Advertisement

pp 1-42 | Cite as

Function and Regulation of Agrobacterium tumefaciens Cell Surface Structures that Promote Attachment

  • Melene A. Thompson
  • Maureen C. Onyeziri
  • Clay Fuqua
Chapter
Part of the Current Topics in Microbiology and Immunology book series

Abstract

Agrobacterium tumefaciens attaches stably to plant host tissues and abiotic surfaces. During pathogenesis, physical attachment to the site of infection is a prerequisite to infection and horizontal gene transfer to the plant. Virulent and avirulent strains may also attach to plant tissue in more benign plant associations, and as with other soil microbes, to soil surfaces in the terrestrial environment. Although most A. tumefaciens virulence functions are encoded on the tumor-inducing plasmid, genes that direct general surface attachment are chromosomally encoded, and thus this process is not obligatorily tied to virulence, but is a more fundamental capacity. Several different cellular structures are known or suspected to contribute to the attachment process. The flagella influence surface attachment primarily via their propulsive activity, but control of their rotation during the transition to the attached state may be quite complex. A. tumefaciens produces several pili, including the Tad-type Ctp pili, and several plasmid-borne conjugal pili encoded by the Ti and At plasmids, as well as the so-called T-pilus, involved in interkingdom horizontal gene transfer. The Ctp pili promote reversible interactions with surfaces, whereas the conjugal and T-pili drive horizontal gene transfer (HGT) interactions with other cells and tissues. The T-pilus is likely to contribute to physical association with plant tissues during DNA transfer to plants. A. tumefaciens can synthesize a variety of polysaccharides including cellulose, curdlan (β-1,3 glucan), β-1,2 glucan (cyclic and linear), succinoglycan, and a localized polysaccharide(s) that is confined to a single cellular pole and is called the unipolar polysaccharide (UPP). Lipopolysaccharides are also in the outer leaflet of the outer membrane. Cellulose and curdlan production can influence attachment under certain conditions. The UPP is required for stable attachment under a range of conditions and on abiotic and biotic surfaces. Other factors that have been reported to play a role in attachment include the elusive protein called rhicadhesin. The process of surface attachment is under extensive regulatory control and can be modulated by environmental conditions, as well as by direct responses to surface contact. Complex transcriptional and post-transcriptional control circuitry underlies much of the production and deployment of these attachment functions.

Keywords

Attachment Cell surface structures Biofilms Regulation 

Notes

Acknowledgements

Research on surface attachment functions for A. tumefaciens in the Fuqua lab is supported by the National Institutes of Health GM120337. We thank Justin Eagan for his comments on the manuscript.

