The Coronavirus Replicase: Insights into a Sophisticated Enzyme Machinery

  • John Ziebuhr
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 581)


Severe Acute Respiratory Syndrome Infectious Bronchitis Virus Severe Acute Respiratory Syndrome Mouse Hepatitis Virus Equine Arteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cavanagh, D., 1997, Nidovirales: a new order comprising Coronaviridae and Arteriviridae, Arch. Virol. 142:629.PubMedGoogle Scholar
  2. 2.
    González, J. M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A. E., and Enjuanes, L., 2003, A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae, Arch. Virol. 148:2207.CrossRefGoogle Scholar
  3. 3.
    Siddell, S. G., Ziebuhr, J., and Snijder, E. J., 2005, Coronaviruses, toroviruses, and arteriviruses, in: Topley and Wilson's Microbiology and Microbial Infections, 10th Edition, B. W. J. Mahy and V. ter Meulen, eds., Hodder Arnold, London, p. 823.Google Scholar
  4. 4.
    Spaan, W., Delius, H., Skinner, M., Armstrong, J., Rottier, P., Smeekens, S., van der Zeijst, B. A., and Siddell, S. G., 1983, Coronavirus mRNA synthesis involves fusion of non-contiguous sequences, EMBO J. 2:1839.PubMedGoogle Scholar
  5. 5.
    Brierley, I., Boursnell, M. E., Binns, M. M., Bilimoria, B., Blok, V. C., Brown, T. D., and Inglis, S. C., 1987, An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV, EMBO J. 6:3779.PubMedGoogle Scholar
  6. 6.
    Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M., 1989b, Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis, Nucleic Acids Res. 17:4847.CrossRefPubMedGoogle Scholar
  7. 7.
    Gorbalenya, A. E., 2001, Big nidovirus genome. When count and order of domains matter, Adv. Exp. Med. Biol. 494:1.PubMedGoogle Scholar
  8. 8.
    Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C., Thiel, V., Ziebuhr, J., Poon, L. L., Guan, Y., Rozanov, M., Spaan, W. J., and Gorbalenya, A. E., 2003, Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage, J. Mol. Biol. 331:991.CrossRefPubMedGoogle Scholar
  9. 9.
    Ziebuhr, J., 2005, The coronavirus replicase, Curr. Top. Microbiol. Immunol. 287:57.CrossRefPubMedGoogle Scholar
  10. 10.
    Herold, J., and Siddell, S. G., 1993, An 'elaborated' pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res 21:5838.CrossRefPubMedGoogle Scholar
  11. 11.
    Almazán, F., Galán, C., and Enjuanes, L., 2004, The nucleoprotein is required for efficient coronavirus genome replication, J. Virol. 78:12683.CrossRefPubMedGoogle Scholar
  12. 12.
    Schelle, B., Karl, N., Ludewig, B., Siddell, S. G., and Thiel, V., 2005, Selective replication of coronavirus genomes that express nucleocapsid protein, J. Virol. 79:6620.CrossRefPubMedGoogle Scholar
  13. 13.
    Shi, S. T, and Lai, M. M., 2005, Viral and cellular proteins involved in coronavirus replication, Curr. Top. Microbiol. Immunol. 287:95.CrossRefPubMedGoogle Scholar
  14. 14.
    Ziebuhr, J., 2004, Molecular biology of severe acute respiratory syndrome coronavirus, Curr. Opin. Microbiol. 7:412.CrossRefPubMedGoogle Scholar
  15. 15.
    Ziebuhr, J., Snijder, E. J., and Gorbalenya, A. E., 2000, Virus-encoded proteinases and proteolytic processing in the Nidovirales, J. Gen. Virol. 81:853.PubMedGoogle Scholar
  16. 16.
    Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J., and Hilgenfeld, R., 2002, Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain, EMBO J. 21:3213.CrossRefPubMedGoogle Scholar
  17. 17.
    Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., and Hilgenfeld, R., 2003, Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs, Science 300:1763.CrossRefPubMedGoogle Scholar
  18. 18.
    Shi, J., Wei, Z., and Song, J., 2004, Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors. J. Biol. Chem. 279:24765.CrossRefPubMedGoogle Scholar
  19. 19.
    Hsu, W. C., Chang, H. C., Chou, C. Y., Tsai, P. J., Lin, P. I., and Chang, G. G., 2005, Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease, J. Biol. Chem. 280:22741.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen, S., Chen, L., Tan, J., Chen, J., Du, L., Sun, T., Shen, J., Chen, K., Jiang, H., and Shen, X., 2005, Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations, J. Biol. Chem. 280:164.PubMedGoogle Scholar
  21. 21.
