of wide-spectrum inhibitors targeting coronavirus main proteinases, PLoS Biology 3, e324 (2005).Google Scholar
  8. 8.
    K. Anand, G. J. Palm, J. R. Mesters, et al. , Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain, EMBO J. 21, 3213-3224 (2002).CrossRefPubMedGoogle Scholar
  9. 9.
    H. Yang, M. Yang, Y. Ding, et al. , The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor, Proc. Natl. Acad. Sci. USA 100, 13190-13195 (2003).CrossRefPubMedGoogle Scholar
  10. 10.
    J. Tan, K. H. G. Verschueren, K. Anand, et al. , pH-Dependent conformational flexibility of the SARS-CoV main proteinase (Mpro ) dimer: Molecular dynamics simulations and multiple X-ray structure analyses, J. Mol. Biol. 354, 25-40 (2005).CrossRefPubMedGoogle Scholar
  11. 11.
    M. -F. Hsu, C. -J. Kuo, K. -T. Chang, et al. , Mechanism of the maturation process of SARS-CoV 3CL protease, J. Biol. Chem. 280, 31257-31266 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    C. -Y. Chou, H. -C. Chang, W. -C. Hsu, et al. , Quarternary structure of the severe acute respiratory syndrome (SARS) coronavirus main protease, Biochemistry 43, 14958-14970 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    J. Shi, Z. Wei, and J. Song, Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: Defining the extra domain as a new target for design of highly specific protease inhibitors, J. Biol. Chem. 279, 24765-24773 (2004).CrossRefPubMedGoogle Scholar
  14. 14.
    K. Fan, P. Wei, Q. Feng, et al. , Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase, J. Biol. Chem. 279, 1637-1642 (2004).CrossRefPubMedGoogle Scholar
  15. 15.
    A. Hegyi, A. Friebe, A. E. Gorbalenya, and J. Ziebuhr, Mutational analysis of the active centre of coronavirus 3C-like proteases, J. Gen. Virol. 83, 581-593 (2002).PubMedGoogle Scholar
  16. 16.
    J. Ziebuhr, E. J. Snijder, and A. E. Gorbalenya, Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 81, 853-879 (2000).PubMedGoogle Scholar
  17. 17.
    J. Yang, M. Yu, Y. N. Jan, and L. Y. Jan, Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel, Proc. Natl. Acad. Sci. USA 94, 1568-1572 (1997).CrossRefPubMedGoogle Scholar
  18. 18.
    S. Chen, L. Chen, J. Tan, et al. , Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization: Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations, J. Biol. Chem. 280, 164-173 (2005).PubMedGoogle Scholar
  19. 19.
    W. -C. Hsu, H. -C. Chang, C. -Y. Chou, P. -J. Tsai, P. -I. Lin, and G. -G. Chang, Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease, J. Biol. Chem. 280, 22741-22748 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Rolf Hilgenfeld
    • 1
  • Kanchan Anand
    • 2
  • Jeroen R. Mesters
    • 3
  • Zihe Rao
    • 4
  • Xu Shen
    • 5
  • Hualiang Jiang
    • 6
  • Jinzhi Tan
    • 7
  • Koen H. G. Verschueren
    • 8
  1. 1.University of LübeckGermany
  2. 2.University of LübeckGermany
  3. 3.University of LübeckGermany
  4. 4.Chinese Academy of SciencesChina
  5. 5.Chinese Academy of SciencesChina
  6. 6.Chinese Academy of SciencesChina
  7. 7.University of LübeckGermany
  8. 8.University of LübeckGermany

Personalised recommendations