Advertisement

Development of Activity-Based Proteomic Probes for Protein Citrullination

  • Venkatesh V. Nemmara
  • Paul R. ThompsonEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 420)

Abstract

Protein arginine deiminases (PADs) catalyze the post-translational deimination of peptidyl arginine to form peptidyl citrulline. This modification is increased in multiple inflammatory diseases and in certain cancers. PADs regulate a variety of signaling pathways including apoptosis, terminal differentiation, and transcriptional regulation. Activity-based protein profiling (ABPP) probes have been developed to understand the role of the PADs in vivo and to investigate the effect of protein citrullination in various pathological conditions. Furthermore, these ABPPs have been utilized as a platform for high-throughput inhibitor discovery. This review will showcase the development of ABPPs targeting the PADs. In addition, it provides a brief overview of PAD structure and function along with recent advances in PAD inhibitor development.

References

  1. Acharya NK, Nagele EP, Han M, Coretti NJ, DeMarshall C, Kosciuk MC, Boulos PA, Nagele RG (2012) Neuronal PAD4 expression and protein citrullination: possible role in production of autoantibodies associated with neurodegenerative disease. J Autoimmun 38(4):369–380.  https://doi.org/10.1016/j.jaut.2012.03.004CrossRefPubMedGoogle Scholar
  2. Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M (2004) Structural basis for Ca(2+)-induced activation of human PAD4. Nat Struct Mol Biol 11(8):777–783.  https://doi.org/10.1038/nsmb799CrossRefGoogle Scholar
  3. Arita K, Shimizu T, Hashimoto H, Hidaka Y, Yamada M, Sato M (2006) Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. Proc Natl Acad Sci U S A 103(14):5291–5296.  https://doi.org/10.1073/pnas.0509639103CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bawadekar M, Gendron-Fitzpatrick A, Rebernick R, Shim D, Warner TF, Nicholas AP, Lundblad LK, Thompson PR, Shelef MA (2016) Tumor necrosis factor alpha, citrullination, and peptidylarginine deiminase 4 in lung and joint inflammation. Arthritis Res Ther 18(1):173.  https://doi.org/10.1186/s13075-016-1068-0CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bicker KL, Anguish L, Chumanevich AA, Cameron MD, Cui X, Witalison E, Subramanian V, Zhang X, Chumanevich AP, Hofseth LJ et al (2012a) d-amino acid based protein arginine deiminase inhibitors: Synthesis, pharmacokinetics, and in cellulo efficacy. ACS Med Chem Lett 3(12):1081–1085.  https://doi.org/10.1021/ml300288dCrossRefPubMedPubMedCentralGoogle Scholar
  6. Bicker KL, Subramanian V, Chumanevich AA, Hofseth LJ, Thompson PR (2012b) Seeing citrulline: development of a phenylglyoxal-based probe to visualize protein citrullination. J Am Chem Soc 134(41):17015–17018.  https://doi.org/10.1021/ja308871vCrossRefPubMedPubMedCentralGoogle Scholar
  7. Bicker KL, Thompson PR (2013) The protein arginine deiminases: Structure, function, inhibition, and disease. Biopolymers 99(2):155–163.  https://doi.org/10.1002/bip.22127CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carmona-Rivera C, Carlucci PM, Moore E, Lingampalli N, Uchtenhagen H, James E, Liu Y, Bicker KL, Wahamaa H, Hoffmann V et al (2017) Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol 2(10).  https://doi.org/10.1126/sciimmunol.aag3358CrossRefGoogle Scholar
  9. Causey CP, Jones JE, Slack JL, Kamei D, Jones LE, Subramanian V, Knuckley B, Ebrahimi P, Chumanevich AA, Luo Y et al (2011) The development of N-alpha-(2-carboxyl)benzoyl-N(5)-(2-fluoro-1-iminoethyl)-l-ornithine amide (o-F-amidine) and N-alpha-(2-carboxyl)benzoyl-N(5)-(2-chloro-1-iminoethyl)-l-ornithine amide (o-Cl-amidine) as second generation protein arginine deiminase (PAD) inhibitors. J Med Chem 54(19):6919–6935.  https://doi.org/10.1021/jm2008985CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cherrington BD, Morency E, Struble AM, Coonrod SA, Wakshlag JJ (2010) Potential role for peptidylarginine deiminase 2 (PAD2) in citrullination of canine mammary epithelial cell histones. PLoS ONE 5(7):e11768.  https://doi.org/10.1371/journal.pone.0011768CrossRefPubMedPubMedCentralGoogle Scholar
