Advertisement

pp 1-30 | Cite as

Structural Aspects of Carbohydrate Recognition Mechanisms of C-Type Lectins

  • Masamichi NagaeEmail author
  • Yoshiki YamaguchiEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series

Abstract

Carbohydrate recognition is an essential function occurring in all living organisms. Lectins are carbohydrate-binding proteins and are classified into several families. In mammals, Ca2+-dependent C-type lectins, such as β-galactoside-binding galectin and sialic acid-binding siglec, play crucial roles in the immune response and homeostasis. C-type lectins are abundant and diverse in animals. Their immunological activities include lymphocyte homing, pathogen recognition, and clearance of apoptotic bodies. C-type lectin domains are composed of 110–130 amino acid residues with highly conserved structural folds. Remarkably, individual lectins can accept a wide variety of sugar ligands and can distinguish subtle structural differences in closely related ligands. In addition, several C-type lectin-like proteins specifically bind to carbohydrate ligands in Ca2+-independent ways. The accumulated 3D structural evidence clarifies the unexpected structural versatility of C-type lectins underlying the variety of ligand binding modes. In this issue, we focus on the structural aspects of carbohydrate recognition mechanisms of C-type lectins and C-type lectin-like proteins.

Keywords

C-type lectin Carbohydrate recognition 3D structure EPN and QPD motifs 

References

  1. Alenton RR, Koiwai K, Miyaguchi K, Kondo H, Hirono I (2017) Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif. Sci Rep 7:45818Google Scholar
  2. Brown J, O’Callaghan CA, Marshall AS, Gilbert RJ, Siebold C, Gordon S, Brown GD, Jones EY (2007) Structure of the fungal β-glucan-binding immune receptor dectin-1: implications for function. Protein Sci 16:1042–1052Google Scholar
  3. Chatwell L, Holla A, Kaufer BB, Skerra A (2008) The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol Immunol 45:1981–1994Google Scholar
  4. Crouch E, Hartshorn K, Horlacher T, McDonald B, Smith K, Cafarella T, Seaton B, Seeberger PH, Head J (2009) Recognition of mannosylated ligands and influenza A virus by human surfactant protein D: contributions of an extended site and residue 343. Biochemistry 48:3335–3345Google Scholar
  5. Cummings RD, McEver RP (2015) C-type lectins. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (eds) Essentials of glycobiology. Cold Spring Harbor, NY, pp 435–452Google Scholar
  6. Drickamer K (1992) Engineering galactose-binding activity into a C-type mannose-binding protein. Nature 360:183–186Google Scholar
  7. Drickamer K, Taylor ME (2015) Recent insights into structures and functions of C-type lectins in the immune system. Curr Opin Struct Biol 34:26–34Google Scholar
  8. Dulal HP, Adachi Y, Ohno N, Yamaguchi Y (2018) β-glucan-induced cooperative oligomerization of Dectin-1 C-type lectin-like domain. Glycobiology 28:612–623Google Scholar
  9. Eble JA (2019) Structurally robust and functionally highly versatile-C-type lectin (-related) proteins in snake venoms. Toxins (Basel) 11:136Google Scholar
  10. Eble JA, McDougall M, Orriss GL, Niland S, Johanningmeier B, Pohlentz G, Meier M, Karrasch S, Estevao-Costa MI, Martins Lima A, Stetefeld J (2017) Dramatic and concerted conformational changes enable rhodocetin to block α2β1 integrin selectively. PLoS Biol 15:e2001492Google Scholar