References

  1. Aguilar J, Cameron TA, Zupan J, et al (2011) Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells. MBio 2:e00218-11Google Scholar
  2. Aldridge P, Hughes KT (2002) Regulation of flagellar assembly. Curr Opin Microbiol 5:160–165CrossRefGoogle Scholar
  3. Aly KA, Baron C (2007) The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153:3766–3775CrossRefGoogle Scholar
  4. Amikam D, Benziman M (1989) Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 171:6649–6655CrossRefGoogle Scholar
  5. Arioli T, Peng L, Betzner AS et al (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720CrossRefGoogle Scholar
  6. Ashby AM, Watson MD, Loake GJ et al (1988) Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170:4181–4187CrossRefGoogle Scholar
  7. Ausmees N, Jacobsson K, Lindberg M (2001) A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii. Microbiology 147:549–559CrossRefGoogle Scholar
  8. Babić A, Lindner AB, Vulić M et al (2008) Direct visualization of horizontal gene transfer. Science 319:1533–1536CrossRefGoogle Scholar
  9. Barbosa RL, Benedetti CE (2007) BigR, a transcriptional repressor from plant associated bacteria, regulates an operon implicated in biofilm growth. J Bacteriol 189:6185–6194CrossRefGoogle Scholar
  10. Barnhart MM, Chapman MR (2006) Curdlan biogenesis and function. Annu Rev Microbiol 60:131–147CrossRefGoogle Scholar
  11. Barnhart DM, Su S, Baccaro BE et al (2013) CelR, an ortholog of the diguanylate cyclase PleD of Caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 79:7188–7202CrossRefGoogle Scholar
  12. Barnhart DM, Su S, Farrand SK (2014) A signaling pathway involving the diguanylate cyclase CelR and the response regulator DivK controls cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 196:1257–1274CrossRefGoogle Scholar
  13. Berne C, Ducret A, Hardy GG et al (2015) Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microbiol Spectr 3Google Scholar
  14. Blair DF (2003) Flagellar movement driven by proton translocation. FEBS Lett 545:86–95CrossRefGoogle Scholar
  15. Blanco LP, Evans ML, Smith DR et al (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73CrossRefGoogle Scholar
  16. Bodenmiller D, Toh E, Brun YV (2004) Development of surface adhesion in Caulobacter crescentus. J Bacteriol 186:1438–1447CrossRefGoogle Scholar
  17. Branch RW, Sayegh MN, Shen C, Nathan VSJ, Berg HC (2014) Adaptive remodeling by FliN in the bacterial rotary motor. J Mol Biol 426:3314–3324CrossRefGoogle Scholar
  18. Branda SS, Vik Å, Friedman L et al (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26CrossRefGoogle Scholar
  19. Brown PJ, de Pedro MA, Kysela DT et al (2012) Polar growth in the Alphaproteobacterial order Rhizobiales. Proc Natl Acad Sci USA 109:1697–1701CrossRefGoogle Scholar
  20. Chen L, Chen Y, Wood DW et al (2002) A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J Bacteriol 184:4838–4845CrossRefGoogle Scholar
  21. Chesnokova O, Coutinho JB, Khan IH et al (1997) Characterization of flagella genes of Agrobacterium tumefaciens, and the effect of a bald strain on virulence. Mol Microbiol 23:579–590CrossRefGoogle Scholar
  22. Chevance FF, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455CrossRefGoogle Scholar
  23. Cole JL, Hardy GG, Bodenmiller D et al (2003) The HfaB and HfaD adhesion proteins of Caulobacter crescentus are localized in the stalk. Mol Microbiol 49:1671–1683CrossRefGoogle Scholar
  24. Cook DM, Li PL, Ruchaud F et al (1997) Ti plasmid conjugation is independent of vir: reconstitution of the tra functions from pTiC58 as a binary system. J Bacteriol 179:1291–1297CrossRefGoogle Scholar
  25. Costa TR, Ilangovan A, Ukleja M et al (2016) Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166:1436–1444CrossRefGoogle Scholar
  26. Cuthbertson L, Mainprize IL, Naismith JH et al (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol R 73:155–177CrossRefGoogle Scholar
  27. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422CrossRefGoogle Scholar
  28. Danhorn T, Hentzer M, Givskov M et al (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 186:4492–4501CrossRefGoogle Scholar
  29. Dardanelli M, Angelini J, Fabra A (2003) A calcium-dependent bacterial surface protein is involved in the attachment of rhizobia to peanut roots. Can J Microbiol 49:399–405CrossRefGoogle Scholar
  30. Deakin WJ, Parker VE, Wright EL et al (1999) Agrobacterium tumefaciens possesses a fourth flagellin gene located in a large gene cluster concerned with flagellar structure, assembly and motility. Microbiology 145:1397–1407CrossRefGoogle Scholar
