Advertisement

Inhibition and Escape of SARS-CoV Treated with Antisense Morpholino Oligomers

  • Benjamin W. Neuman
  • David A. Stein
  • Andrew D. Kroeker
  • Richard K. Bestwick
  • Patrick L. Iversen
  • Hong M. Moulton
  • Michael J. Buchmeier
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 581)

Keywords

Severe Acute Respiratory Syndrome Severe Acute Respiratory Syndrome Spike Protein Severe Acute Respiratory Syndrome Coronavirus Severe Acute Respiratory Syndrome Coronavirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    U. Bacha, J. Barrila, A. Velazquez-Campoy, S. A. Leavitt, and E. Freire, Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro, Biochemistry 43, 4906-4912 (2004).CrossRefPubMedGoogle Scholar
  2. 2.
    R. Y. Kao, W. H. Tsui, T. S. Lee, et al. , Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics, Chem. Biol. 11, 1293-1299 (2004).CrossRefPubMedGoogle Scholar
  3. 3.
    C. Y. Wu, J. T. Jan, S. H. Ma, et al. , Small molecules targeting severe acute respiratory syndrome human coronavirus, Proc. Natl. Acad. Sci. USA 101, 10012-10017 (2004).CrossRefPubMedGoogle Scholar
  4. 4.
    M. R. Denison, B. Yount, S. M. Brockway, R. L. Graham, A. C. Sims, X. Lu, and R. S. Baric, Cleavage between replicase proteins p28 and p65 of mouse hepatitis virus is not required for virus replication, J. Virol. 78, 5957-5965 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    E. J. Snijder, P. J. Bredenbeek, J. C. Dobbe, et al., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage, J. Mol. Biol. 331, 991-1004 (2003).CrossRefPubMedGoogle Scholar
  6. 6.
    L. Yi, Z. Li, K. Yuan, et al. , Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells, J. Virol. 78, 11334-11339. (2004).CrossRefPubMedGoogle Scholar
  7. 7.
    B. J. Bosch, B. E. Martina, R. Van Der Zee, et al. , Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides, Proc. Natl. Acad. Sci. USA 101, 8455-8460 (2004).CrossRefPubMedGoogle Scholar
  8. 8.
    P. Ingallinella, E. Bianchi, M. Finotto, et al. , Structural characterization of the fusion-active complex of severe acute respiratory syndrome (SARS) coronavirus, Proc. Natl. Acad. Sci. USA 101, 8709-8714 (2004).CrossRefPubMedGoogle Scholar
  9. 9.
    S. Liu, G. Xiao, Y. Chen, et al. , Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors, Lancet 363, 938-947 (2004).CrossRefPubMedGoogle Scholar
  10. 10.
    K. Yuan, L. Yi, J. Chen, et al. , Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein, Biochem. Biophys. Res. Commun. 319, 746-752 (2004).CrossRefPubMedGoogle Scholar
  11. 11.
    Z. Wang, L. Ren, X. Zhao, T. Hung, A. Meng, J. Wang, and Y. G. Chen, Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells, J. Virol. 78, 7523-7527 (2004).CrossRefPubMedGoogle Scholar
  12. 12.
    J. Summerton, Morpholino antisense oligomers: the case for an RNase H-independent structural type, Biochim. Biophys. Acta 1489, 141-158 (1999).PubMedGoogle Scholar
  13. 13.
    A. Nasevicius and S. C. Ekker, Effective targeted gene ‘knockdown’ in zebrafish, Nat. Genet. 26, 216-220 (2000).CrossRefPubMedGoogle Scholar
  14. 14.
    R. V. Giles, D. G. Spiller, R. E. Clark, and D. M. Tidd, Antisense morpholino oligonucleotide analog induces missplicing of C-myc mRNA, Antisense Nucleic Acid Drug Dev. 9, 213-220 (1999).PubMedGoogle Scholar
  15. 15.
    B. W. Neuman, D. A. Stein, A. D. Kroeker, et al. , Antisense morpholino-oligomers directed against the 5’ end of the genome inhibit coronavirus proliferation and growth, J. Virol. 78, 5891-5899 (2004).CrossRefPubMedGoogle Scholar
  16. 16.
    D. Stein, E. Foster, S. B. Huang, D. Weller, and J. Summerton, A specificity comparison of four antisense types: morpholino, 2’-O-methyl RNA, DNA, and phosphorothioate DNA, Antisense Nucleic Acid Drug Dev. 7, 151-157 (1997).PubMedGoogle Scholar
  17. 17.
    E. M. Westerhout, M. Ooms, M. Vink, A. T. Das, and B. Berkhout, HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome, Nucleic Acids Res. 33, 796-804 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Benjamin W. Neuman
    • 1
  • David A. Stein
    • 2
  • Andrew D. Kroeker
    • 3
  • Richard K. Bestwick
    • 4
  • Patrick L. Iversen
    • 5
  • Hong M. Moulton
    • 6
  • Michael J. Buchmeier
    • 7
  1. 1.The Scripps Research InstituteLa JollaUSA
  2. 2.AVI Biopharma, Inc.CorvallisUSA
  3. 3.AVI Biopharma, Inc.CorvallisUSA
  4. 4.AVI Biopharma, Inc.CorvallisUSA
  5. 5.AVI Biopharma, Inc.CorvallisUSA
  6. 6.AVI Biopharma, Inc.CorvallisUSA
  7. 7.The Scripps Research InstituteLa JollaUSA

Personalised recommendations