  11. Feinberg H, Torgersen D, Drickamer K, Weis WI (2000a) Mechanism of pH-dependent N-acetylgalactosamine binding by a functional mimic of the hepatocyte asialoglycoprotein receptor. J Biol Chem 275:35176–35184Google Scholar
  12. Feinberg H, Park-Snyder S, Kolatkar AR, Heise CT, Taylor ME, Weis WI (2000b) Structure of a C-type carbohydrate recognition domain from the macrophage mannose receptor. J Biol Chem 275:21539–21548Google Scholar
  13. Feinberg H, Mitchell DA, Drickamer K, Weis WI (2001) Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294:2163–2166Google Scholar
  14. Feinberg H, Taylor ME, Weis WI (2007a) Scavenger receptor C-type lectin binds to the leukocyte cell surface glycan Lewis(x) by a novel mechanism. J Biol Chem 282:17250–17258Google Scholar
  15. Feinberg H, Castelli R, Drickamer K, Seeberger PH, Weis WI (2007b) Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J Biol Chem 282:4202–4209Google Scholar
  16. Feinberg H, Taylor ME, Razi N, McBride R, Knirel YA, Graham SA, Drickamer K, Weis WI (2011) Structural basis for langerin recognition of diverse pathogen and mammalian glycans through a single binding site. J Mol Biol 405:1027–1039Google Scholar
  17. Feinberg H, Jegouzo SA, Rowntree TJ, Guan Y, Brash MA, Taylor ME, Weis WI, Drickamer K (2013a) Mechanism for recognition of an unusual mycobacterial glycolipid by the macrophage receptor mincle. J Biol Chem 288:28457–28465Google Scholar
  18. Feinberg H, Rowntree TJ, Tan SL, Drickamer K, Weis WI, Taylor ME (2013b) Common polymorphisms in human langerin change specificity for glycan ligands. J Biol Chem 288:36762–36771Google Scholar
  19. Feinberg H, Rambaruth ND, Jegouzo SA, Jacobsen KM, Djurhuus R, Poulsen TB, Weis WI, Taylor ME, Drickamer K (2016) Binding sites for acylated trehalose analogs of glycolipid ligands on an extended carbohydrate recognition domain of the macrophage receptor mincle. J Biol Chem 291:21222–21233Google Scholar
  20. Feinberg H, Jegouzo SAF, Rex MJ, Drickamer K, Weis WI, Taylor ME (2017) Mechanism of pathogen recognition by human dectin-2. J Biol Chem 292:13402–13414Google Scholar
  21. Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, Elbers CC, Johnson MD, Cambi A, Huysamen C, Jacobs L, Jansen T, Verheijen K, Masthoff L, Morre SA, Vriend G, Williams DL, Perfect JR, Joosten LA, Wijmenga C, van der Meer JW, Adema GJ, Kullberg BJ, Brown GD, Netea MG (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361:1760–1767Google Scholar
  22. Fukuda K, Doggett T, Laurenzi IJ, Liddington RC, Diacovo TG (2005) The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation. Nat Struct Mol Biol 12:152–159Google Scholar
  23. Gourdine JP, Cioci G, Miguet L, Unverzagt C, Silva DV, Varrot A, Gautier C, Smith-Ravin EJ, Imberty A (2008) High affinity interaction between a bivalve C-type lectin and a biantennary complex-type N-glycan revealed by crystallography and microcalorimetry. J Biol Chem 283:30112–30120Google Scholar
  24. Goyal S, Klassert TE, Slevogt H (2016) C-type lectin receptors in tuberculosis: what we know. Med Microbiol Immunol 205:513–535Google Scholar
  25. Guo Y, Feinberg H, Conroy E, Mitchell DA, Alvarez R, Blixt O, Taylor ME, Weis WI, Drickamer K (2004) Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11:591–598Google Scholar
  26. Hanske J, Schulze J, Aretz J, McBride R, Loll B, Schmidt H, Knirel Y, Rabsch W, Wahl MC, Paulson JC, Rademacher C (2017) Bacterial polysaccharide specificity of the pattern recognition receptor langerin is highly species-dependent. J Biol Chem 292:862–871Google Scholar
  27. Hatakeyama T, Kamiya T, Kusunoki M, Nakamura-Tsuruta S, Hirabayashi J, Goda S, Unno H (2011) Galactose recognition by a tetrameric C-type lectin, CEL-IV, containing the EPN carbohydrate recognition motif. J Biol Chem 286:10305–10315Google Scholar
  28. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin mincle. J Exp Med 206:2879–2888Google Scholar
  29. Jegouzo SA, Feinberg H, Dungarwalla T, Drickamer K, Weis WI, Taylor ME (2015) A novel mechanism for binding of galactose-terminated glycans by the C-type carbohydrate recognition domain in blood dendritic cell antigen 2. J Biol Chem 290:16759–16771Google Scholar
  30. Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88:3259–3287Google Scholar
  31. Kolenko P, Rozbesky D, Vanek O, Kopecky V Jr, Hofbauerova K, Novak P, Pompach P, Hasek J, Skalova T, Bezouska K, Dohnalek J (2011) Molecular architecture of mouse activating NKR-P1 receptors. J Struct Biol 175:434–441Google Scholar
  32. Leth-Larsen R, Garred P, Jensenius H, Meschi J, Hartshorn K, Madsen J, Tornoe I, Madsen HO, Sorensen G, Crouch E, Holmskov U (2005) A common polymorphism in the SFTPD gene influences assembly, function, and concentration of surfactant protein D. J Immunol 174:1532–1538Google Scholar
  33. Li Y, Mariuzza RA (2014) Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front Immunol 5:123Google Scholar
  34. Liu Y, Eisenberg D (2002) 3D domain swapping: as domains continue to swap. Protein Sci 11:1285–1299Google Scholar
  35. Maita N, Nishio K, Nishimoto E, Matsui T, Shikamoto Y, Morita T, Sadler JE, Mizuno H (2003) Crystal structure of von Willebrand factor A1 domain complexed with snake venom, bitiscetin: insight into glycoprotein Ibalpha binding mechanism induced by snake venom proteins. J Biol Chem 278:37777–37781Google Scholar
  36. Malik S, Greenwood CM, Eguale T, Kifle A, Beyene J, Habte A, Tadesse A, Gebrexabher H, Britton S, Schurr E (2006) Variants of the SFTPA1 and SFTPA2 genes and susceptibility to tuberculosis in Ethiopia. Hum Genet 118:752–759Google Scholar
  37. Matsunaga I, Moody DB (2009) Mincle is a long sought receptor for mycobacterial cord factor. J Exp Med 206:2865–2868Google Scholar
  38. Mehta-D’souza P, Klopocki AG, Oganesyan V, Terzyan S, Mather T, Li Z, Panicker SR, Zhu C, McEver RP (2017) Glycan bound to the selectin low affinity state engages Glu-88 to stabilize the high affinity state under force. J Biol Chem 292:2510–2518Google Scholar
  39. Nagae M, Yamanaka K, Hanashima S, Ikeda A, Morita-Matsumoto K, Satoh T, Matsumoto N, Yamamoto K, Yamaguchi Y (2013) Recognition of bisecting N-acetylglucosamine: structural basis for asymmetric interaction with the mouse lectin dendritic cell inhibitory receptor 2. J Biol Chem 288:33598–33610Google Scholar
  40. Nagae M, Morita-Matsumoto K, Kato M, Kaneko MK, Kato Y, Yamaguchi Y (2014a) A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure 22:1711–1721Google Scholar
  41. Nagae M, Ikeda A, Kitago Y, Matsumoto N, Yamamoto K, Yamaguchi Y (2014b) Crystal structures of carbohydrate recognition domain of blood dendritic cell antigen-2 (BDCA2) reveal a common domain-swapped dimer. Proteins 82:1512–1518Google Scholar
  42. Nagae M, Ikeda A, Hanashima S, Kojima T, Matsumoto N, Yamamoto K, Yamaguchi Y (2016) Crystal structure of human dendritic cell inhibitory receptor C-type lectin domain reveals the binding mode with N-glycan. FEBS Lett 590:1280–1288Google Scholar
  43. Ng KK, Weis WI (1997) Structure of a selectin-like mutant of mannose-binding protein complexed with sialylated and sulfated Lewis(x) oligosaccharides. Biochemistry 36:979–988Google Scholar
  44. Ng KK, Drickamer K, Weis WI (1996) Structural analysis of monosaccharide recognition by rat liver mannose-binding protein. J Biol Chem 271:663–674Google Scholar
  45. Ng KK, Kolatkar AR, Park-Snyder S, Feinberg H, Clark DA, Drickamer K, Weis WI (2002) Orientation of bound ligands in mannose-binding proteins. Implications for multivalent ligand recognition. J Biol Chem 277:16088–16095Google Scholar
  46. Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM, Diaz-Rodriguez E, Campanero-Rhodes MA, Costa J, Gordon S, Brown GD, Chai W (2006) Ligands for the β-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem 281:5771–5779Google Scholar
  47. Poget SF, Legge GB, Proctor MR, Butler PJ, Bycroft M, Williams RL (1999) The structure of a tunicate C-type lectin from Polyandrocarpa misakiensis complexed with d-galactose. J Mol Biol 290:867–879Google Scholar
  48. Preston RC, Jakob RP, Binder FP, Sager CP, Ernst B, Maier T (2016) E-selectin ligand complexes adopt an extended high-affinity conformation. J Mol Cell Biol 8:62–72Google Scholar
  49. Riboldi E, Daniele R, Parola C, Inforzato A, Arnold PL, Bosisio D, Fremont DH, Bastone A, Colonna M, Sozzani S (2011) Human C-type lectin domain family 4, member C (CLEC4C/BDCA-2/CD303) is a receptor for asialo-galactosyl-oligosaccharides. J Biol Chem 286:35329–35333Google Scholar
  50. Rozbesky D, Adamek D, Pospisilova E, Novak P, Chmelik J (2016) Solution structure of the lymphocyte receptor Nkrp1a reveals a distinct conformation of the long loop region as compared to in the crystal structure. Proteins 84:1304–1311Google Scholar
  51. Sancho D, Reis e Sousa C (2013) Sensing of cell death by myeloid C-type lectin receptors. Curr Opin Immunol 25:46–52Google Scholar
  52. Sanhueza CA, Baksh MM, Thuma B, Roy MD, Dutta S, Preville C, Chrunyk BA, Beaumont K, Dullea R, Ammirati M, Liu S, Gebhard D, Finley JE, Salatto CT, King-Ahmad A, Stock I, Atkinson K, Reidich B, Lin W, Kumar R, Tu M, Menhaji-Klotz E, Price DA, Liras S, Finn MG, Mascitti V (2017) Efficient liver targeting by polyvalent display of a compact ligand for the asialoglycoprotein receptor. J Am Chem Soc 139:3528–3536Google Scholar
  53. Shrive AK, Tharia HA, Strong P, Kishore U, Burns I, Rizkallah PJ, Reid KB, Greenhough TJ (2003) High-resolution structural insights into ligand binding and immune cell recognition by human lung surfactant protein D. J Mol Biol 331:509–523Google Scholar
  54. Silva-Martin N, Bartual SG, Ramirez-Aportela E, Chacon P, Park CG, Hermoso JA (2014) Structural basis for selective recognition of endogenous and microbial polysaccharides by macrophage receptor SIGN-R1. Structure 22:1595–1606Google Scholar
  55. Somers WS, Tang J, Shaw GD, Camphausen RT (2000) Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLeX and PSGL-1. Cell 103:467–479Google Scholar
  56. Sutkeviciute I, Thepaut M, Sattin S, Berzi A, McGeagh J, Grudinin S, Weiser J, Le Roy A, Reina JJ, Rojo J, Clerici M, Bernardi A, Ebel C, Fieschi F (2014) Unique DC-SIGN clustering activity of a small glycomimetic: a lesson for ligand design. ACS Chem Biol 9:1377–1385Google Scholar
  57. Swaminathan GJ, Myszka DG, Katsamba PS, Ohnuki LE, Gleich GJ, Acharya KR (2005) Eosinophil-granule major basic protein, a C-type lectin, binds heparin. Biochemistry 44:14152–14158Google Scholar
  58. Toyonaga K, Torigoe S, Motomura Y, Kamichi T, Hayashi JM, Morita YS, Noguchi N, Chuma Y, Kiyohara H, Matsuo K, Tanaka H, Nakagawa Y, Sakuma T, Ohmuraya M, Yamamoto T, Umemura M, Matsuzaki G, Yoshikai Y, Yano I, Miyamoto T, Yamasaki S (2016) C-type lectin receptor DCAR recognizes mycobacterial phosphatidyl-inositol mannosides to promote a Th1 response during infection. Immunity 45:1245–1257Google Scholar
  59. Unno H, Itakura S, Higuchi S, Goda S, Yamaguchi K, Hatakeyama T (2019) Novel Ca(2+)-independent carbohydrate recognition of the C-type lectins, SPL-1 and SPL-2, from the bivalve Saxidomus purpuratus. Protein Sci 28:766–778Google Scholar
  60. van Eijk M, Rynkiewicz MJ, Khatri K, Leymarie N, Zaia J, White MR, Hartshorn KL, Cafarella TR, van Die I, Hessing M, Seaton BA, Haagsman HP (2018) Lectin-mediated binding and sialoglycans of porcine surfactant protein D synergistically neutralize influenza A virus. J Biol Chem 293:10646–10662Google Scholar
  61. Varki A (2017) Biological roles of glycans. Glycobiology 27:3–49Google Scholar
  62. Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T, Prestegard JJ, Schnaar RL, Freeze HH, Marth JD, Bertozzi CR, Etzler ME, Frank M, Vliegenthart JF, Lütteke T, Perez S, Bolton E, Rudd P, Paulson J, Kanehisa M, Toukach P, Aoki-Kinoshita KF, Dell A, Narimatsu H, York W, Taniguchi N, Kornfeld S (2015) Symbol nomenclature for graphical representations of glycans. Glycobiology 25:1323–1324Google Scholar
  63. Verdijk P, Dijkman R, Plasmeijer EI, Mulder AA, Zoutman WH, Mieke Mommaas A, Tensen CP (2005) A lack of birbeck granules in langerhans cells is associated with a naturally occurring point mutation in the human langerin gene. J Invest Dermatol 124:714–717Google Scholar
  64. Walker JR, Nagar B, Young NM, Hirama T, Rini JM (2004) X-ray crystal structure of a galactose-specific C-type lectin possessing a novel decameric quaternary structure. Biochemistry 43:3783–3792Google Scholar
  65. Wang Y, Kuan PJ, Xing C, Cronkhite JT, Torres F, Rosenblatt RL, DiMaio JM, Kinch LN, Grishin NV, Garcia CK (2009) Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet 84:52–59Google Scholar
  66. Ward EM, Stambach NS, Drickamer K, Taylor ME (2006) Polymorphisms in human langerin affect stability and sugar binding activity. J Biol Chem 281:15450–15456Google Scholar
  67. Wedepohl S, Dernedde J, Vahedi-Faridi A, Tauber R, Saenger W, Bulut H (2017) Reducing Macro- and microheterogeneity of N-glycans enables the crystal structure of the lectin and EGF-like domains of human L-selectin to be solved at 1.9 Å resolution. ChemBioChem 18:1338–1345Google Scholar
  68. Weis WI, Drickamer K, Hendrickson WA (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360:127–134Google Scholar
  69. Xia L, Ramachandran V, McDaniel JM, Nguyen KN, Cummings RD, McEver RP (2003) N-terminal residues in murine P-selectin glycoprotein ligand-1 required for binding to murine P-selectin. Blood 101:552–559Google Scholar
  70. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesThe University of TokyoTokyoJapan
  2. 2.Faculty of Pharmaceutical SciencesTohoku Medical and Pharmaceutical UniversityMiyagiJapan

Personalised recommendations