  31. Deakin WJ, Furniss CS, Parker VE et al (1997a) Isolation and characterisation of a linked cluster of genes from Agrobacterium tumefaciens encoding proteins involved in flagellar basal-body structure. Gene 189:135–137CrossRefGoogle Scholar
  32. Deakin WJ, Sanderson JL, Goswami T et al (1997b) The Agrobacterium tumefaciens motor gene, motA, is in a linked cluster with the flagellar switch protein genes, fliG, fliM and fliN. Gene 189:139–141CrossRefGoogle Scholar
  33. Deinema MH, Zevenhuizen LPTM (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Microbiol 78:42–57Google Scholar
  34. DeRosier D (2006) Bacterial flagellum: visualizing the complete machine in situ. Curr Biol 16:R928–R930CrossRefGoogle Scholar
  35. Ellison CK, Kan J, Dillard RS et al (2017) Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358:535–538CrossRefGoogle Scholar
  36. Feirer N, Fuqua C (2017) Pterin function in bacteria. Pteridines 28:23–36CrossRefGoogle Scholar
  37. Feirer N, Kim D, Xu J et al (2017) The Agrobacterium tumefaciens CheY-like protein ClaR regulates biofilm formation. Microbiology 163:1680–1691CrossRefGoogle Scholar
  38. Feirer N, Xu J, Allen KD et al (2015) A pterin-dependent signaling pathway regulates a dual-function diguanylate cyclase-phosphodiesterase controlling surface attachment in Agrobacterium tumefaciens. MBio 6:e00156-15Google Scholar
  39. Ferooz J, Lemaire J, Letesson JJ (2011) Role of FlbT in flagellin production in Brucella melitensis. Microbiology 157:1253–1262CrossRefGoogle Scholar
  40. Fiebig A, Herrou J, Fumeaux C et al (2014) A cell cycle and nutritional checkpoint controlling bacterial surface adhesion. PLoS Genet 10:e1004101CrossRefGoogle Scholar
  41. Fritts RK, LaSarre B, Stoner AM et al (2017) A Rhizobiales-specific unipolar polysaccharide adhesin contributes to Rhodopseudomonas palustris biofilm formation across diverse photoheterotrophic conditions. Appl Environ Microbiol 83:e03035–16CrossRefGoogle Scholar
  42. Fullner KJ, Lara JC, Nester EW (1996) Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273:1107-1109CrossRefGoogle Scholar
  43. Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806CrossRefGoogle Scholar
  44. Ghigo JM (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442CrossRefGoogle Scholar
  45. Goodner B, Hinkle G, Gattung S et al (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328CrossRefGoogle Scholar
  46. Götz R, Limmer N, Ober K et al (1982) Motility and chemotaxis in two strains of Rhizobium with complex flagella. Microbiology 128:789–798CrossRefGoogle Scholar
  47. Gu X, Lee SG, Bar-Peled M (2011) Biosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase. Microbiology 157:260–269CrossRefGoogle Scholar
  48. Guimarães BG, Barbosa RL, Soprano AS et al (2011) Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia. J Biol Chem 286:26148–26157CrossRefGoogle Scholar
  49. Hardy GG, Allen RC, Toh E et al (2010) A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole. Mol Microbiol 76:409–427CrossRefGoogle Scholar
  50. Hardy GG, Toh E, Berne C et al (2018) Mutations in sugar-nucleotide synthesis genes restore holdfast polysaccharide anchoring to Caulobacter crescentus holdfast anchor mutants. J Bacteriol 200:e00597–17Google Scholar
  51. Heckel BC, Tomlinson AD, Morton ER et al (2014) Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression. J Bacteriol 196:3221–3233CrossRefGoogle Scholar
  52. Heindl JE, Hibbing ME, Xu J et al (2016) Discrete responses to limitation for iron and manganese in Agrobacterium tumefaciens: influence on attachment and biofilm formation. J Bacteriol 198:816–829CrossRefGoogle Scholar
  53. Heindl JE, Wang Y, Heckel BC et al (2014) Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Front Plant Sci 5:176CrossRefGoogle Scholar
  54. Hinsa SM, Espinosa-Urgel M, Ramos JL et al (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918CrossRefGoogle Scholar
  55. Høiby N (2017) A short history of microbial biofilms and biofilm infections. APMIS 125:272–275CrossRefGoogle Scholar
  56. Hong Y, Reeves PR (2014) Diversity of O-antigen repeat unit structures can account for the substantial sequence variation of Wzx translocases. J Bacteriol 196:1713–1722CrossRefGoogle Scholar
  57. Hug I, Deshpande S, Sprecher KS et al (2017) Second messenger–mediated tactile response by a bacterial rotary motor. Science 358:531–534CrossRefGoogle Scholar
  58. Hughes KT, Mathee K (1998) The anti-sigma factors. Annu Rev Microbiol 52:231–286CrossRefGoogle Scholar
  59. Islam ST, Lam JS (2013) Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ Microbiol 15:1001–1015CrossRefGoogle Scholar