    Hegyi, A., and Ziebuhr, J., 2002, Conservation of substrate specificities among coronavirus main proteases, J. Gen. Virol. 83:595.PubMedGoogle Scholar
  22. 22.
    Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., and Rao, Z., 2003, The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor, Proc. Natl. Acad. Sci. USA 100:13190.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M., and Rao, Z., 2005, Design of wide-spectrum inhibitors targeting coronavirus main proteases, PLoS Biol. 3:e324.CrossRefPubMedGoogle Scholar
  24. 24.
    Baker, S. C., Yokomori, K., Dong, S., Carlisle, R., Gorbalenya, A. E., Koonin, E. V., and Lai, M. M., 1993, Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus, J. Virol. 67:6056.PubMedGoogle Scholar
  25. 25.
    Herold, J., Gorbalenya, A. E., Thiel, V., Schelle, B., and Siddell, S. G., 1998, Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate, J. Virol. 72:910.PubMedGoogle Scholar
  26. 26.
    Lim, K. P., and Liu, D. X., 1998, Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein, Virology 245:303.CrossRefPubMedGoogle Scholar
  27. 27.
    Kanjanahaluethai, A., and Baker, S. C., 2000, Identification of mouse hepatitis virus papain-like proteinase 2 activity, J. Virol. 74:7911.CrossRefPubMedGoogle Scholar
  28. 28.
    Lim, K. P., Ng, L. F., and Liu, D. X., 2000, Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products, J. Virol. 74:1674.CrossRefPubMedGoogle Scholar
  29. 29.
    Ziebuhr, J., Thiel, V., and Gorbalenya, A. E., 2001, The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond, J. Biol. Chem. 276:33220.CrossRefPubMedGoogle Scholar
  30. 30.
    Thiel, V., Ivanov, K. A., Putics, Á., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., Gorbalenya, A. E., and Ziebuhr, J., 2003, Mechanisms and enzymes involved in SARS coronavirus genome expression, J. Gen. Virol. 84:2305.CrossRefPubMedGoogle Scholar
  31. 31.
    Harcourt, B. H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K. M., Smith, C. M., Rota, P. A., and Baker, S. C., 2004, Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity, J. Virol. 78:13600.CrossRefPubMedGoogle Scholar
  32. 32.
    Han, Y. S., Chang, G. G., Juo, C. G., Lee, H. J., Yeh, S. H., Hsu, J. T., and Chen, X., 2005, Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition, Biochemistry 44:10349.CrossRefPubMedGoogle Scholar
  33. 33.
    Denison, M. R., Yount, B., Brockway, S. M., Graham, R. L., Sims, A. C., Lu, X., and Baric, R. S., 2004, Cleavage between replicase proteins p28 and p65 of mouse hepatitis virus is not required for virus replication, J. Virol. 78:5957.CrossRefPubMedGoogle Scholar
  34. 34.
    Brockway, S. M., and Denison, M. R., 2005, Mutagenesis of the murine hepatitis virus nsp1-coding region identifies residues important for protein processing, viral RNA synthesis, and viral replication, Virology 340:209.CrossRefPubMedGoogle Scholar
  35. 35.
    Graham, R. L., Sims, A. C., Brockway, S. M., Baric, R. S., and Denison, M. R., 2005, The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication, J. Virol. 79:13399.CrossRefPubMedGoogle Scholar
  36. 36.
    Koonin, E. V., 1991, The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses, J. Gen. Virol. 72:2197.CrossRefPubMedGoogle Scholar
  37. 37.
    Cheng, A., Zhang, W., Xie, Y., Jiang, W., Arnold, E., Sarafianos, S. G., and Ding, J., 2005, Expression, purification, and characterization of SARS coronavirus RNA polymerase, Virology 335:165.CrossRefPubMedGoogle Scholar
  38. 38.
    Brockway, S. M., Clay, C. T., Lu, X. T., and Denison, M. R., 2003, Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase, J. Virol. 77:10515.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhai, Y., Sun, F., Li, X., Pang, H., Xu, X., Bartlam, M., and Rao, Z., 2005, Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer, Nat. Struct. Mol. Biol. Epub ahead of print.Google Scholar
  40. 40.
    Egloff, M. P., Ferron, F., Campanacci, V., Longhi, S., Rancurel, C., Dutartre, H., Snijder, E. J., Gorbalenya, A. E., Cambillau, C., and Canard, B., 2004, The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world, Proc. Natl. Acad. Sci. USA 101:3792.CrossRefPubMedGoogle Scholar
  41. 41.
    Sutton, G., Fry, E., Carter, L., Sainsbury, S., Walter, T., Nettleship, J., Berrow, N., Owens, R., Gilbert, R., Davidson, A., Siddell, S., Poon, L. L., Diprose, J., Alderton, D., Walsh, M., Grimes, J. M., and Stuart, D. I., 2004, The nsp9 replicase protein of SARS-coronavirus, structure and functional insights, Structure (Camb) 12:341.Google Scholar
  42. 42.
    Siddell, S., Sawicki, D., Meyer, Y., Thiel, V., and Sawicki, S., 2001, Identification of the mutations responsible for the phenotype of three MHV RNA-negative ts mutants, Adv. Exp. Med. Biol. 494:453.PubMedGoogle Scholar
  43. 43.
    Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M., 1989a, Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes, Nucleic Acids Res. 17:4713.CrossRefPubMedGoogle Scholar
  44. 44.
    Seybert, A., Hegyi, A., Siddell, S. G., and Ziebuhr, J., 2000a, The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5'-to-3' polarity, RNA 6:1056.CrossRefPubMedGoogle Scholar
  45. 45.
    Seybert, A., and Ziebuhr, J., 2001, Guanosine triphosphatase activity of the human coronavirus helicase, Adv. Exp. Med. Biol. 494:255.PubMedGoogle Scholar
  46. 46.
    Tanner, J. A., Watt, R. M., Chai, Y. B., Lu, L. Y., Lin, M. C., Peiris, J. S., Poon, L. L., Kung, H. F., and Huang, J. D., 2003, The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5' to 3' viral helicases, J. Biol. Chem. 278:39578.CrossRefPubMedGoogle Scholar
  47. 47.
    Ivanov, K. A., Thiel, V., Dobbe, J. C., van der Meer, Y., Snijder, E. J., and Ziebuhr, J., 2004b, Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase, J. Virol. 78:5619.CrossRefPubMedGoogle Scholar
  48. 48.
    Ivanov, K. A., and Ziebuhr, J., 2004, Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities, J. Virol. 78:7833.CrossRefPubMedGoogle Scholar
  49. 49.
    Seybert, A., Posthuma, C. C., van Dinten, L. C., Snijder, E. J., Gorbalenya, A. E., and Ziebuhr, J., 2005, A complex zinc finger controls the enzymatic activities of nidovirus helicases, J. Virol. 79:696.CrossRefPubMedGoogle Scholar
  50. 50.
    Seybert, A., van Dinten, L. C., Snijder, E. J., and Ziebuhr, J., 2000b, Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases, J. Virol. 74:9586.CrossRefPubMedGoogle Scholar
  51. 51.
    Kadaré, G., and Haenni, A. L., 1997, Virus-encoded RNA helicases, J. Virol. 71:2583.PubMedGoogle Scholar
  52. 52.
    van Dinten, L. C., van Tol, H., Gorbalenya, A. E., and Snijder, E. J., 2000, The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis, J. Virol. 74:5213.CrossRefPubMedGoogle Scholar
  53. 53.
    Bhardwaj, K., Guarino, L., and Kao, C. C., 2004, The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor, J. Virol. 78:12218.CrossRefPubMedGoogle Scholar
  54. 54.
    Ivanov, K. A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A. E., and Ziebuhr, J., 2004a, Major genetic marker of nidoviruses encodes a replicative endoribonuclease, Proc. Natl. Acad. Sci. USA 101:12694.CrossRefPubMedGoogle Scholar
  55. 55.
    Snijder, E. J., den Boon, J. A., Bredenbeek, P. J., Horzinek, M. C., Rijnbrand, R., and Spaan, W. J., 1990, The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related, Nucleic Acids Res. 18:4535.CrossRefPubMedGoogle Scholar
  56. 56.
    den Boon, J. A., Snijder, E. J., Chirnside, E. D., de Vries, A. A., Horzinek, M. C., and Spaan, W. J., 1991, Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily, J. Virol. 65:2910.PubMedGoogle Scholar
  57. 57.
    Putics, A., Filipowicz, W., Hall, J., Gorbalenya, A. E., and Ziebuhr, J., 2005, ADP-ribose-1”-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture, J. Virol. 79:12721.CrossRefPubMedGoogle Scholar
  58. 58.
    Sperry, S. M., Kazi, L., Graham, R. L., Baric, R. S., Weiss, S. R., and Denison, M. R., 2005, Single-amino-acid substitutions in open reading frame (ORF) 1b-nsp14 and ORF 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice, J. Virol. 79:3391.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • John Ziebuhr
    • 1
  1. 1.University of WürzburgGermany

Personalised recommendations