  11. Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JC, Zernicka-Goetz M et al (2014) Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507(7490):104–108.  https://doi.org/10.1038/nature12942CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chumanevich AA, Causey CP, Knuckley BA, Jones JE, Poudyal D, Chumanevich AP, Davis T, Matesic LE, Thompson PR, Hofseth LJ (2011) Suppression of Colitis in Mice by Cl-Amidine: a novel Peptidylarginine Deiminase (Pad) Inhibitor. Am J Physiol Gastrointest Liver Physiol 300(6):G929–G938.  https://doi.org/10.1152/ajpgi.00435.2010CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clancy KW, Russell AM, Subramanian V, Nguyen H, Qian Y, Campbell RM, Thompson PR (2017) Citrullination/methylation crosstalk on Histone H3 regulates ER-target gene transcription. ACS Chem Biol 12(6):1691–1702.  https://doi.org/10.1021/acschembio.7b00241CrossRefPubMedPubMedCentralGoogle Scholar
  14. De Ceuleneer M, De Wit V, Van Steendam K, Van Nieuwerburgh F, Tilleman K, Deforce D (2011) Modification of citrulline residues with 2,3-butanedione facilitates their detection by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 25(11):1536–1542.  https://doi.org/10.1002/rcm.5015CrossRefPubMedGoogle Scholar
  15. Dreyton CJ, Anderson ED, Subramanian V, Boger DL, Thompson PR (2014a) Insights into the mechanism of streptonigrin-induced protein arginine deiminase inactivation. Bioorg Med Chem 22(4):1362–1369.  https://doi.org/10.1016/j.bmc.2013.12.064CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dreyton CJ, Knuckley B, Jones JE, Lewallen DM, Thompson PR (2014b) Mechanistic studies of protein arginine deiminase 2: evidence for a substrate-assisted mechanism. Biochemistry 53(27):4426–4433.  https://doi.org/10.1021/bi500554bCrossRefPubMedPubMedCentralGoogle Scholar
  17. Esposito G, Vitale AM, Leijten FP, Strik AM, Koonen-Reemst AM, Yurttas P, Robben TJ, Coonrod S, Gossen JA (2007) Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol 273(1–2):25–31.  https://doi.org/10.1016/j.mce.2007.05.005CrossRefPubMedGoogle Scholar
  18. Fuhrmann J, Clancy KW, Thompson PR (2015) Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 115(11):5413–5461.  https://doi.org/10.1021/acs.chemrev.5b00003CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fuhrmann J, Thompson PR (2016) Protein arginine methylation and citrullination in epigenetic regulation. ACS Chem Biol 11(3):654–668.  https://doi.org/10.1021/acschembio.5b00942CrossRefPubMedGoogle Scholar
  20. Ghari F, Quirke AM, Munro S, Kawalkowska J, Picaud S, McGouran J, Subramanian V, Muth A, Williams R, Kessler B et al (2016) Citrullination-acetylation interplay guides E2F-1 activity during the inflammatory response. Sci Adv 2(2):e1501257.  https://doi.org/10.1126/sciadv.1501257CrossRefGoogle Scholar
  21. Holm A, Rise F, Sessler N, Sollid LM, Undheim K, Fleckenstein B (2006) Specific modification of peptide-bound citrulline residues. Anal Biochem 352(1):68–76.  https://doi.org/10.1016/j.ab.2006.02.007CrossRefPubMedGoogle Scholar
  22. Horibata S, Vo TV, Subramanian V, Thompson PR, Coonrod SA (2015) Utilization of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast cancer cells. J Vis Exp (99):e52727.  https://doi.org/10.3791/52727
