Ketone Bodies as a Possible Adjuvant to Ketogenic Diet in PDHc Deficiency but Not in GLUT1 Deficiency

  • F. Habarou
  • N. Bahi-Buisson
  • E. Lebigot
  • C. Pontoizeau
  • M. T. Abi-Warde
  • A. Brassier
  • K. H. Le Quan Sang
  • C. Broissand
  • S. Vuillaumier-Barrot
  • A. Roubertie
  • A. Boutron
  • C. Ottolenghi
  • P. de Lonlay
Research Report
Part of the JIMD Reports book series (JIMD, volume 38)

Abstract

Objective: Ketogenic diet is the first line therapy for neurological symptoms associated with pyruvate dehydrogenase deficiency (PDHD) and intractable seizures in a number of disorders, including GLUT1 deficiency syndrome (GLUT1-DS). Because high-fat diet raises serious compliance issues, we investigated if oral l,d-3-hydroxybutyrate administration could be as effective as ketogenic diet in PDHD and GLUT1-DS.

Methods: We designed a partial or total progressive substitution of KD with l,d-3-hydroxybutyrate in three GLUT1-DS and two PDHD patients.

Results: In GLUT1-DS patients, we observed clinical deterioration including increased frequency of seizures and myoclonus. In parallel, ketone bodies in CSF decreased after introducing 3-hydroxybutyrate. By contrast, two patients with PDHD showed clinical improvement as dystonic crises and fatigability decreased under basal metabolic conditions. In one of the two PDHD children, 3-hydroxybutyrate has largely replaced the ketogenic diet, with the latter that is mostly resumed only during febrile illness. Positive direct effects on energy metabolism in PDHD patients were suggested by negative correlation between ketonemia and lactatemia (r2 = 0.59). Moreover, in cultured PDHc-deficient fibroblasts, the increase of CO2 production after 14C-labeled 3-hydroxybutyrate supplementation was consistent with improved Krebs cycle activity. However, except in one patient, ketonemia tended to be lower with 3-hydroxybutyrate administration compared to ketogenic diet.

Conclusion: 3-hydroxybutyrate may be an adjuvant treatment to ketogenic diet in PDHD but not in GLUT1-DS under basal metabolic conditions. Nevertheless, ketogenic diet is still necessary in PDHD patients during febrile illness.

Keywords

GLUT1-DS Ketogenic diet Ketone bodies PDHc-deficiency 

References

  1. Balasse E, Neef M (1975) Inhibition of ketogenesis by ketone bodies in fasting humans. Metabolism 24:999–1007CrossRefPubMedGoogle Scholar
  2. Barnerias C, Saudubray J, Touati G, De Lonlay P, Dulac O, Ponsot G, Marsac C, Brivet M, Desguerre I (2010) Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with different pathogenesis. Dev Med Child Neurol 52:e1–e9CrossRefPubMedGoogle Scholar
  3. De Giorgis V, Varesio C, Baldassari C, Piazza E, Olivotto S, Macasaet J, Balottin U, Veggiotti P (2016) Atypical manifestations in GLUT1 deficiency syndrome. J Child Neurol 31:1174–1180CrossRefPubMedGoogle Scholar
  4. Freeman J, Veggiotti P, Lanzi G, Tagliabue A, Perucca E (2006) The ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Res 68:145–180CrossRefPubMedGoogle Scholar
  5. Halestrap A, Wilson M (2012) The monocarboxylate transporter family--role and regulation. IUBMB Life 64:109–119CrossRefPubMedGoogle Scholar
  6. Hully M, Vuillaumier-Barrot S, Le Bizec C, Boddaert N, Kaminska A, Lascelles K, De Lonlay P, Cances C, des Portes V, Roubertie A, Doummar D, LeBihannic A, Degos B, de Saint Martin A, Flori E, Pedespan J, Goldenberg A, Vanhulle C, Bekri S, Roubergue A, Heron B, Cournelle M, Kuster A, Chenouard A, Loiseau M, Valayannopoulos V, Chemaly N, Gitiaux C, Seta N, Bahi-Buisson N (2015) From splitting GLUT1 deficiency syndrome to overlapping phenotypes. Eur J Med Genet 58:443–454CrossRefPubMedGoogle Scholar
  7. Imbard A, Boutron A, Vequaud C, Zater M, De Lonlay P, De Baulny H, Barnerias C, Miné M, Marsac C, Saudubray J, Brivet M (2011) Molecular characterization of 82 patients with pyruvate dehydrogenase complex deficiency. Structural implications of novel amino acid substitutions in E1 protein. Mol Genet Metab 104:507–516CrossRefPubMedGoogle Scholar
  8. Klein P, Tyrlikova I, Mathews G (2014) Dietary treatment in adults with refractory epilepsy. Neurology 83:1978–1985CrossRefPubMedGoogle Scholar
  9. Klepper J, Diefenbach S, Kohlschütter A, Voit T (2004) Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins Leukot Essent Fatty Acids 70:321–327CrossRefPubMedGoogle Scholar
  10. Klepper J, Scheffer H, Leiendecker B, Gertsen E, Binder S, Leferink M, Hertzberg C, Näke A, Voit T, Willemsen M (2005) Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics 36:302–308CrossRefPubMedGoogle Scholar
  11. Leen W, Klepper J, Verbeek M, Leferink M, Hofste T, van Engelen B (2010) Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain 133:655–670CrossRefPubMedGoogle Scholar
  12. Leino R, Gerhart D, Duelli R, Enerson B, Drewes L (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38:519–527CrossRefPubMedGoogle Scholar
  13. Matsuyama S, Ohkura S, Iwata K, Uenoyama Y, Tsukamura H, Maeda K, Kimura K (2009) Food deprivation induces monocarboxylate transporter 2 expression in the brainstem of female rat. J Reprod Dev 55:256–261CrossRefPubMedGoogle Scholar
  14. Matthews P, Brown R, Otero L, Marchington D, LeGris M, Howes R, Meadows L, Shevell M, Scriver C, Brown G (1994) PDH deficiency: clinical presentation and molecular genetic characterization of five new patients. Brain 117:435–443CrossRefPubMedGoogle Scholar
  15. Melo T, Nehlig A, Sonnewald U (2005) Metabolism is normal in astrocytes in chronically epileptic rats: a (13)C NMR study of neuronal-glial interactions in a model of temporal lobe epilepsy. J Cereb Blood Flow Metab 25:1254–1264CrossRefPubMedGoogle Scholar
  16. Melo T, Nehlig A, Sonnewald U (2006) Neuronal-glial interactions in rats fed a ketogenic diet. Neurochem Int 48:498–507CrossRefPubMedGoogle Scholar
  17. Mochel F, Hainque E, Gras D, Adanyeguh IM, Caillet S, Heron B, Roubertie A, Kaphan E, Valabregue R, Rinaldi D, Vuillaumier-Barrot S, Schiffmann R, Ottolenghi C, Hogrel J, Servais L, Roze E (2016) Triheptanoin dramatically reduces paroxysmal motor disorder in patients with GLUT1 deficiency. J Neurol Neurosurg Psychiatry 87:550–553CrossRefPubMedGoogle Scholar
  18. Morris A (2005) Cerebral ketone body metabolism. J Inherit Metab Dis 28:109–121CrossRefPubMedGoogle Scholar
  19. Pan J, Telang F, Lee J, de Graaf R, Rothman D, Stein D, Hetherington H (2001) Measurement of beta-hydroxybutyrate in acute hyperketonemia in human brain. J Neurochem 79:539–544CrossRefPubMedGoogle Scholar
  20. Pascual JM, Liu P, Mao D, Kelly DI, Hernandez A, Sheng M, Good L, Ma Q, Marin-Valencia I, Zhang Z, Park J, Hynan L, Stavinoha P, Roe C, Lu H (2014) Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol 71:1255–1265CrossRefPubMedPubMedCentralGoogle Scholar
  21. Patel K, O’Brien T, Subramony S, Shuster J, Stacpoole P (2012) The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab 106:385–394CrossRefPubMedPubMedCentralGoogle Scholar
  22. Vassault A, Bonnefont J, Specola N, Saudubray J (1991) Lactate, pyruvate, and ketone bodies. In: Homme FA (ed) Techniques in diagnostic human biochemical genetics: a laboratory manual. Wiley Liss, New York, pp 285–308Google Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • F. Habarou
    • 1
  • N. Bahi-Buisson
    • 2
  • E. Lebigot
    • 3
  • C. Pontoizeau
    • 1
  • M. T. Abi-Warde
    • 4
  • A. Brassier
    • 5
  • K. H. Le Quan Sang
    • 6
  • C. Broissand
    • 7
  • S. Vuillaumier-Barrot
    • 8
  • A. Roubertie
    • 9
  • A. Boutron
    • 3
  • C. Ottolenghi
    • 1
  • P. de Lonlay
    • 5
  1. 1.Metabolic Biochemistry DepartmentNecker Enfants Malades Hospital, AP-HP, Paris Descartes UniversityParisFrance
  2. 2.Department of NeurologyNecker Enfants Malades Hospital, AP-HP, Imagine Institute, Paris Descartes UniversityParisFrance
  3. 3.Department of BiochemistryBicêtre Hospital, AP-HPParisFrance
  4. 4.Department of NeuropediatricsStrasbourg HospitalStrasbourgFrance
  5. 5.Reference Center of Inherited Metabolic DiseasesNecker Enfants Malades Hospital, AP-HP, Imagine Institute, University Paris DescartesParisFrance
  6. 6.Department of GeneticsNecker Enfants Malades Hospital, AP-HP, Imagine Institute, Paris Descartes UniversityParisFrance
  7. 7.Department of PharmacyNecker Enfants Malades Hospital, AP-HPParisFrance
  8. 8.Department of BiochemistryBichat Hospital, AP-HPParisFrance
  9. 9.Department of NeuropediatricsGui de Chauliac Hospital, INSERM U-1051, Institute for Neuroscience of MontpellierMontpellierFrance

Personalised recommendations