  60. Islam ST, Lam JS (2014) Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol 60:697–716CrossRefGoogle Scholar
  61. Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271CrossRefGoogle Scholar
  62. Judd PK, Kumar RB, Das A (2005) The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 55:115–124CrossRefGoogle Scholar
  63. Kachlany SC, Planet PJ, DeSalle R et al (2001) flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. Mol Microbiol 40:542–554CrossRefGoogle Scholar
  64. Kai-Larsen Y, Lüthje P, Chromek M et al (2010) Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6:e1001010CrossRefGoogle Scholar
  65. Kalynych S, Morona R, Cygler M (2014) Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiol Rev 38:1048–1065CrossRefGoogle Scholar
  66. Karnezis T, Epa VC, Stone BA et al (2003) Topological characterization of an inner membrane (1→3)-β-d-glucan (curdlan) synthase from Agrobacterium sp. strain ATCC31749. Glycobiology 13:693–706CrossRefGoogle Scholar
  67. Karnezis T, Fisher HC, Neumann GM et al (2002) Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1→3)-β-d-glucan (curdlan). J Bacteriol 184:4114–4123CrossRefGoogle Scholar
  68. Kilmury SL, Burrows LL (2016) Type IV pilins regulate their own expression via direct intramembrane interactions with the sensor kinase PilS. PNAS 113:6017–6022CrossRefGoogle Scholar
  69. Kim J, Heindl JE, Fuqua C (2013) Coordination of division and development influences complex multicellular behavior in Agrobacterium tumefaciens. PLoS ONE 8:e56682CrossRefGoogle Scholar
  70. Kimura S, Chen HP, Saxena IM et al (2001) Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. J Bacteriol 183:5668–5674CrossRefGoogle Scholar
  71. Körner H, Sofia HJ, Zumft WG (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27:559–592CrossRefGoogle Scholar
  72. Lai EM, Chesnokova O, Banta LM et al (2000) Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol 182:3705–3716CrossRefGoogle Scholar
  73. Lai EM, Eisenbrandt R, Kalkum M et al (2002) Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 184:327–330CrossRefGoogle Scholar
  74. Laus MC, Logman TJ, Lamers GE et al (2006) A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 59:1704–1713CrossRefGoogle Scholar
  75. Leifson E, Erdman LW (1958) Flagellar characteristics of Rhizobium species. A van Leeuw J Microb 24:97–110CrossRefGoogle Scholar
  76. Lele PP, Branch RW, Nathan VJS, Berg HC (2012) Mechanism for remodeling of the bacterial flagellar switch. Proc Natl Acad Sci USA 109:20018–20022CrossRefGoogle Scholar
  77. Lessl M, Lanka E (1994) Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell 77:321–324CrossRefGoogle Scholar
  78. Li G, Brown PJ, Tang JX et al (2012) Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol Microbiol 83:41–51CrossRefGoogle Scholar
  79. Liu R, Ochman H (2007) Origins of flagellar gene operons and secondary flagellar systems. J Bacteriol 189:7098–7104CrossRefGoogle Scholar
  80. Locht C, Berlin P, Menozzi FD et al (1993) The filamentous haemagglutinin, a multifaceted adhesin produced by virulent Bordetella spp. Mol Microbiol 9:653–660CrossRefGoogle Scholar
  81. Madsen JS, Burmølle M, Hansen LH et al (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Mic 65:183–195CrossRefGoogle Scholar
  82. Mangan EK, Malakooti J, Caballero A et al (1999) FlbT couples flagellum assembly to gene expression in Caulobacter crescentus. J Bacteriol 181:6160–6170Google Scholar
  83. Matthysse AG (1983) Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154:906–915Google Scholar
  84. Matthysse AG (1987) Characterization of nonattaching mutants of Agrobacterium tumefaciens. J Bacteriol 169:313–323CrossRefGoogle Scholar
  85. Matthysse AG (2014) Attachment of Agrobacterium to plant surfaces. Front Plant Sci 5:252CrossRefGoogle Scholar
  86. Matthysse AG, Holmes KV, Gurlitz RH (1981) Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145:583–595Google Scholar
  87. Matthysse AG, Jaeckel P, Jeter C (2008) attG and attC mutations of Agrobacterium tumefaciens are dominant negative mutations that block attachment and virulence. Can J Microbiol 54:241–247CrossRefGoogle Scholar
  88. Matthysse AG, Marry M, Krall L et al (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant Microbe Interac 18:1002–1010CrossRefGoogle Scholar
  89. Matthysse AG, Thomas DL, White AR (1995a) Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1076–1081CrossRefGoogle Scholar
  90. Matthysse AG, White S, Lightfoot R (1995b) Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1069–1075CrossRefGoogle Scholar
  91. Matthysse AG, Yarnall H, Boles SB et al (2000) A region of the Agrobacterium tumefaciens chromosome containing genes required for virulence and attachment to host cells. Biophys Biochi. Acta 1490:208–212CrossRefGoogle Scholar
  92. Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314CrossRefGoogle Scholar
  93. McDermott TR (2000) Phosphorus assimilation and regulation in the rhizobia. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Norfolk, United Kingdom, pp 529–548Google Scholar
  94. McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1→3)-β-d-glucans. Appl Microbiol Biotech 68:163–173CrossRefGoogle Scholar
  95. Macnab RM (1996) Flagella and motility. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington DC, pp 123–145Google Scholar
  96. Meadows PS (1971) The attachment of bacteria to solid surfaces. Arch Microbiol 75:374–381Google Scholar
  97. Merritt PM, Danhorn T, Fuqua C (2007) Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol 189:8005–8014CrossRefGoogle Scholar
  98. Mi W, Li Y, Yoon SH et al (2017) Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549:233CrossRefGoogle Scholar
  99. Mohari B, Licata NA, Kysela DT et al (2015) Novel pseudotaxis mechanisms improve migration of straight-swimming bacterial mutants through a porous environment. MBio 6:e00005-15Google Scholar
  100. Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181CrossRefGoogle Scholar
  101. Nair GR, Liu Z, Binns AN (2003) Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. Plant Physiol 133:989–999CrossRefGoogle Scholar
  102. Nakanishi I, Kimura K, Suzuki T et al (1976) Demonstration of curdlan-type polysaccharide and some other β-1, 3-glucan in microorganisms with aniline blue. J Gen Appl Microbiol 22:1–11CrossRefGoogle Scholar
  103. Oberpichler I, Rosen R, Rasouly A et al (2008) Light affects motility and infectivity of Agrobacterium tumefaciens. Environ Microbiol 10:2020–2029CrossRefGoogle Scholar
  104. Osterman IA, Dikhtyar YY, Bogdanov AA et al (2015) Regulation of flagellar gene expression in bacteria. Biochemistry (Moscow) 80:1447–1456CrossRefGoogle Scholar
  105. Pallen MJ, Matzke NJ (2006) from the origin of species to the origin of bacterial flagella. Nat Rev Microbiol 4:784CrossRefGoogle Scholar
  106. Paul R, Weiser S, Amiot NC et al (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Gene Dev 18:715–727CrossRefGoogle Scholar
  107. Piper KR, Beck von Bodman S, Farrand SK (1993) Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–450CrossRefGoogle Scholar
  108. Ramey BE, Matthysse AG, Fuqua C (2004) The FNR-type transcriptional regulator SinR controls maturation of Agrobacterium tumefaciens biofilms. Mol Microbiol 52:1495–1511CrossRefGoogle Scholar
  109. Reuber TL, Walker GC (1993) Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 74:269–280CrossRefGoogle Scholar
  110. Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212CrossRefGoogle Scholar
  111. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52CrossRefGoogle Scholar
  112. Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557CrossRefGoogle Scholar
  113. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinbergerohana P, Mayer R, Braun S, Devroom E, Vandermarel GA, Vanboom JH, Benziman M (1987) Regulation of cellulose synthase in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281CrossRefGoogle Scholar
  114. Rotter C, Mühlbacher S, Salamon D et al (2006) Rem, a new transcriptional activator of motility and chemotaxis in Sinorhizobium meliloti. J Bacteriol 188:6932–6942CrossRefGoogle Scholar
  115. Ruffing AM, Castro-Melchor M, Hu WS et al (2011) Genome sequence of the curdlan-producing Agrobacterium sp. strain ATCC 31749. J Bacteriol 193:4294–4295CrossRefGoogle Scholar
  116. Ruffing AM, Chen RR (2012) Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis. Microb Cell Fact 11:17CrossRefGoogle Scholar
  117. Russo DM, Williams A, Edwards A et al (2006) Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J Bacteriol 188:4474–4486CrossRefGoogle Scholar
  118. Sauer K, Camper AK, Ehrlich GD et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154CrossRefGoogle Scholar
  119. Schäper S, Krol E, Skotnicka D et al (2016) Cyclic di-GMP regulates multiple cellular functions in the symbiotic alphaproteobacterium Sinorhizobium meliloti. J Bacteriol 198:521–535CrossRefGoogle Scholar
  120. Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496CrossRefGoogle Scholar
  121. Schuhmacher JS, Thormann KM, Bange G (2015) How bacteria maintain location and number of flagella? FEMS Microbiol Rev 39:812–822CrossRefGoogle Scholar
  122. Shaw CH, Loake GJ, Brown AP et al (1991) Isolation and characterization of behavioural mutants and genes of Agrobacterium tumefaciens. Microbiology 137:1939–1953Google Scholar
  123. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioproc E 10:1CrossRefGoogle Scholar
  124. Skerker JM, Shapiro L (2000) Identification and cell cycle control of a novel pilus system in Caulobacter crescentus. EMBO J 19:3223–3234CrossRefGoogle Scholar
  125. Smit G, Logman TJ, Boerrigter ME et al (1989) Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+-dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips. J Bacteriol 171:4054–4062CrossRefGoogle Scholar
  126. Sommer JM, Newton A (1989) Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus. J Bacteriol 171:392–401CrossRefGoogle Scholar
  127. Sourjik V, Muschler P, Scharf B, Schmitt R (2000) VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J Bacteriol 182:782–788CrossRefGoogle Scholar
  128. Sourjik V, Schmitt R (1996) Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol Microbiol 22:427–436CrossRefGoogle Scholar
  129. Stasinopoulos SJ, Fisher PR, Stone BA et al (1999) Detection of two loci involved in (1→3)-β-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene. Glycobiol 9:31–41CrossRefGoogle Scholar
  130. Toh E, Kurtz HD, Brun YV (2008) Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps. J Bacteriol 190:7219–7231CrossRefGoogle Scholar
  131. Tomich M, Planet PJ, Figurski DH (2007) The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5:363CrossRefGoogle Scholar
  132. Tomlinson AD, Fuqua C (2009) Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Curr Opin Microbiol 12:708–714CrossRefGoogle Scholar
  133. Tomlinson AD, Ramey-Hartung B, Day TW et al (2010) Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. Microbiology 156:2670–2681CrossRefGoogle Scholar
  134. Visick KL, Schembri MA, Yildiz F et al (2016) Biofilms 2015: multidisciplinary approaches shed light into microbial life on surfaces. J Bacteriol 198:2553–2563CrossRefGoogle Scholar
  135. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037CrossRefGoogle Scholar
  136. Wan Z, Brown PJ, Elliott EN, Brun YV (2013) The adhesive and cohesive properties of a bacterial polysaccharide adhesin are modulated by a deacetylase. Mol Microbiol 88:486–500CrossRefGoogle Scholar
  137. Wang Y, Haitjema CH, Fuqua C (2014) The Ctp type IVb pilus locus of Agrobacterium tumefaciens directs formation of the common pili and contributes to reversible surface attachment. J Bacteriol 196:2979–2988CrossRefGoogle Scholar
  138. Wang Y, Kim SH, Natarajan R et al (2016) Spermidine inversely influences surface interactions and planktonic growth in Agrobacterium tumefaciens. J Bacteriol 198:2682–2691CrossRefGoogle Scholar
  139. Wang X, Yang F, von Bodman SB (2012) The genetic and structural basis of two distinct terminal side branch residues in stewartan and amylovoran exopolysaccharides and their potential role in host adaptation. Mol Microbiol 83:195–207CrossRefGoogle Scholar
  140. Williamson RE, Burn JE, Hocart CH (2002) Towards the mechanism of cellulose synthesis. Trends Plant Sci 7:461–467CrossRefGoogle Scholar
  141. Wolfe AJ, Visick KL (eds) (2010) The second messenger cyclic di-GMP. ASM Press, USAGoogle Scholar
  142. Wood DW, Setubal JC, Kaul R et al (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323CrossRefGoogle Scholar
  143. Wu CF, Lin JS, Shaw GC et al (2012) Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog 8:e1002938CrossRefGoogle Scholar
  144. Xu J, Kim J, Danhorn T et al (2012) Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Res Microbiol 163:674–684CrossRefGoogle Scholar
  145. Xu J, Kim J, Koestler BJ et al (2013) Genetic analysis of Agrobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile-to-sessile switch. Mol Microbiol 89:929–948CrossRefGoogle Scholar
  146. Yu X, Zhang C, Yang L et al (2015) CrdR function in a curdlan-producing Agrobacterium sp. ATCC31749 strain. BMC Microbiol 15:25CrossRefGoogle Scholar
  147. Zatakia HM, Arapov TD, Meier VM et al (2018) Cellular stoichiometry of methyl-accepting chemotaxis proteins in Sinorhizobium meliloti. J Bacteriol 200:e00614–e00617Google Scholar
  148. Zhan XB, Lin CC, Zhang HT (2012) Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl Microbiol Biotechnol 93:525–531CrossRefGoogle Scholar
  149. Zhu Y, Nam J, Humara JM et al (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132:494–505CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Melene A. Thompson
    • 1
  • Maureen C. Onyeziri
    • 1
  • Clay Fuqua
    • 1
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations