Advertisement

Activity-Based Protein Profiling at the Host–Pathogen Interface

  • Yekaterina Kovalyova
  • Stavroula K. HatziosEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 420)

Abstract

Activity-based protein profiling (ABPP) is a technique for selectively detecting reactive amino acids in complex proteomes with the aid of chemical probes. Using probes that target catalytically active enzymes, ABPP can rapidly define the functional proteome of a biological system. In recent years, this approach has been increasingly applied to globally profile enzymes active at the host–pathogen interface of microbial infections. From in vitro co-culture systems to animal models of infection, these studies have revealed enzyme-mediated mechanisms of microbial pathogenicity, host immunity, and metabolic adaptation that dynamically shape pathogen interactions with the host.

Notes

Acknowledgements

We gratefully acknowledge Pamela Chang, Joshua Gendron, Yannick Jacob, and Lindsay Triplett for providing helpful feedback on this manuscript. Y. K. was supported by an NIH Predoctoral Training Grant (T32GM067543).

References

  1. Ashida H, Kim M, Sasakawa C (2014) Exploitation of the host ubiquitin system by human bacterial pathogens. Nat Rev Microbiol 12:399–413CrossRefGoogle Scholar
  2. Bachovchin DA, Brown SJ, Rosen H, Cravatt BF (2009) Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat Biotechnol 27:387–394CrossRefGoogle Scholar
  3. Behnsen J, Perez-Lopez A, Nuccio SP, Raffatellu M (2015) Exploiting host immunity: the Salmonella paradigm. Trends Immunol 36:112–120CrossRefGoogle Scholar
  4. Bender KO, Garland M, Ferreyra JA, Hryckowian AJ, Child MA, Puri AW, Solow-Cordero DE, Higginbottom SK, Segal E, Banaei N et al (2015) A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 7:306ra148Google Scholar
  5. Broz P, Ohlson MB, Monack DM (2012) Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 3:62–70CrossRefGoogle Scholar
  6. Carey AF, Rock JM, Krieger IV, Chase MR, Fernandez-Suarez M, Gagneux S, Sacchettini JC, Ioerger TR, Fortune SM (2018) TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog 14:e1006939CrossRefGoogle Scholar
  7. Cenac N, Coelho AM, Nguyen C, Compton S, Andrade-Gordon P, MacNaughton WK, Wallace JL, Hollenberg MD, Bunnett NW, Garcia-Villar R et al (2002) Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am J Pathol 161:1903–1915CrossRefGoogle Scholar
  8. Child MA, Hall CI, Beck JR, Ofori LO, Albrow VE, Garland M, Bowyer PW, Bradley PJ, Powers JC, Boothroyd JC et al (2013) Small-molecule inhibition of a depalmitoylase enhances Toxoplasma host-cell invasion. Nat Chem Biol 9:651–656CrossRefGoogle Scholar
  9. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414CrossRefGoogle Scholar
  10. Creagh EM (2014) Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 35:631–640CrossRefGoogle Scholar
  11. Duell BL, Cripps AW, Schembri MA, Ulett GC (2011) Epithelial cell coculture models for studying infectious diseases: benefits and limitations. J Biomed Biotechnol 2011:852419CrossRefGoogle Scholar
  12. Esmon CT, Xu J, Lupu F (2011) Innate immunity and coagulation. J Thromb Haemost 9(Suppl 1):182–188CrossRefGoogle Scholar
  13. Gloeckl S, Ong VA, Patel P, Tyndall JD, Timms P, Beagley KW, Allan JA, Armitage CW, Turnbull L, Whitchurch CB et al (2013) Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to Chlamydia trachomatis. Mol Microbiol 89:676–689CrossRefGoogle Scholar
  14. Grosse-Holz F, Kelly S, Blaskowski S, Kaschani F, Kaiser M, van der Hoorn RAL (2018) The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. Plant Biotechnol J 16:1068–1084CrossRefGoogle Scholar
  15. Guo CJ, Chang FY, Wyche TP, Backus KM, Acker TM, Funabashi M, Taketani M, Donia MS, Nayfach S, Pollard KS et al (2017) Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168:517–526CrossRefGoogle Scholar
  16. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999CrossRefGoogle Scholar
  17. Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A, Wallace JL, Hollenberg MD, Vergnolle N (2005) A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci U S A 102:8363–8368CrossRefGoogle Scholar
  18. Hatzios SK, Abel S, Martell J, Hubbard T, Sasabe J, Munera D, Clark L, Bachovchin DA, Qadri F, Ryan ET et al (2016) Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol 12:268–274CrossRefGoogle Scholar
  19. Heal WP, Dang TH, Tate EW (2011) Activity-based probes: discovering new biology and new drug targets. Chem Soc Rev 40:246–257CrossRefGoogle Scholar
  20. Heal WP, Tate EW (2012) Application of activity-based protein profiling to the study of microbial pathogenesis. Top Curr Chem 324:115–135CrossRefGoogle Scholar
  21. Hernandez-Cervantes R, Mendez-Diaz M, Prospero-Garcia O, Morales-Montor J (2017) Immunoregulatory role of cannabinoids during infectious disease. NeuroImmunoModulation 24:183–199CrossRefGoogle Scholar
  22. Jashni MK, Mehrabi R, Collemare J, Mesarich CH, de Wit PJ (2015) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front Plant Sci 6:584CrossRefGoogle Scholar
  23. Kanca O, Bellen HJ, Schnorrer F (2017) Gene tagging strategies to assess protein expression, localization, and function in Drosophila. Genetics 207:389–412PubMedPubMedCentralGoogle Scholar
  24. Karcz SR, Podesta RB, Siddiqui AA, Dekaban GA, Strejan GH, Clarke MW (1991) Molecular cloning and sequence analysis of a calcium-activated neutral protease (calpain) from Schistosoma mansoni. Mol Biochem Parasitol 49:333–336CrossRefGoogle Scholar
  25. Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823–835CrossRefGoogle Scholar
  26. Kaschani F, Gu C, Niessen S, Hoover H, Cravatt BF, van der Hoorn RA (2009) Diversity of serine hydrolase activities of unchallenged and Botrytis-infected Arabidopsis thaliana. Mol Cell Proteomics 8:1082–1093CrossRefGoogle Scholar
  27. Kaschani F, Gu C, van der Hoorn RA (2012) Activity-based protein profiling of infected plants. Methods Mol Biol 835:47–59CrossRefGoogle Scholar
  28. Kolodziejek I, Misas-Villamil JC, Kaschani F, Clerc J, Gu C, Krahn D, Niessen S, Verdoes M, Willems LI, Overkleeft HS et al (2011) Proteasome activity imaging and profiling characterizes bacterial effector syringolin A. Plant Physiol 155:477–489CrossRefGoogle Scholar
  29. Kummari E, Alugubelly N, Hsu CY, Dong B, Nanduri B, Edelmann MJ (2015) Activity-based proteomic profiling of deubiquitinating enzymes in Salmonella-infected macrophages leads to identification of putative function of UCH-L5 in inflammasome regulation. PLoS ONE 10:e0135531CrossRefGoogle Scholar
  30. Lee JH, Hou X, Kummari E, Borazjani A, Edelmann MJ, Ross MK (2018) Endocannabinoid hydrolases in avian HD11 macrophages identified by chemoproteomics: inactivation by small-molecule inhibitors and pathogen-induced downregulation of their activity. Mol Cell Biochem 444:125–141CrossRefGoogle Scholar
  31. Lentz CS, Ordonez AA, Kasperkiewicz P, La Greca F, O’Donoghue AJ, Schulze CJ, Powers JC, Craik CS, Drag M, Jain SK et al (2016) Design of selective substrates and activity-based probes for Hydrolase Important for Pathogenesis 1 (HIP1) from Mycobacterium tuberculosis. ACS Infect Dis 2:807–815CrossRefGoogle Scholar
  32. Lu H, Wang Z, Shabab M, Oeljeklaus J, Verhelst SH, Kaschani F, Kaiser M, Bogyo M, van der Hoorn RA (2013) A substrate-inspired probe monitors translocation, activation, and subcellular targeting of bacterial type III effector protease AvrPphB. Chem Biol 20:168–176CrossRefGoogle Scholar
  33. Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, Waldor MK (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10:165–174CrossRefGoogle Scholar
  34. Mayers MD, Moon C, Stupp GS, Su AI, Wolan DW (2017) Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease. J Proteome Res 16:1014–1026CrossRefGoogle Scholar
  35. Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192CrossRefGoogle Scholar
  36. Misas-Villamil JC, van der Burgh AM, Grosse-Holz F, Bach-Pages M, Kovacs J, Kaschani F, Schilasky S, Emon AE, Ruben M, Kaiser M et al (2017) Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections. Plant J 90:418–430CrossRefGoogle Scholar
  37. Moellering RE, Cravatt BF (2012) How chemoproteomics can enable drug discovery and development. Chem Biol 19:11–22CrossRefGoogle Scholar
  38. Place DE, Kanneganti TD (2018) Recent advances in inflammasome biology. Curr Opin Immunol 50:32–38CrossRefGoogle Scholar
  39. Puri AW, Bogyo M (2013) Applications of small molecule probes in dissecting mechanisms of bacterial virulence and host responses. Biochemistry 52:5985–5996CrossRefGoogle Scholar
  40. Puri AW, Broz P, Shen A, Monack DM, Bogyo M (2012) Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection. Nat Chem Biol 8:745–747CrossRefGoogle Scholar
  41. Rooney HC, Van’t Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783–1786CrossRefGoogle Scholar
  42. Sadler NC, Wright AT (2015) Activity-based protein profiling of microbes. Curr Opin Chem Biol 24:139–144CrossRefGoogle Scholar
  43. Shahiduzzaman M, Coombs KM (2012) Activity based protein profiling to detect serine hydrolase alterations in virus infected cells. Front Microbiol 3:308CrossRefGoogle Scholar
  44. Shindo T, Kaschani F, Yang F, Kovacs J, Tian F, Kourelis J, Hong TN, Colby T, Shabab M, Chawla R et al (2016) Screen of non-annotated small secreted proteins of Pseudomonas syringae reveals a virulence factor that inhibits tomato immune proteases. PLoS Pathog 12:e1005874CrossRefGoogle Scholar
  45. Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn RA, Kamoun S (2009) Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci U S A 106:1654–1659CrossRefGoogle Scholar
  46. Stone SE, Glenn WS, Hamblin GD, Tirrell DA (2017) Cell-selective proteomics for biological discovery. Curr Opin Chem Biol 36:50–57CrossRefGoogle Scholar
  47. Strmiskova M, Desrochers GF, Shaw TA, Powdrill MH, Lafreniere MA, Pezacki JP (2016) Chemical methods for probing virus-host proteomic interactions. ACS Infect Dis 2:773–786CrossRefGoogle Scholar
  48. Surmann K, Simon M, Hildebrandt P, Pfortner H, Michalik S, Stentzel S, Steil L, Dhople VM, Bernhardt J, Schluter R et al (2015) A proteomic perspective of the interplay of Staphylococcus aureus and human alveolar epithelial cells during infection. J Proteomics 128:203–217CrossRefGoogle Scholar
  49. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26:399–422CrossRefGoogle Scholar
  50. Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S (2007) A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143:364–377CrossRefGoogle Scholar
  51. Toruno TY, Stergiopoulos I, Coaker G (2016) Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu Rev Phytopathol 54:419–441CrossRefGoogle Scholar
  52. van der Hoorn RA, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017CrossRefGoogle Scholar
  53. van der Hoorn RA, Leeuwenburgh MA, Bogyo M, Joosten MH, Peck SC (2004) Activity profiling of papain-like cysteine proteases in plants. Plant Physiol 135:1170–1178CrossRefGoogle Scholar
  54. van Esse HP, Van’t Klooster JW, Bolton MD, Yadeta KA, van Baarlen P, Boeren S, Vervoort J, de Wit PJ, Thomma BP (2008) The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20:1948–1963CrossRefGoogle Scholar
  55. Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A 105:12815–12819CrossRefGoogle Scholar
  56. Wang Q, Da’dara AA, Skelly PJ (2017) The human blood parasite Schistosoma mansoni expresses extracellular tegumental calpains that cleave the blood clotting protein fibronectin. Sci Rep 7:12912CrossRefGoogle Scholar
  57. Wiedner SD, Anderson LN, Sadler NC, Chrisler WB, Kodali VK, Smith RD, Wright AT (2014) Organelle-specific activity-based protein profiling in living cells. Angew Chem Int Ed Engl 53:2919–2922CrossRefGoogle Scholar
  58. Wiedner SD, Burnum KE, Pederson LM, Anderson LN, Fortuin S, Chauvigne- Hines LM, Shukla AK, Ansong C, Panisko EA, Smith RD et al (2012) Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum. J Biol Chem 287:33447–33459CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yekaterina Kovalyova
    • 1
    • 3
  • Stavroula K. Hatzios
    • 1
    • 2
    • 3
    Email author
  1. 1.Microbial Sciences Institute, Yale UniversityWest HavenUSA
  2. 2.Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenUSA
  3. 3.Department of ChemistryYale UniversityNew HavenUSA

Personalised recommendations