  23. Ishida-Yamamoto A, Senshu T, Eady RA, Takahashi H, Shimizu H, Akiyama M, Iizuka H (2002) Sequential reorganization of cornified cell keratin filaments involving filaggrin-mediated compaction and keratin 1 deimination. J Invest Dermatol 118(2):282–287.  https://doi.org/10.1046/j.0022-202x.2001.01671.xCrossRefPubMedGoogle Scholar
  24. Ishigami A, Ohsawa T, Hiratsuka M, Taguchi H, Kobayashi S, Saito Y, Murayama S, Asaga H, Toda T, Kimura N et al (2005) Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J Neurosci Res 80(1):120–128.  https://doi.org/10.1002/jnr.20431CrossRefPubMedGoogle Scholar
  25. Jamali H, Khan HA, Stringer JR, Chowdhury S, Ellman JA (2015) Identification of multiple structurally distinct, nonpeptidic small molecule inhibitors of protein arginine deiminase 3 using a substrate-based fragment method. J Am Chem Soc 137(10):3616–3621.  https://doi.org/10.1021/jacs.5b00095CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jamali H, Khan HA, Tjin CC, Ellman JA (2016) Cellular activity of new small molecule protein arginine deiminase 3 (PAD3) inhibitors. ACS Med Chem Lett 7(9):847–851.  https://doi.org/10.1021/acsmedchemlett.6b00215CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jang B, Kim E, Choi JK, Jin JK, Kim JI, Ishigami A, Maruyama N, Carp RI, Kim YS, Choi EK (2008) Accumulation of citrullinated proteins by up-regulated peptidylarginine deiminase 2 in brains of scrapie-infected mice: a possible role in pathogenesis. Am J Pathol 173(4):1129–1142.  https://doi.org/10.2353/ajpath.2008.080388CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jang B, Shin HY, Choi JK, du Nguyen PT, Jeong BH, Ishigami A, Maruyama N, Carp RI, Kim YS, Choi EK (2011) Subcellular localization of peptidylarginine deiminase 2 and citrullinated proteins in brains of scrapie-infected mice: nuclear localization of PAD2 and membrane fraction- enriched citrullinated proteins. J Neuropathol Exp Neurol 70(2):116–124.  https://doi.org/10.1097/NEN.0b013e318207559eCrossRefPubMedGoogle Scholar
  29. Jones JE, Causey CP, Knuckley B, Slack-Noyes JL, Thompson PR (2009) Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. Curr Opin Drug Discov Devel 12(5):616–627Google Scholar
  30. Jones JE, Slack JL, Fang P, Zhang X, Subramanian V, Causey CP, Coonrod SA, Guo M, Thompson PR (2012) Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. ACS Chem Biol 7(1):160–165.  https://doi.org/10.1021/cb200258qCrossRefPubMedGoogle Scholar
  31. Kan R, Jin M, Subramanian V, Causey CP, Thompson PR, Coonrod SA (2012) Potential role for PADI-mediated histone citrullination in preimplantation development. BMC Dev Biol 1219.  https://doi.org/10.1186/1471-213x-12-19CrossRefGoogle Scholar
  32. Kawalkowska J, Quirke AM, Ghari F, Davis S, Subramanian V, Thompson PR, Williams RO, Fischer R, La Thangue NB, Venables PJ (2016) Abrogation of collagen–induced arthritis by a peptidyl arginine deiminase inhibitor is associated with modulation of T cell-mediated immune responses. Sci Rep 626430.  https://doi.org/10.1038/srep26430
  33. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, Friday S, Li S, Patel RM, Subramanian V et al (2013) NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 5(178):178ra140.  https://doi.org/10.1126/scitranslmed.3005580CrossRefGoogle Scholar
  34. Knight JS, Luo W, O’Dell AA, Yalavarthi S, Zhao W, Subramanian V, Guo C, Grenn RC, Thompson PR, Eitzman DT et al (2014) Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 114(6):947–956.  https://doi.org/10.1161/CIRCRESAHA.114.303312CrossRefPubMedPubMedCentralGoogle Scholar
  35. Knight JS, Subramanian V, O’Dell AA, Yalavarthi S, Zhao W, Smith CK, Hodgin JB, Thompson PR, Kaplan MJ (2015) Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis 74(12):2199–2206.  https://doi.org/10.1136/annrheumdis-2014-205365CrossRefPubMedGoogle Scholar
  36. Knight JS, Zhao W, Luo W, Subramanian V, O’Dell AA, Yalavarthi S, Hodgin JB, Eitzman DT, Thompson PR, Kaplan MJ (2013) Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest 123(7):2981–2993.  https://doi.org/10.1172/JCI67390CrossRefPubMedPubMedCentralGoogle Scholar
  37. Knuckley B, Bhatia M, Thompson PR (2007) Protein arginine deiminase 4: evidence for a reverse protonation mechanism. Biochemistry 46(22):6578–6587. https://doi.org/10.1021/bi700095sCrossRefGoogle Scholar
  38. Knuckley B, Causey CP, Jones JE, Bhatia M, Dreyton CJ, Osborne TC, Takahara H, Thompson PR (2010a) Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 49(23):4852–4863.  https://doi.org/10.1021/bi100363tCrossRefPubMedPubMedCentralGoogle Scholar
  39. Knuckley B, Causey CP, Pellechia PJ, Cook PF, Thompson PR (2010b) Haloacetamidine- based inactivators of protein arginine deiminase 4 (PAD4): evidence that general acid catalysis promotes efficient inactivation. ChemBioChem 11(2):161–165.  https://doi.org/10.1002/cbic.200900698CrossRefPubMedPubMedCentralGoogle Scholar
  40. Knuckley B, Jones JE, Bachovchin DA, Slack J, Causey CP, Brown SJ, Rosen H, Cravatt BF, Thompson PR (2010c) A fluopol-ABPP HTS assay to identify PAD inhibitors. Chem Commun (Camb) 46(38):7175–7177.  https://doi.org/10.1039/c0cc02634dCrossRefGoogle Scholar
  41. Knuckley B, Luo Y, Thompson PR (2008) Profiling Protein Arginine Deiminase 4 (PAD4): a novel screen to identify PAD4 inhibitors. Bioorg Med Chem 16(2):739–745.  https://doi.org/10.1016/j.bmc.2007.10.021CrossRefPubMedGoogle Scholar
  42. Lange S, Gogel S, Leung KY, Vernay B, Nicholas AP, Causey CP, Thompson PR, Greene ND, Ferretti P (2011) Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability. Dev Biol 355(2):205–214.  https://doi.org/10.1016/j.ydbio.2011.04.015CrossRefPubMedPubMedCentralGoogle Scholar
  43. Leffler J, Martin M, Gullstrand B, Tyden H, Lood C, Truedsson L, Bengtsson AA, Blom AM (2012) Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 188(7):3522–3531.  https://doi.org/10.4049/jimmunol.1102404CrossRefPubMedGoogle Scholar
  44. Lewallen DM, Bicker KL, Madoux F, Chase P, Anguish L, Coonrod S, Hodder P, Thompson PR (2014) A FluoPol-ABPP PAD2 high-throughput screen identifies the first calcium site inhibitor targeting the PADs. ACS Chem Biol 9(4):913–921.  https://doi.org/10.1021/cb400841kCrossRefPubMedPubMedCentralGoogle Scholar
  45. Lewallen DM, Bicker KL, Subramanian V, Clancy KW, Slade DJ, Martell J, Dreyton CJ, Sokolove J, Weerapana E, Thompson PR (2015) Chemical proteomic platform to identify citrullinated proteins. ACS Chem Biol 10(11):2520–2528.  https://doi.org/10.1021/acschembio.5b00438CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lewis HD, Liddle J, Coote JE, Atkinson SJ, Barker MD, Bax BD, Bicker KL, Bingham RP, Campbell M, Chen YH et al (2015) Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol 11(3):189–191.  https://doi.org/10.1038/nchembio.1735CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lewis HD, Nacht M (2016) iPAD or PADi-’tablets’ with therapeutic disease potential? Curr Opin Chem Biol 33169-178.  https://doi.org/10.1016/j.cbpa.2016.06.020CrossRefGoogle Scholar
  48. Li P, Wang D, Yao H, Doret P, Hao G, Shen Q, Qiu H, Zhang X, Wang Y, Chen G et al (2010) Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene 29(21):3153–3162.  https://doi.org/10.1038/onc.2010.51CrossRefPubMedPubMedCentralGoogle Scholar
  49. Luo Y, Arita K, Bhatia M, Knuckley B, Lee YH, Stallcup MR, Sato M, Thompson PR (2006a) Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. Biochemistry 45(39):11727–11736.  https://doi.org/10.1021/bi061180dCrossRefPubMedPubMedCentralGoogle Scholar
  50. Luo Y, Knuckley B, Bhatia M, Thompson PR (2006b) Activity based protein profiling reagents for Protein Arginine Deiminase 4 (PAD4): synthesis and in vitro evaluation of a fluorescently-labeled probe. J Am Chem Soc 128(45):14468–14469. https://doi.org/10.1021/ja0656907CrossRefGoogle Scholar
  51. Luo Y, Knuckley B, Lee YH, Stallcup MR, Thompson PR (2006c) A fluoro-acetamidine based inactivator of protein arginine deiminase 4 (PAD4): design, synthesis, and in vitro and in vivo evaluation. J Am Chem Soc 128(45):1092–1093. https://doi.org/10.1021/ja0576233CrossRefGoogle Scholar
  52. McElwee JL, Mohanan S, Griffith OL, Breuer HC, Anguish LJ, Cherrington BD, Palmer AM, Howe LR, Subramanian V, Causey CP et al (2012) Identification of PADI2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer 12(1):500.  https://doi.org/10.1186/1471-2407-12-500CrossRefPubMedPubMedCentralGoogle Scholar
  53. Moscarello MA, Pritzker L, Mastronardi FG, Wood DD (2002) Peptidylarginine deiminase: a candidate factor in demyelinating disease. J Neurochem 81(2): 335–343. https://doi.org/10.1191/1352458502ms776oaCrossRefGoogle Scholar
  54. Musse AA, Li Z, Ackerley CA, Bienzle D, Lei H, Poma R, Harauz G, Moscarello MA, Mastronardi FG (2008) Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 1(4–5):229–240.  https://doi.org/10.1242/dmm.000729CrossRefPubMedPubMedCentralGoogle Scholar
  55. Muth A, Subramanian V, Beaumont E, Nagar M, Kerry P, McEwan P, Srinath H, Clancy K, Parelkar S, Thompson PR (2017) Development of a selective inhibitor of protein arginine deiminase 2. J Med Chem 60(7):3198–3211.  https://doi.org/10.1021/acs.jmedchem.7b00274CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nakashima K, Hagiwara T, Ishigami A, Nagata S, Asaga H, Kuramoto M, Senshu T, Yamada M (1999) Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1-alpha,25-dihydroxyvitamin D(3). J Biol Chem 274(39):27786–27792. https://doi.org/10.1074/jbc.274.39.27786CrossRefGoogle Scholar
  57. Nauseef WM, Borregaard N (2014) Neutrophils at work. Nat Immunol 15(7):602–611.  https://doi.org/10.1038/ni.2921CrossRefPubMedGoogle Scholar
  58. Nemmara VV, Subramanian V, Muth A, Mondal S, Salinger AJ, Maurais AJ, Tilvawala R, Weerapana E, Thompson PR (2018) The Development of benzimidazole-based clickable probes for the efficient labeling of cellular Protein Arginine Deiminases (PADs). ACS Chem Bioldoi.  https://doi.org/10.1021/acschembio.7b00957CrossRefGoogle Scholar
  59. Pritzker LB, Moscarello MA (1998) A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. Biochim Biophys Acta 1388(1):154–160. https://doi.org/10.1016/S0167-4838(98)00175-7CrossRefGoogle Scholar
  60. Qin H, Liu X, Li F, Miao L, Li T, Xu B, An X, Muth A, Thompson PR, Coonrod SA et al (2017) PAD1 promotes epithelial-mesenchymal transition and metastasis in triple-negative breast cancer cells by regulating MEK1-ERK1/2-MMP2 signaling. Cancer Lett 40930-41.  https://doi.org/10.1016/j.canlet.2017.08.019CrossRefGoogle Scholar
  61. Raijmakers R, Zendman AJ, Egberts WV, Vossenaar ER, Raats J, Soede-Huijbregts C, Rutjes FP, van Veelen PA, Drijfhout JW, Pruijn GJ (2007) Methylation of arginine residues interferes with citrullination by peptidylarginine deiminases in vitro. J Mol Biol 367(4):1118–1129.  https://doi.org/10.1016/j.jmb.2007.01.054CrossRefPubMedGoogle Scholar
  62. Rogers G, Winter B, McLaughlan C, Powell B, Nesci T (1997) Peptidylarginine deiminase of the hair follicle: characterization, localization, and function in keratinizing tissues. J Invest Dermatol 108(5):700–707. https://doi.org/10.1111/1523-1747.ep12292083CrossRefGoogle Scholar
  63. Rogers GE, Simmonds DH (1958) Content of citrulline and other amino-acids in a protein of hair follicles. Nature 182(4629):186–187. https://doi.org/10.1038/182186a0CrossRefGoogle Scholar
  64. Saijo S, Nagai A, Kinjo S, Mashimo R, Akimoto M, Kizawa K, Yabe-Wada T, Shimizu N, Takahara H, Unno M (2016) Monomeric Form of peptidylarginine deiminase Type I revealed by X-ray crystallography and small-angle X-ray scattering. J Mol Biol 428(15):3058–3073.  https://doi.org/10.1016/j.jmb.2016.06.018CrossRefPubMedGoogle Scholar
  65. Senshu T, Kan S, Ogawa H, Manabe M, Asaga H (1996) Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem Biophys Res Commun 225(3):712–719.  https://doi.org/10.1006/bbrc.1996.1240CrossRefPubMedGoogle Scholar
  66. Slack JL, Causey CP, Luo Y, Thompson PR (2011) Development and use of clickable activity based protein profiling agents for protein arginine deiminase 4. ACS Chem Biol 6(5):466–476.  https://doi.org/10.1021/cb1003515CrossRefPubMedPubMedCentralGoogle Scholar
  67. Slade DJ, Fang P, Dreyton CJ, Zhang Y, Fuhrmann J, Rempel D, Bax BD, Coonrod SA, Lewis HD, Guo M et al (2015) Protein arginine deiminase 2 binds calcium in an ordered fashion: implications for inhibitor design. ACS Chem Biol 10(4):1043–1053.  https://doi.org/10.1021/cb500933jCrossRefPubMedPubMedCentralGoogle Scholar
  68. Slade DJ, Subramanian V, Thompson PR (2014) Pluripotency: citrullination unravels stem cells. Nat Chem Biol 10(5):327–328.  https://doi.org/10.1038/nchembio.1504CrossRefPubMedPubMedCentralGoogle Scholar
  69. Taki H, Gomi T, Knuckley B, Thompson PR, Vugrek O, Hirata K, Miyahara T, Shinoda K, Hounoki H, Sugiyama E et al (2011) Purification of enzymatically inactive peptidylarginine deiminase type 6 from mouse ovary that reveals hexameric structure different from other dimeric isoforms. Adv Biosci Biotechnol 02(04):304–310.  https://doi.org/10.4236/abb.2011.24044CrossRefGoogle Scholar
  70. Tarcsa E, Marekov LN, Mei G, Melino G, Lee SC, Steinert PM (1996) Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 271(48):30709–30716. https://doi.org/10.1074/jbc.271.48.30709CrossRefGoogle Scholar
  71. Tilvawala R, Nguyen SH, Maurais AJ, Nemmara VV, Nagar M, Salinger AJ, Nagpal S, Weerapana E, Thompson PR (2018) The rheumatoid arthritis-associated citrullinome. Cell Chem Biol 25(6):691–704. https://doi.org/10.1016/j.chembiol.2018.03.002CrossRefGoogle Scholar
  72. Weerapana E, Speers AE, Cravatt BF (2007) Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—A general method for mapping sites of probe modification in proteomes. Nat Protoc 2(6):1414–1425.  https://doi.org/10.1038/nprot.2007.194CrossRefGoogle Scholar
  73. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468(7325):790–795.  https://doi.org/10.1038/nature09472CrossRefPubMedPubMedCentralGoogle Scholar
  74. Willis VC, Banda NK, Cordova KN, Chandra PE, Robinson WH, Cooper DC, Lugo D, Mehta G, Taylor S, Tak PP et al (2017) PAD4 inhibition is sufficient for the amelioration of collagen-induced arthritis. Clin Exp Immunoldoi.  https://doi.org/10.1111/cei.12932CrossRefGoogle Scholar
  75. Willis VC, Gizinski AM, Banda NK, Causey CP, Knuckley B, Cordova KN, Luo Y, Levitt B, Glogowska M, Chandra P et al (2011) N-alpha;-Benzoyl-N5-(2-Chloro-1-Iminoethyl)-l-Ornithine Amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol 186(7):4396–4404.  https://doi.org/10.4049/jimmunol.1001620CrossRefPubMedPubMedCentralGoogle Scholar
  76. Witalison EE, Thompson PR, Hofseth LJ (2015) Protein arginine deiminases and associated citrullination: physiological functions and diseases associated with dysregulation. Curr Drug Targets 16(7):700–710. https://doi.org/10.2174/1389450116666150202160954CrossRefGoogle Scholar
  77. Zhang X, Bolt M, Guertin MJ, Chen W, Zhang S, Cherrington BD, Slade DJ, Dreyton CJ, Subramanian V, Bicker KL et al (2012) Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation. Proc Natl Acad Sci U S A 10913331–13336.  https://doi.org/10.1073/pnas.1203280109CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Program in Chemical BiologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations