Advertisement

Applications of Reactive Cysteine Profiling

  • Keriann M. BackusEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 420)

Abstract

Cysteine thiols are involved in a diverse set of biological transformations, including nucleophilic and redox catalysis, metal coordination and formation of both dynamic and structural disulfides. Often posttranslationally modified, cysteines are also frequently alkylated by electrophilic compounds, including electrophilic metabolites, drugs, and natural products, and are attractive sites for covalent probe and drug development. Quantitative proteomics combined with activity-based protein profiling has been applied to annotate cysteine reactivity, susceptibility to posttranslational modifications, and accessibility to chemical probes, uncovering thousands of functional and small-molecule targetable cysteines across a diverse set of proteins, proteome-wide in an unbiased manner. Reactive cysteines have been targeted by high-throughput screening and fragment-based ligand discovery efforts. New cysteine-reactive electrophiles and compound libraries have been synthesized to enable inhibitor discovery broadly and to minimize nonspecific toxicity and off-target activity of compounds. With the recent blockbuster success of several covalent inhibitors, and the development of new chemical proteomic strategies to broadly identify reactive, ligandable and posttranslationally modified cysteines, cysteine profiling is poised to enable the development of new potent and selective chemical probes and even, in some cases, new drugs.

References

  1. Abegg D, Frei R, Cerato L, Prasad Hari D, Wang C, Waser J, Adibekian A (2015) Proteome-wide profiling of targets of cysteine reactive small molecules by using ethynyl benziodoxolone reagents. Angew Chem Int Ed Engl 54(37):10852–10857PubMedGoogle Scholar
  2. Abegg D, Gasparini G, Hoch DG, Shuster A, Bartolami E, Matile S, Adibekian A (2017) Strained cyclic disulfides enable cellular uptake by reacting with the transferrin receptor. J Am Chem Soc 139(1):231–238PubMedGoogle Scholar
  3. Abo M, Weerapana E (2015) A caged electrophilic probe for global analysis of cysteine reactivity in living cells. J Am Chem Soc 137(22):7087–7090PubMedGoogle Scholar
  4. Abo M, Bak DW, Weerapana E (2017a) Optimization of caged electrophiles for improved monitoring of cysteine reactivity in living cells. ChemBioChem 18(1):81–84PubMedGoogle Scholar
  5. Abo M, Li C, Weerapana E (2017) Isotopically-labeled iodoacetamide-alkyne probes for quantitative cysteine-reactivity profiling. Mol PharmGoogle Scholar
  6. Alcock LJ, Farrell KD, Akol MT, Jones GH, Tierney MM, Kramer HB, Pukala TL, Bernardes GJL, Perkins MV, Chalker JM (2018) Norbornene probes for the study of cysteine oxidation. Tetrahedron 74(12):1220–1228Google Scholar
  7. Andersson A, Hutlberg B, Lindgren A (2000) Redox status of plasma homocysteine and other plasma thiols in stroke patients. Atherosclerosis 151(2):535–539PubMedGoogle Scholar
  8. Ansbacher T, Chourasia M, Shurki A (2013) Copper-chaperones with dicoordinated Cu(I)–unique protection mechanism. Proteins 81(8):1411–1419PubMedGoogle Scholar
  9. Bachovchin DA, Brown SJ, Rosen H, Cravatt BF (2009) Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat Biotechnol 27(4):387–394PubMedPubMedCentralGoogle Scholar
  10. Backus KM, Correia BE, Lum KM, Forli S, Horning BD, Gonzalez-Paez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson AJ, Wolan DW, Cravatt BF (2016) Proteome-wide covalent ligand discovery in native biological systems. Nature 534(7608):570–574PubMedPubMedCentralGoogle Scholar
  11. Bak DW, Weerapana E (2015) Cysteine-mediated redox signalling in the mitochondria. Mol BioSyst 11(3):678–697PubMedGoogle Scholar
  12. Banerjee R, Pace NJ, Brown DR, Weerapana E (2013) 1,3,5-Triazine as a modular scaffold for covalent inhibitors with streamlined target identification. J Am Chem Soc 135(7):2497–2500PubMedGoogle Scholar
  13. Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404(4):939–965PubMedGoogle Scholar
  14. Barglow KT, Cravatt BF (2006) Substrate mimicry in an activity-based probe that targets the nitrilase family of enzymes. Angew Chem Int Ed Engl 45(44):7408–7411PubMedGoogle Scholar
  15. Bar-Peled L, Kemper EK, Suciu RM, Vinogradova EV, Backus KM, Horning BD, Paul TA, Ichu TA, Svensson RU, Olucha J, Chang MW, Kok BP, Zhu Z, Ihle NT, Dix MM, Jiang P, Hayward MM, Saez E, Shaw RJ, Cravatt BF (2017) Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171(3):696–709 e623PubMedPubMedCentralGoogle Scholar
  16. Barrett AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamai M, Hanada K (1982) L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 201(1):189–198PubMedPubMedCentralGoogle Scholar
  17. Basu D, Richters A, Rauh D (2015) Structure-based design and synthesis of covalent-reversible inhibitors to overcome drug resistance in EGFR. Bioorg Med Chem 23(12):2767–2780PubMedGoogle Scholar
  18. Bateman LA, Zaro BW, Miller SM, Pratt MR (2013) An alkyne-aspirin chemical reporter for the detection of aspirin-dependent protein modification in living cells. J Am Chem Soc 135(39):14568–14573PubMedGoogle Scholar
  19. Bateman LA, Nguyen TB, Roberts AM, Miyamoto DK, Ku WM, Huffman TR, Petri Y, Heslin MJ, Contreras CM, Skibola CF, Olzmann JA, Nomura DK (2017) Chemoproteomics-enabled covalent ligand screen reveals a cysteine hotspot in reticulon 4 that impairs ER morphology and cancer pathogenicity. Chem Commun (Camb) 53(53):7234–7237Google Scholar
  20. Baty JW, Hampton MB, Winterbourn CC (2002) Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis. Proteomics 2(9):1261–1266PubMedGoogle Scholar
  21. Bauer RA (2015) Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov Today 20(9):1061–1073PubMedGoogle Scholar
  22. Bechtold E, Reisz JA, Klomsiri C, Tsang AW, Wright MW, Poole LB, Furdui CM, King SB (2010) Water-soluble triarylphosphines as biomarkers for protein S-nitrosation. ACS Chem Biol 5(4):405–414PubMedPubMedCentralGoogle Scholar
  23. Benitez LV, Allison WS (1974) The inactivation of the acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde 3-phosphate dehydrogenase by dimedone and olefins. J Biol Chem 249(19):6234–6243PubMedGoogle Scholar
  24. Berg JM (1990) Zinc finger domains: hypotheses and current knowledge. Annu Rev Biophys Biophys Chem 19:405–421PubMedGoogle Scholar
  25. Bernardim B, Cal PMSD, Matos MJ, Oliveira BL, Martínez-Sáez N, Albuquerque IS, Perkins E, Corzana F, Burtoloso ACB, Jiménez-Osés G, Bernardes GJL (2016) Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nat Commun 7:13128PubMedPubMedCentralGoogle Scholar
  26. Besancon M, Simon A, Sachs G, Shin JM (1997) Sites of reaction of the gastric H, K-ATPase with extracytoplasmic thiol reagents. J Biol Chem 272(36):22438–22446PubMedGoogle Scholar
  27. Bianco G, Forli S, Goodsell DS, Olson AJ (2016) Covalent docking using autodock: two-point attractor and flexible side chain methods. Protein Sci 25(1):295–301PubMedGoogle Scholar
  28. Blackinton J, Lakshminarasimhan M, Thomas KJ, Ahmad R, Greggio E, Raza AS, Cookson MR, Wilson MA (2009) Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. J Biol Chem 284(10):6476–6485PubMedPubMedCentralGoogle Scholar
  29. Blewett M, Xie J, Zaro B, Backus KM, Olenchock BA, Patel H, Altman A, Teijaro JR, Cravatt BF (2016) Chemical proteomic map of dimethylfumarate-sensitive cysteine in primary human T cells. Sci Signal 9(445):rs10PubMedPubMedCentralGoogle Scholar
  30. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3(10):668–677PubMedPubMedCentralGoogle Scholar
  31. Böttcher T, Sieber SA (2010) Showdomycin as a versatile chemical tool for the detection of pathogenesis-associated enzymes in bacteria. J Am Chem Soc 132(20):6964–6972PubMedGoogle Scholar
  32. Bradshaw JM, McFarland JM, Paavilainen VO, Bisconte A, Tam D, Phan VT, Romanov S, Finkle D, Shu J, Patel V, Ton T, Li X, Loughhead DG, Nunn PA, Karr DE, Gerritsen ME, Funk JO, Owens TD, Verner E, Brameld KA, Hill RJ, Goldstein DM, Taunton J (2015) Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat Chem Biol 11(7):525–531PubMedPubMedCentralGoogle Scholar
  33. Briggs KJ, Koivunen P, Cao S, Backus KM, Olenchock BA, Patel H, Zhang Q, Signoretti S, Gerfen GJ, Richardson AL, Witkiewicz AK, Cravatt BF, Clardy J, Kaelin WG Jr (2016) Paracrine induction of HIF by glutamate in breast cancer: EglN1 senses cysteine. Cell 166(1):126–139PubMedPubMedCentralGoogle Scholar
  34. Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 101(24):9103–9108PubMedPubMedCentralGoogle Scholar
  35. Cardoso R, Love R, Nilsson CL, Bergqvist S, Nowlin D, Yan J, Liu KK, Zhu J, Chen P, Deng YL, Dyson HJ, Greig MJ, Brooun A (2012) Identification of Cys255 in HIF-1alpha as a novel site for development of covalent inhibitors of HIF-1alpha/ARNT PasB domain protein-protein interaction. Protein Sci 21(12):1885–1896PubMedPubMedCentralGoogle Scholar
  36. Carmi C, Lodola A, Rivara S, Vacondio F, Cavazzoni A, Alfieri RR, Ardizzoni A, Petronini PG, Mor M (2011) Epidermal growth factor receptor irreversible inhibitors: chemical exploration of the cysteine-trap portion. Mini Rev Med Chem 11(12):1019–1030PubMedGoogle Scholar
  37. Carmi C, Mor M, Petronini PG, Alfieri RR (2012) Clinical perspectives for irreversible tyrosine kinase inhibitors in cancer. Biochem Pharmacol 84(11):1388–1399PubMedGoogle Scholar
  38. Carrington JC, Dougherty WG (1988) A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc Natl Acad Sci U S A 85(10):3391–3395PubMedPubMedCentralGoogle Scholar
  39. Cerda MM, Hammers MD, Earp MS, Zakharov LN, Pluth MD (2017) Applications of synthetic organic tetrasulfides as H2S Donors. Org Lett 19(9):2314–2317PubMedPubMedCentralGoogle Scholar
  40. Chalker JM, Gunnoo SB, Boutureira O, Gerstberger SC, Fernandez-Gonzalez M, Bernardes GJL, Griffin L, Hailu H, Schofield CJ, Davis BG (2011) Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci 2(9):1666–1676Google Scholar
  41. Chalker JM, Lercher L, Rose NR, Schofield CJ, Davis BG (2012) Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications. Angew Chem Int Ed Engl 51(8):1835–1839PubMedGoogle Scholar
  42. Chan AI, McGregor LM, Jain T, Liu DR (2017) Discovery of a covalent kinase inhibitor from a DNA-encoded small-molecule library × protein library selection. J Am Chem Soc 139(30):10192–10195PubMedPubMedCentralGoogle Scholar
  43. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468(7327):1115–1118PubMedPubMedCentralGoogle Scholar
  44. Chen YC, Backus KM, Merkulova M, Yang C, Brown D, Cravatt BF, Zhang C (2017) Covalent modulators of the vacuolar ATPase. J Am Chem Soc 139(2):639–642PubMedGoogle Scholar
  45. Chung KK (2006) Say NO to neurodegeneration: role of S-nitrosylation in neurodegenerative disorders. Neurosignals 15(6):307–313PubMedGoogle Scholar
  46. Cohen MS, Zhang C, Shokat KM, Taunton J (2005) Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308(5726):1318–1321PubMedPubMedCentralGoogle Scholar
  47. Cohen MS, Hadjivassiliou H, Taunton J (2007) A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat Chem Biol 3(3):156–160PubMedPubMedCentralGoogle Scholar
  48. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8(19):876–877PubMedGoogle Scholar
  49. Counihan JL, Duckering M, Dalvie E, Ku WM, Bateman LA, Fisher KJ, Nomura DK (2017) Chemoproteomic profiling of acetanilide herbicides reveals their role in inhibiting fatty acid oxidation. ACS Chem Biol 12(3):635–642PubMedGoogle Scholar
  50. Couvertier SM, Weerapana E (2014) Cysteine-reactive chemical probes based on a modular 4-aminopiperidine scaffold. MedChemComm 5(3):358–362Google Scholar
  51. Craven G, Affron D, Allen C, Matthies S, Greener J, Morgan R, Tate E, Armstrong A, Mann DJ (2018) High-throughput kinetic analysis for target-directed covalent ligand discovery. Angew Chem Int Ed EnglGoogle Scholar
  52. Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279(21):21749–21758PubMedGoogle Scholar
  53. Daguer JP, Zambaldo C, Abegg D, Barluenga S, Tallant C, Muller S, Adibekian A, Winssinger N (2015) Identification of covalent bromodomain binders through DNA display of small molecules. Angew Chem Int Ed Engl 54(20):6057–6061PubMedGoogle Scholar
  54. Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80(8):2921–2931PubMedGoogle Scholar
  55. De Cesco S, Kurian J, Dufresne C, Mittermaier AK, Moitessier N (2017) Covalent inhibitors design and discovery. Eur J Med Chem 138:96–114PubMedGoogle Scholar
  56. Dennehy MK, Richards KA, Wernke GR, Shyr Y, Liebler DC (2006) Cytosolic and nuclear protein targets of thiol-reactive electrophiles. Chem Res Toxicol 19(1):20–29PubMedGoogle Scholar
  57. Dickens F (1933) Interaction of halogenacetates and SH compounds: the reaction of halogenacetic acids with glutathione and cysteine. the mechanism of iodoacetate poisoning of glyoxalase. Biochem J 27(4):1141–1151PubMedPubMedCentralGoogle Scholar
  58. Dillon MB, Bachovchin DA, Brown SJ, Finn MG, Rosen H, Cravatt BF, Mowen KA (2012) Novel inhibitors for PRMT1 discovered by high-throughput screening using activity-based fluorescence polarization. ACS Chem Biol 7(7):1198–1204PubMedPubMedCentralGoogle Scholar
  59. Ding Z, Kim S, Dorsam RT, Jin J, Kunapuli SP (2003) Inactivation of the human P2Y12 receptor by thiol reagents requires interaction with both extracellular cysteine residues, Cys17 and Cys270. Blood 101(10):3908–3914PubMedGoogle Scholar
  60. Doerr A (2014) DIA mass spectrometry. Nat Methods 12:35Google Scholar
  61. Drahl C, Cravatt BF, Sorensen EJ (2005) Protein-reactive natural products. Angew Chem Int Ed Engl 44(36):5788–5809Google Scholar
  62. Duan J, Gaffrey MJ, Qian WJ (2017) Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Mol BioSyst 13(5):816–829PubMedPubMedCentralGoogle Scholar
  63. Dyson HJ, Jeng MF, Tennant LL, Slaby I, Lindell M, Cui DS, Kuprin S, Holmgren A (1997) Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Biochemistry 36(9):2622–2636PubMedGoogle Scholar
  64. Eaton P (2006) Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic Biol Med 40(11):1889–1899PubMedGoogle Scholar
  65. Ekkebus R, van Kasteren SI, Kulathu Y, Scholten A, Berlin I, Geurink PP, de Jong A, Goerdayal S, Neefjes J, Heck AJ, Komander D, Ovaa H (2013) On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J Am Chem Soc 135(8):2867–2870PubMedPubMedCentralGoogle Scholar
  66. Ellis HR, Poole LB (1997) Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36(48):15013–15018PubMedGoogle Scholar
  67. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989PubMedGoogle Scholar
  68. Eom KS, Cheong JS, Lee SJ (2016) Structural analyses of zinc finger domains for specific interactions with DNA. J Microbiol Biotechnol 26(12):2019–2029PubMedGoogle Scholar
  69. Erlanson DA, Hansen SK (2004) Making drugs on proteins: site-directed ligand discovery for fragment-based lead assembly. Curr Opin Chem Biol 8(4):399–406PubMedGoogle Scholar
  70. Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA (2000a) Site-directed ligand discovery. Proc Natl Acad Sci 97(17):9367–9372PubMedGoogle Scholar
  71. Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA (2000b) Site-directed ligand discovery. Proc Natl Acad Sci U S A 97(17):9367–9372PubMedPubMedCentralGoogle Scholar
  72. Erlanson DA, Wells JA, Braisted AC (2004) TETHERING: fragment-based drug discovery. Annu Rev Biophys Biomol Struct 33(1):199–223PubMedGoogle Scholar
  73. Eschenburg S, Priestman M, Schönbrunn E (2005) Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem 280(5):3757–3763PubMedGoogle Scholar
  74. Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA (2004) Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17(1):3–16PubMedGoogle Scholar
  75. Evans MJ, Morris GM, Wu J, Olson AJ, Sorensen EJ, Cravatt BF (2007) Mechanistic and structural requirements for active site labeling of phosphoglycerate mutase by spiroepoxides. Mol BioSyst 3(7):495–506PubMedGoogle Scholar
  76. Flanagan ME, Abramite JA, Anderson DP, Aulabaugh A, Dahal UP, Gilbert AM, Li C, Montgomery J, Oppenheimer SR, Ryder T, Schuff BP, Uccello DP, Walker GS, Wu Y, Brown MF, Chen JM, Hayward MM, Noe MC, Obach RS, Philippe L, Shanmugasundaram V, Shapiro MJ, Starr J, Stroh J, Che Y (2014) Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors. J Med Chem 57(23):10072–10079PubMedGoogle Scholar
  77. Foloppe N (2011) The benefits of constructing leads from fragment hits. Future Med Chem 3(9):1111–1115PubMedGoogle Scholar
  78. Ford B, Bateman LA, Gutierrez-Palominos L, Park R, Nomura DK (2017) Mapping proteome-wide targets of glyphosate in mice. Cell Chem Biol 24(2):133–140PubMedGoogle Scholar
  79. Forrester MT, Thompson JW, Foster MW, Nogueira L, Moseley MA, Stamler JS (2009) Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat Biotechnol 27(6):557–559PubMedPubMedCentralGoogle Scholar
  80. Fox JH, Connor T, Stiles M, Kama J, Lu Z, Dorsey K, Lieberman G, Sapp E, Cherny RA, Banks M, Volitakis I, DiFiglia M, Berezovska O, Bush AI, Hersch SM (2011) Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. J Biol Chem 286(20):18320–18330PubMedPubMedCentralGoogle Scholar
  81. Frei R, Wodrich MD, Hari DP, Borin PA, Chauvier C, Waser J (2014) Fast and highly chemoselective alkynylation of thiols with hypervalent iodine reagents enabled through a low energy barrier concerted mechanism. J Am Chem Soc 136(47):16563–16573PubMedPubMedCentralGoogle Scholar
  82. Gan ZR, Wells WW (1987) Identification and reactivity of the catalytic site of pig liver thioltransferase. J Biol Chem 262(14):6704–6707PubMedGoogle Scholar
  83. Gao J, Mfuh A, Amako Y, Woo CM (2018) Small molecule interactome mapping by photoaffinity labeling reveals binding site hotspots for the NSAIDs. J Am Chem Soc 140(12):4259–4268PubMedGoogle Scholar
  84. Garcia-Pineres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, Pahl HL, Merfort I (2001) Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 276(43):39713–39720PubMedGoogle Scholar
  85. Garcia-Santamarina S, Boronat S, Domenech A, Ayte J, Molina H, Hidalgo E (2014) Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat Protoc 9(5):1131–1145PubMedGoogle Scholar
  86. Garske AL, Peters U, Cortesi AT, Perez JL, Shokat KM (2011) Chemical genetic strategy for targeting protein kinases based on covalent complementarity. Proc Natl Acad Sci U S A 108(37):15046–15052PubMedPubMedCentralGoogle Scholar
  87. Gartner CA, Elias JE, Bakalarski CE, Gygi SP (2007) Catch-and-release reagents for broadscale quantitative proteomics analyses. J Proteome Res 6(4):1482–1491PubMedGoogle Scholar
  88. Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong LT, Falgueyret JP, Kimmel DB, Lamontagne S, Leger S, LeRiche T, Li CS, Masse F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Therien M, Truong VL, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC (2008) The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 18(3):923–928PubMedGoogle Scholar
  89. Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9(6):1683–1695PubMedGoogle Scholar
  90. Gersch M, Kreuzer J, Sieber SA (2012) Electrophilic natural products and their biological targets. Nat Prod Rep 29(6):659–682PubMedGoogle Scholar
  91. Giles GI, Jacob C (2002) Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 383(3–4):375–388PubMedGoogle Scholar
  92. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111 016717Google Scholar
  93. Go Y-M, Chandler JD, Jones DP (2015) The cysteine proteome. Free Radic Biol Med 84:227–245PubMedPubMedCentralGoogle Scholar
  94. Gorelenkova Miller O, Cole KS, Emerson CC, Allimuthu D, Golczak M, Stewart PL, Weerapana E, Adams DJ, Mieyal JJ (2017) Novel chloroacetamido compound CWR-J02 is an anti-inflammatory glutaredoxin-1 inhibitor. PLoS ONE 12(11):e0187991PubMedPubMedCentralGoogle Scholar
  95. Grauschopf U, Winther JR, Korber P, Zander T, Dallinger P, Bardwell JC (1995) Why is DsbA such an oxidizing disulfide catalyst? Cell 83(6):947–955PubMedGoogle Scholar
  96. Green NM (1990) Avidin and streptavidin. Meth Enzymol 184:51–67PubMedGoogle Scholar
  97. Grossman EA, Ward CC, Spradlin JN, Bateman LA, Huffman TR, Miyamoto DK, Kleinman JI, Nomura DK (2017) Covalent ligand discovery against druggable hotspots targeted by anti-cancer natural products. Cell Chem Biol 24(11):1368–1376 e1364PubMedPubMedCentralGoogle Scholar
  98. Guo CJ, Chang FY, Wyche TP, Backus KM, Acker TM, Funabashi M, Taketani M, Donia MS, Nayfach S, Pollard KS, Craik CS, Cravatt BF, Clardy J, Voigt CA, Fischbach MA (2017) Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168(3):517–526 e518PubMedPubMedCentralGoogle Scholar
  99. Gupta V, Carroll KS (2016) Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles. Chem Commun (Camb) 52(16):3414–3417Google Scholar
  100. Gupta V, Yang J, Liebler DC, Carroll KS (2017) Diverse redoxome reactivity profiles of carbon nucleophiles. J Am Chem Soc 139(15):5588–5595PubMedPubMedCentralGoogle Scholar
  101. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999PubMedPubMedCentralGoogle Scholar
  102. Hacker SM, Backus KM, Lazear MR, Forli S, Correia BE, Cravatt BF (2017) Global profiling of lysine reactivity and ligandability in the human proteome. Nat Chem 9(12):1181–1190PubMedPubMedCentralGoogle Scholar
  103. Hahn Y-I, Kim S-J, Choi B-Y, Cho K-C, Bandu R, Kim KP, Kim D-H, Kim W, Park JS, Han BW, Lee J, Na H-K, Cha Y-N, Surh Y-J (2018) Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci Rep 8(1):6409PubMedPubMedCentralGoogle Scholar
  104. Han J, Adman ET, Beppu T, Codd R, Freeman HC, Huq LL, Loehr TM, Sanders-Loehr J (1991) Resonance Raman spectra of plastocyanin and pseudoazurin: evidence for conserved cysteine ligand conformations in cupredoxins (blue copper proteins). Biochemistry 30(45):10904–10913PubMedGoogle Scholar
  105. Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, Burlingame AL (2003) Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol Cell Proteomics 2(5):299–314PubMedGoogle Scholar
  106. Hansen RE, Ostergaard H, Winther JR (2005) Increasing the reactivity of an artificial dithiol-disulfide pair through modification of the electrostatic milieu. Biochemistry 44(15):5899–5906PubMedGoogle Scholar
  107. Hao G, Derakhshan B, Shi L, Campagne F, Gross SS (2006) SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc Natl Acad Sci U S A 103(4):1012–1017PubMedPubMedCentralGoogle Scholar
  108. Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 11(11):2807–2850PubMedGoogle Scholar
  109. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166PubMedGoogle Scholar
  110. Hing ZA, Fung HY, Ranganathan P, Mitchell S, El-Gamal D, Woyach JA, Williams K, Goettl VM, Smith J, Yu X, Meng X, Sun Q, Cagatay T, Lehman AM, Lucas DM, Baloglu E, Shacham S, Kauffman MG, Byrd JC, Chook YM, Garzon R, Lapalombella R (2016) Next-generation XPO1 inhibitor shows improved efficacy and in vivo tolerability in hematological malignancies. Leukemia 30(12):2364–2372PubMedPubMedCentralGoogle Scholar
  111. Hoffman S, Nolin J, McMillan D, Wouters E, Janssen-Heininger Y, Reynaert N (2015) Thiol redox chemistry: role of protein cysteine oxidation and altered redox homeostasis in allergic inflammation and asthma. J Cell Biochem 116(6):884–892PubMedPubMedCentralGoogle Scholar
  112. Hoffstrom BG, Kaplan A, Letso R, Schmid RS, Turmel GJ, Lo DC, Stockwell BR (2010) Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nat Chem Biol 6(12):900–906PubMedPubMedCentralGoogle Scholar
  113. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271PubMedGoogle Scholar
  114. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421PubMedGoogle Scholar
  115. Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75(24):6843–6852PubMedGoogle Scholar
  116. Iqbalsyah TM, Moutevelis E, Warwicker J, Errington N, Doig AJ (2006) The CXXC motif at the N terminus of an alpha-helical peptide. Protein Sci 15(8):1945–1950PubMedPubMedCentralGoogle Scholar
  117. Jacobi A, Huber-Wunderlich M, Hennecke J, Glockshuber R (1997) Elimination of all charged residues in the vicinity of the active-site helix of the disulfide oxidoreductase DsbA. Influence of electrostatic interactions on stability and redox properties. J Biol Chem 272(35):21692–21699PubMedGoogle Scholar
  118. Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, Chen Y, Babbar A, Firdaus SJ, Darjania L, Feng J, Chen JH, Li S, Li S, Long YO, Thach C, Liu Y, Zarieh A, Ely T, Kucharski JM, Kessler LV, Wu T, Yu K, Wang Y, Yao Y, Deng X, Zarrinkar PP, Brehmer D, Dhanak D, Lorenzi MV, Hu-Lowe D, Patricelli MP, Ren P, Liu Y (2018) Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172(3):578–589 e517PubMedGoogle Scholar
  119. Jang BC, Munoz-Najar U, Paik JH, Claffey K, Yoshida M, Hla T (2003) Leptomycin B, an inhibitor of the nuclear export receptor CRM1, inhibits COX-2 expression. J Biol Chem 278(5):2773–2776PubMedGoogle Scholar
  120. Jeffery DA, Bogyo M (2003) Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol 14(1):87–95PubMedGoogle Scholar
  121. Jeffrey SC, Burke PJ, Lyon RP, Meyer DW, Sussman D, Anderson M, Hunter JH, Leiske CI, Miyamoto JB, Nicholas ND, Okeley NM, Sanderson RJ, Stone IJ, Zeng W, Gregson SJ, Masterson L, Tiberghien AC, Howard PW, Thurston DE, Law CL, Senter PD (2013) A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem 24(7):1256–1263PubMedGoogle Scholar
  122. Jhoti H, Williams G, Rees DC, Murray CW (2013) The ‘rule of three’ for fragment-based drug discovery: where are we now? Nat Rev Drug Discov 12(8):644–645PubMedGoogle Scholar
  123. Johnson DS, Weerapana E, Cravatt BF (2010) Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem 2(6):949–964PubMedPubMedCentralGoogle Scholar
  124. Kallis GB, Holmgren A (1980) Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli. J Biol Chem 255(21):10261–10265PubMedGoogle Scholar
  125. Kathman SG, Statsyuk AV (2016) Covalent tethering of fragments for covalent probe discovery. Medchemcomm 7(4):576–585PubMedPubMedCentralGoogle Scholar
  126. Kathman SG, Xu Z, Statsyuk AV (2014) A fragment-based method to discover irreversible covalent inhibitors of cysteine proteases. J Med Chem 57(11):4969–4974PubMedPubMedCentralGoogle Scholar
  127. Khan S, Vihinen M (2007) Spectrum of disease-causing mutations in protein secondary structures. BMC Struct Biol 7(1):56PubMedPubMedCentralGoogle Scholar
  128. Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267(16):4928–4944PubMedGoogle Scholar
  129. Klomsiri C, Karplus PA, Poole LB (2011) Cysteine-based redox switches in enzymes. Antioxid Redox Signal 14(6):1065–1077PubMedPubMedCentralGoogle Scholar
  130. Knuckley B, Causey CP, Jones JE, Bhatia M, Dreyton CJ, Osborne TC, Takahara H, Thompson PR (2010a) Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 49(23):4852–4863PubMedPubMedCentralGoogle Scholar
  131. Knuckley B, Jones JE, Bachovchin DA, Slack J, Causey CP, Brown SJ, Rosen H, Cravatt BF, Thompson PR (2010b) A fluopol-ABPP HTS assay to identify PAD inhibitors. Chem Commun (Camb) 46(38):7175–7177Google Scholar
  132. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021PubMedPubMedCentralGoogle Scholar
  133. Kortemme T, Creighton TE (1995) Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J Mol Biol 253(5):799–812PubMedGoogle Scholar
  134. Kranz RG, Richard-Fogal C, Taylor J-S, Frawley ER (2009) Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev: MMBR 73(3):510–528PubMedGoogle Scholar
  135. Krishnan S, Miller RM, Tian B, Mullins RD, Jacobson MP, Taunton J (2014) Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J Am Chem Soc 136(36):12624–12630PubMedPubMedCentralGoogle Scholar
  136. Krysiak JM, Kreuzer J, Macheroux P, Hermetter A, Sieber SA, Breinbauer R (2012) Activity-based probes for studying the activity of flavin-dependent oxidases and for the protein target profiling of monoamine oxidase inhibitors. Angew Chem Int Ed Engl 51(28):7035–7040PubMedPubMedCentralGoogle Scholar
  137. Kumar S, Zhou B, Liang F, Wang WQ, Huang Z, Zhang ZY (2004) Activity-based probes for protein tyrosine phosphatases. Proc Natl Acad Sci U S A 101(21):7943–7948PubMedPubMedCentralGoogle Scholar
  138. Kuo YH, Konopko AM, Borotto NB, Majmudar JD, Haynes SE, Martin BR (2017) Profiling protein S-sulfination with maleimide-linked probes. ChemBioChem 18(20):2028–2032PubMedPubMedCentralGoogle Scholar
  139. Lanning BR, Whitby LR, Dix MM, Douhan J, Gilbert AM, Hett EC, Johnson TO, Joslyn C, Kath JC, Niessen S, Roberts LR, Schnute ME, Wang C, Hulce JJ, Wei B, Whiteley LO, Hayward MM, Cravatt BF (2014) A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol 10(9):760–767PubMedPubMedCentralGoogle Scholar
  140. Lapalombella R, Sun Q, Williams K, Tangeman L, Jha S, Zhong Y, Goettl V, Mahoney E, Berglund C, Gupta S, Farmer A, Mani R, Johnson AJ, Lucas D, Mo X, Daelemans D, Sandanayaka V, Shechter S, McCauley D, Shacham S, Kauffman M, Chook YM, Byrd JC (2012) Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood 120(23):4621–4634PubMedPubMedCentralGoogle Scholar
  141. Lavergne SN, Park BK, Naisbitt DJ (2008) The roles of drug metabolism in the pathogenesis of T-cell-mediated drug hypersensitivity. Curr Opin Allergy Clin Immunol 8(4):299–307PubMedGoogle Scholar
  142. Lea WA, Simeonov A (2011) Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov 6(1):17–32PubMedPubMedCentralGoogle Scholar
  143. Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105(24):8197–8202PubMedPubMedCentralGoogle Scholar
  144. Levin Y, Bahn S (2010) Quantification of proteins by label-free LC-MS/MS. Methods Mol Biol 658:217–231PubMedGoogle Scholar
  145. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9(6):1696–1719PubMedGoogle Scholar
  146. Lin VS, Lippert AR, Chang CJ (2013) Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc Natl Acad Sci U S A 110(18):7131–7135PubMedPubMedCentralGoogle Scholar
  147. Lin VS, Chen W, Xian M, Chang CJ (2015a) Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev 44(14):4596–4618PubMedPubMedCentralGoogle Scholar
  148. Lin VS, Lippert AR, Chang CJ (2015b) Azide-based fluorescent probes: imaging hydrogen sulfide in living systems. Methods Enzymol 554:63–80PubMedGoogle Scholar
  149. Lindemann C, Lupilova N, Muller A, Warscheid B, Meyer HE, Kuhlmann K, Eisenacher M, Leichert LI (2013) Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress. J Biol Chem 288(27):19698–19714PubMedPubMedCentralGoogle Scholar
  150. Link AJ, Hays LG, Carmack EB, Yates JR 3rd (1997) Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis 18(8):1314–1334PubMedGoogle Scholar
  151. Lippert AR (2014) Designing reaction-based fluorescent probes for selective hydrogen sulfide detection. J Inorg Biochem 133:136–142PubMedGoogle Scholar
  152. Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5(2):160–170PubMedGoogle Scholar
  153. Liu CT, Benkovic SJ (2013) Capturing a sulfenic acid with arylboronic acids and benzoxaborole. J Am Chem Soc 135(39):14544–14547PubMedGoogle Scholar
  154. Liu Y, Barrett JE, Schultz PG, Santi DV (1999) Tyrosine 146 of Thymidylate Synthase Assists Proton Abstraction from the 5-Position of 2′-Deoxyuridine 5′-Monophosphate. Biochemistry 38(2):848–852PubMedGoogle Scholar
  155. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS (2013) Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol 20(2):146–159PubMedPubMedCentralGoogle Scholar
  156. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95(12):6803–6808PubMedPubMedCentralGoogle Scholar
  157. Lo Conte M, Carroll KS (2013) The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem 288(37):26480–26488PubMedPubMedCentralGoogle Scholar
  158. Lo Conte M, Lin J, Wilson MA, Carroll KS (2015) A chemical approach for the detection of protein sulfinylation. ACS Chem Biol 10(8):1825–1830PubMedPubMedCentralGoogle Scholar
  159. London N, Miller RM, Krishnan S, Uchida K, Irwin JJ, Eidam O, Gibold L, Cimermancic P, Bonnet R, Shoichet BK, Taunton J (2014) Covalent docking of large libraries for the discovery of chemical probes. Nat Chem Biol 10(12):1066–1072PubMedPubMedCentralGoogle Scholar
  160. Lowther WT, McMillen DA, Orville AM, Matthews BW (1998) The anti-angiogenic agent fumagillin covalently modifies a conserved active-site histidine in the <em> Escherichia coli </em> methionine aminopeptidase. Proc Natl Acad Sci 95(21):12153–12157PubMedGoogle Scholar
  161. MacKintosh RW, Dalby KN, Campbell DG, Cohen PT, Cohen P, MacKintosh C (1995) The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett 371(3):236–240PubMedGoogle Scholar
  162. Majmudar JD, Konopko AM, Labby KJ, Tom CTMB, Crellin JE, Prakash A, Martin BR (2016) Harnessing redox cross-reactivity to profile distinct cysteine modifications. J Am Chem Soc 138(6):1852–1859PubMedPubMedCentralGoogle Scholar
  163. Marino SM, Gladyshev VN (2010) Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol 404(5):902–916PubMedPubMedCentralGoogle Scholar
  164. Maron BA, Tang SS, Loscalzo J (2013) S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antioxid Redox Signal 18(3):270–287PubMedPubMedCentralGoogle Scholar
  165. Martell J, Seo Y, Bak DW, Kingsley SF, Tissenbaum HA, Weerapana E (2016) Global cysteine-reactivity profiling during impaired insulin/IGF-1 signaling in C. elegans Identifies uncharacterized mediators of longevity. Cell Chem Biol 23(8):955–966PubMedPubMedCentralGoogle Scholar
  166. Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O’Rourke B, Lowenstein JM, Pevsner J, Wagner DD, Lowenstein CJ (2003) Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115(2):139–150PubMedPubMedCentralGoogle Scholar
  167. Maurer A, Zeyher C, Amin B, Kalbacher H (2013) A periodate-cleavable linker for functional proteomics under slightly acidic conditions: application for the analysis of intracellular aspartic proteases. J Proteome Res 12(1):199–207PubMedGoogle Scholar
  168. McDonald WH, Yates JR 3rd (2002) Shotgun proteomics and biomarker discovery. Dis Markers 18(2):99–105PubMedPubMedCentralGoogle Scholar
  169. Meissner T, Krause E, Vinkemeier U (2004) Ratjadone and leptomycin B block CRM1-dependent nuclear export by identical mechanisms. FEBS Lett 576(1–2):27–30PubMedGoogle Scholar
  170. Miller RM, Paavilainen VO, Krishnan S, Serafimova IM, Taunton J (2013) Electrophilic fragment-based design of reversible covalent kinase inhibitors. J Am Chem Soc 135(14):5298–5301PubMedPubMedCentralGoogle Scholar
  171. Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17(8):1232–1239PubMedGoogle Scholar
  172. Mittag S, Valenta T, Weiske J, Bloch L, Klingel S, Gradl D, Wetzel F, Chen Y, Petersen I, Basler K, Huber O (2016) A novel role for the tumour suppressor Nitrilase1 modulating the Wnt/β-catenin signalling pathway. Cell Discov 2:15039PubMedPubMedCentralGoogle Scholar
  173. Muller S, Chaikuad A, Gray NS, Knapp S (2015) The ins and outs of selective kinase inhibitor development. Nat Chem Biol 11(11):818–821PubMedGoogle Scholar
  174. Muth A, Subramanian V, Beaumont E, Nagar M, Kerry P, McEwan P, Srinath H, Clancy K, Parelkar S, Thompson PR (2017) Development of a selective inhibitor of protein arginine deiminase 2. J Med Chem 60(7):3198–3211PubMedPubMedCentralGoogle Scholar
  175. Nelson JW, Creighton TE (1994) Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33(19):5974–5983PubMedGoogle Scholar
  176. Nielsen ML, Vermeulen M, Bonaldi T, Cox J, Moroder L, Mann M (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5(6):459–460PubMedGoogle Scholar
  177. Niessen S, Dix MM, Barbas S, Potter ZE, Lu S, Brodsky O, Planken S, Behenna D, Almaden C, Gajiwala KS, Ryan K, Ferre R, Lazear MR, Hayward MM, Kath JC, Cravatt BF (2017) Proteome-wide map of targets of T790M-EGFR-directed covalent inhibitors. Cell Chem Biol 24(11):1388–1400 e1387PubMedPubMedCentralGoogle Scholar
  178. Nonoo RH, Armstrong A, Mann DJ (2012) Kinetic template-guided tethering of fragments. ChemMedChem 7(12):2082–2086PubMedGoogle Scholar
  179. Oballa RM, Truchon JF, Bayly CI, Chauret N, Day S, Crane S, Berthelette C (2007) A generally applicable method for assessing the electrophilicity and reactivity of diverse nitrile-containing compounds. Bioorg Med Chem Lett 17(4):998–1002PubMedGoogle Scholar
  180. Ohnishi K, Irie K, Murakami A (2009) In vitro covalent binding proteins of zerumbone, a chemopreventive food factor. Biosci Biotechnol Biochem 73(8):1905–1907PubMedGoogle Scholar
  181. Ohnishi K, Ohkura S, Nakahata E, Ishisaka A, Kawai Y, Terao J, Mori T, Ishii T, Nakayama T, Kioka N, Matsumoto S, Ikeda Y, Akiyama M, Irie K, Murakami A (2013) Non-specific protein modifications by a phytochemical induce heat shock response for self-defense. PLoS ONE 8(3):e58641PubMedPubMedCentralGoogle Scholar
  182. Olejnik J, Sonar S, Krzymañska-Olejnik E, Rothschild KJ (1995) Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proc Natl Acad Sci 92(16):7590–7594PubMedGoogle Scholar
  183. Ong SE, Mann M (2007) Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol Biol 359:37–52PubMedGoogle Scholar
  184. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503(7477):548–551PubMedPubMedCentralGoogle Scholar
  185. Ouyang X, Zhou S, Su CT, Ge Z, Li R, Kwoh CK (2013) CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J Comput Chem 34(4):326–336PubMedGoogle Scholar
  186. Pace NJ, Weerapana E (2014a) A competitive chemical-proteomic platform to identify zinc-binding cysteines. ACS Chem Biol 9(1):258–265PubMedGoogle Scholar
  187. Pace NJ, Weerapana E (2014b) Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules 4(2):419–434PubMedPubMedCentralGoogle Scholar
  188. Pan Z, Scheerens H, Li S-J, Schultz BE, Sprengeler PA, Burrill LC, Mendonca RV, Sweeney MD, Scott KCK, Grothaus PG, Jeffery DA, Spoerke JM, Honigberg LA, Young PR, Dalrymple SA, Palmer JT (2007) Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem 2(1):58–61PubMedGoogle Scholar
  189. Patricelli MP, Janes MR, Li LS, Hansen R, Peters U, Kessler LV, Chen Y, Kucharski JM, Feng J, Ely T, Chen JH, Firdaus SJ, Babbar A, Ren P, Liu Y (2016) Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov 6(3):316–329PubMedGoogle Scholar
  190. Paul BD, Snyder SH (2015) Protein sulfhydration. Methods Enzymol 555:79–90PubMedGoogle Scholar
  191. Paulsen CE, Carroll KS (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113(7):4633–4679PubMedPubMedCentralGoogle Scholar
  192. Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, Carroll KS (2011) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8(1):57–64PubMedPubMedCentralGoogle Scholar
  193. Pels K, Dickson P, An H, Kodadek T (2018) DNA-compatible solid-phase combinatorial synthesis of beta-cyanoacrylamides and related electrophiles. ACS Comb Sci 20(2):61–69PubMedGoogle Scholar
  194. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567PubMedGoogle Scholar
  195. Persson C, Sjoblom T, Groen A, Kappert K, Engstrom U, Hellman U, Heldin CH, den Hertog J, Ostman A (2004) Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases. Proc Natl Acad Sci U S A 101(7):1886–1891PubMedPubMedCentralGoogle Scholar
  196. Pierce A, Unwin RD, Evans CA, Griffiths S, Carney L, Zhang L, Jaworska E, Lee CF, Blinco D, Okoniewski MJ, Miller CJ, Bitton DA, Spooncer E, Whetton AD (2008) Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol Cell Proteomics 7(5):853–863PubMedGoogle Scholar
  197. Pitscheider M, Mausbacher N, Sieber SA (2012) Antibiotic activity and target discovery of three-membered natural product-derived heterocycles in pathogenic bacteria. Chem Sci 3(6):2035–2041Google Scholar
  198. Pliura DH, Bonaventura BJ, Smith RA, Coles PJ, Krantz A (1992) Comparative behaviour of calpain and cathepsin B toward peptidyl acyloxymethyl ketones, sulphonium methyl ketones and other potential inhibitors of cysteine proteinases. Biochem J 288(Pt 3):759–762PubMedPubMedCentralGoogle Scholar
  199. Ploger M, Sendker J, Langer K, Schmidt TJ (2015) Covalent modification of human serum albumin by the natural sesquiterpene lactone parthenolide. Molecules 20(4):6211–6223PubMedPubMedCentralGoogle Scholar
  200. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, Keating MJ, O’Brien S, Chiorazzi N, Burger JA (2012) The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119:1182–1189. https://doi.org/10.1182/blood-2011-10-38641
  201. Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12(1):18–24PubMedPubMedCentralGoogle Scholar
  202. Poole TH, Reisz JA, Zhao W, Poole LB, Furdui CM, King SB (2014) Strained cycloalkynes as new protein sulfenic acid traps. J Am Chem Soc 136(17):6167–6170PubMedPubMedCentralGoogle Scholar
  203. Prinarakis E, Chantzoura E, Thanos D, Spyrou G (2008) S-glutathionylation of IRF3 regulates IRF3-CBP interaction and activation of the IFN beta pathway. EMBO J 27(6):865–875PubMedPubMedCentralGoogle Scholar
  204. Qian Y, Martell J, Pace NJ, Ballard TE, Johnson DS, Weerapana E (2013) An isotopically tagged azobenzene-based cleavable linker for quantitative proteomics. ChemBioChem 14(12):1410–1414PubMedGoogle Scholar
  205. Ricci G, Bello ML, Caccuri AM, Pastore A, Nuccetelli M, Parker MW, Federici G (1995) Site-directed mutagenesis of human glutathione transferase P1-1: mutation of Cys-47 induces a positive cooperativity in glutathione transferase P1-1. J Biol Chem 270(3):1243–1248PubMedGoogle Scholar
  206. Roberts AM, Miyamoto DK, Huffman TR, Bateman LA, Ives AN, Akopian D, Heslin MJ, Contreras CM, Rape M, Skibola CF, Nomura DK (2017a) Chemoproteomic screening of covalent ligands reveals UBA5 as a novel pancreatic cancer target. ACS Chem Biol 12(4):899–904PubMedGoogle Scholar
  207. Roberts LS, Yan P, Bateman LA, Nomura DK (2017b) Mapping novel metabolic nodes targeted by anti-cancer drugs that impair triple-negative breast cancer pathogenicity. ACS Chem Biol 12(4):1133–1140PubMedGoogle Scholar
  208. Robertson JG (2005) Mechanistic basis of enzyme-targeted drugs. Biochemistry 44(15):5561–5571PubMedGoogle Scholar
  209. Rogers LK, Leinweber BL, Smith CV (2006) Detection of reversible protein thiol modifications in tissues. Anal Biochem 358(2):171–184PubMedGoogle Scholar
  210. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169PubMedGoogle Scholar
  211. Rost HL, Rosenberger G, Navarro P, Gillet L, Miladinovic SM, Schubert OT, Wolski W, Collins BC, Malmstrom J, Malmstrom L, Aebersold R (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32(3):219–223PubMedGoogle Scholar
  212. Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM, Schubert OT, Wolski W, Collins BC, Malmström J, Malmström L, Aebersold R (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219PubMedGoogle Scholar
  213. Sadowsky JD, Burlingame MA, Wolan DW, McClendon CL, Jacobson MP, Wells JA (2011) Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc Natl Acad Sci U S A 108(15):6056–6061PubMedPubMedCentralGoogle Scholar
  214. Sajadimajd S, Khazaei M (2017) Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug TargetsGoogle Scholar
  215. Segovia-Mendoza M, González-González ME, Barrera D, Díaz L, García-Becerra R (2015) Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. Am J Cancer Res 5(9):2531–2561PubMedPubMedCentralGoogle Scholar
  216. Serafimova IM, Pufall MA, Krishnan S, Duda K, Cohen MS, Maglathlin RL, McFarland JM, Miller RM, Frodin M, Taunton J (2012) Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat Chem Biol 8(5):471–476PubMedPubMedCentralGoogle Scholar
  217. Sethuraman M, McComb ME, Heibeck T, Costello CE, Cohen RA (2004a) Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Mol Cell Proteomics 3(3):273–278PubMedGoogle Scholar
  218. Sethuraman M, McComb ME, Huang H, Huang S, Heibeck T, Costello CE, Cohen RA (2004b) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 3(6):1228–1233PubMedGoogle Scholar
  219. Shannon DA, Banerjee R, Webster ER, Bak DW, Wang C, Weerapana E (2014) Investigating the proteome reactivity and selectivity of aryl halides. J Am Chem Soc 136(9):3330–3333PubMedGoogle Scholar
  220. Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93(25):14440–14445PubMedPubMedCentralGoogle Scholar
  221. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534PubMedGoogle Scholar
  222. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5(1):144–156PubMedGoogle Scholar
  223. Singh J, Petter RC, Baillie TA, Whitty A (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10(4):307–317PubMedGoogle Scholar
  224. Slee EA, Zhu H, Chow SC, MacFarlane M, Nicholson DW, Cohen GM (1996) Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J 315(Pt 1):21–24PubMedPubMedCentralGoogle Scholar
  225. Smith AJ, Zhang X, Leach AG, Houk KN (2009) Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J Med Chem 52(2):225–233PubMedPubMedCentralGoogle Scholar
  226. Sommer S, Weikart ND, Linne U, Mootz HD (2013) Covalent inhibition of SUMO and ubiquitin-specific cysteine proteases by an in situ thiol-alkyne addition. Bioorg Med Chem 21(9):2511–2517PubMedGoogle Scholar
  227. Speers AE, Cravatt BF (2004) Profiling enzyme activities in vivo using click chemistry methods. Chem Biol 11(4):535–546PubMedGoogle Scholar
  228. Speers AE, Cravatt BF (2005) A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J Am Chem Soc 127(28):10018–10019PubMedPubMedCentralGoogle Scholar
  229. Steiger AK, Yang Y, Royzen M, Pluth MD (2017) Bio-orthogonal “click-and-release” donation of caged carbonyl sulfide (COS) and hydrogen sulfide (H2S). Chem Commun (Camb) 53(8):1378–1380Google Scholar
  230. Sun J, Xin C, Eu JP, Stamler JS, Meissner G (2001) Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A 98(20):11158–11162PubMedPubMedCentralGoogle Scholar
  231. Sussman D, Westendorf L, Meyer DW, Leiske CI, Anderson M, Okeley NM, Alley SC, Lyon R, Sanderson RJ, Carter PJ, Benjamin DR (2018) Engineered cysteine antibodies: an improved antibody-drug conjugate platform with a novel mechanism of drug-linker stability. Protein Eng Des Sel 31(2):47–54PubMedGoogle Scholar
  232. Swinney DC (2009) The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Devel 12(1):31–39PubMedGoogle Scholar
  233. Szychowski J, Mahdavi A, Hodas JJL, Bagert JD, Ngo JT, Landgraf P, Dieterich DC, Schuman EM, Tirrell DA (2010) Cleavable biotin probes for labeling of biomolecules via azide–alkyne cycloaddition. J Am Chem Soc 132(51):18351–18360PubMedPubMedCentralGoogle Scholar
  234. Takaya J, Mio K, Shiraishi T, Kurokawa T, Otsuka S, Mori Y, Uesugi M (2015) A potent and site-selective agonist of TRPA1. J Am Chem Soc 137(50):15859–15864PubMedGoogle Scholar
  235. Tanaka H, Nishida K, Sugita K, Yoshioka T (1999) Antitumor efficacy of hypothemycin, a new Ras-signaling inhibitor. Jpn J Cancer Res 90(10):1139–1145PubMedPubMedCentralGoogle Scholar
  236. The M, MacCoss MJ, Noble WS, Käll L (2016) Fast and accurate protein false discovery rates on large-scale proteomics data sets with percolator 3.0. J Am Soc Mass Spectrom 27(11):1719–1727PubMedPubMedCentralGoogle Scholar
  237. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904PubMedGoogle Scholar
  238. Thornberry NA, Peterson EP, Zhao JJ, Howard AD, Griffin PR, Chapman KT (1994) Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33(13):3934–3940PubMedGoogle Scholar
  239. Tian C, Sun R, Liu K, Fu L, Liu X, Zhou W, Yang Y, Yang J (2017) Multiplexed thiol reactivity profiling for target discovery of electrophilic natural products. Cell Chem Biol 24(11):1416–1427 e1415PubMedGoogle Scholar
  240. Tonge PJ (2018) Drug-target kinetics in drug discovery. ACS Chem Neurosci 9(1):29–39PubMedGoogle Scholar
  241. Truong TH, Ung PM, Palde PB, Paulsen CE, Schlessinger A, Carroll KS (2016) Molecular basis for redox activation of epidermal growth factor receptor kinase. Cell Chem Biol 23(7):837–848PubMedPubMedCentralGoogle Scholar
  242. Uetrecht J (2009) Immune-mediated adverse drug reactions. Chem Res Toxicol 22(1):24–34PubMedGoogle Scholar
  243. Uzozie AC, Aebersold R (2018) Advancing translational research and precision medicine with targeted proteomics. J ProteomicsGoogle Scholar
  244. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52(4):609–623PubMedGoogle Scholar
  245. Vinogradova EV, Zhang C, Spokoyny AM, Pentelute BL, Buchwald SL (2015) Organometallic palladium reagents for cysteine bioconjugation. Nature 526(7575):687–691PubMedPubMedCentralGoogle Scholar
  246. Visscher M, Arkin MR, Dansen TB (2016) Covalent targeting of acquired cysteines in cancer. Curr Opin Chem Biol 30:61–67PubMedGoogle Scholar
  247. Wachnowsky C, Wesley NA, Fidai I, Cowan JA (2017) Understanding the molecular basis of multiple mitochondrial dysfunctions syndrome 1 (MMDS1)-impact of a disease-causing Gly208Cys substitution on structure and activity of NFU1 in the Fe/S cluster biosynthetic pathway. J Mol Biol 429(6):790–807PubMedPubMedCentralGoogle Scholar
  248. Wang H, Xian M (2008) Fast reductive ligation of S-nitrosothiols. Angew Chem Int Ed Engl 47(35):6598–6601PubMedGoogle Scholar
  249. Wang Z, Udeshi ND, O’Malley M, Shabanowitz J, Hunt DF, Hart GW (2010) Enrichment and site mapping of O-Linked N-Acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9(1):153–160PubMedGoogle Scholar
  250. Wang C, Weerapana E, Blewett MM, Cravatt BF (2014) A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat Meth 11(1):79–85Google Scholar
  251. Wang C, Abegg D, Hoch DG, Adibekian A (2016) Chemoproteomics-enabled discovery of a potent and selective inhibitor of the DNA repair protein MGMT. Angew Chem Int Ed Engl 55(8):2911–2915PubMedGoogle Scholar
  252. Wang H, Chen X, Li C, Liu Y, Yang F, Wang C (2018) Sequence-based prediction of cysteine reactivity using machine learning. Biochemistry 57(4):451–460PubMedGoogle Scholar
  253. Ward RA, Anderton MJ, Ashton S, Bethel PA, Box M, Butterworth S, Colclough N, Chorley CG, Chuaqui C, Cross DA, Dakin LA, Debreczeni JE, Eberlein C, Finlay MR, Hill GB, Grist M, Klinowska TC, Lane C, Martin S, Orme JP, Smith P, Wang F, Waring MJ (2013) Structure- and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR). J Med Chem 56(17):7025–7048PubMedGoogle Scholar
  254. Ward CC, Kleinman JI, Nomura DK (2017) NHS-esters As versatile reactivity-based probes for mapping proteome-wide ligandable hotspots. ACS Chem Biol 12(6):1478–1483PubMedGoogle Scholar
  255. Washburn MP (2015) The H-index of ‘an approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database’. J Am Soc Mass Spectrom 26(11):1799–1803PubMedGoogle Scholar
  256. Weerapana E, Speers AE, Cravatt BF (2007) Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat Protoc 2(6):1414–1425Google Scholar
  257. Weerapana E, Simon GM, Cravatt BF (2008) Disparate proteome reactivity profiles of carbon electrophiles. Nat Chem Biol 4(7):405–407PubMedPubMedCentralGoogle Scholar
  258. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468(7325):790–795PubMedPubMedCentralGoogle Scholar
  259. Whitby LR, Obach RS, Simon GM, Hayward MM, Cravatt BF (2017) Quantitative chemical proteomic profiling of the in vivo targets of reactive drug metabolites. ACS Chem Biol 12(8):2040–2050PubMedPubMedCentralGoogle Scholar
  260. Wissner A, Overbeek E, Reich MF, Floyd MB, Johnson BD, Mamuya N, Rosfjord EC, Discafani C, Davis R, Shi X, Rabindran SK, Gruber BC, Ye F, Hallett WA, Nilakantan R, Shen R, Wang Y-F, Greenberger LM, Tsou H-R (2003) Synthesis and structure–activity relationships of 6,7-disubstituted 4-Anilinoquinoline-3-carbonitriles. The design of an orally active, irreversible inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor-2 (HER-2). J Med Chem 46(1):49–63PubMedGoogle Scholar
  261. Withers SG, Aebersold R (1995) Approaches to labeling and identification of active site residues in glycosidases. Protein Sci 4(3):361–372PubMedPubMedCentralGoogle Scholar
  262. Witt AC, Lakshminarasimhan M, Remington BC, Hasim S, Pozharski E, Wilson MA (2008) Cysteine pKa depression by a protonated glutamic acid in human DJ-1. Biochemistry 47(28):7430–7440PubMedPubMedCentralGoogle Scholar
  263. Wolters DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73(23):5683–5690PubMedGoogle Scholar
  264. Wong HL, Liebler DC (2008) Mitochondrial protein targets of thiol-reactive electrophiles. Chem Res Toxicol 21(4):796–804PubMedPubMedCentralGoogle Scholar
  265. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40PubMedGoogle Scholar
  266. Wright AT, Song JD, Cravatt BF (2009) A Suite of Activity-based probes for human cytochrome P450 enzymes. J Am Chem Soc 131(30):10692–10700PubMedPubMedCentralGoogle Scholar
  267. Wright FA, Lu JP, Sliter DA, Dupre N, Rouleau GA, Wojcikiewicz RJ (2015) A point mutation in the ubiquitin ligase RNF170 that causes autosomal dominant sensory ataxia destabilizes the protein and impairs inositol 1,4,5-Trisphosphate receptor-mediated Ca2+ signaling. J Biol Chem 290(22):13948–13957PubMedPubMedCentralGoogle Scholar
  268. Wu C, Parrott AM, Liu T, Jain MR, Yang Y, Sadoshima J, Li H (2011) Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach. J Proteomics 74(11):2498–2509PubMedPubMedCentralGoogle Scholar
  269. Wulff JE, Siegrist R, Myers AG (2007) The natural product avrainvillamide binds to the oncoprotein nucleophosmin. J Am Chem Soc 129(46):14444–14451PubMedPubMedCentralGoogle Scholar
  270. Xia YF, Ye BQ, Li YD, Wang JG, He XJ, Lin X, Yao X, Ma D, Slungaard A, Hebbel RP, Key NS, Geng JG (2004) Andrographolide attenuates inflammation by inhibition of NF-kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol 173(6):4207–4217PubMedGoogle Scholar
  271. Xu T, Park SK, Venable JD, Wohlschlegel JA, Diedrich JK, Cociorva D, Lu B, Liao L, Hewel J, Han X, Wong CCL, Fonslow B, Delahunty C, Gao Y, Shah H, Yates JR 3rd (2015) ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J Proteomics 129:16–24PubMedPubMedCentralGoogle Scholar
  272. Yang Y, Verhelst SHL (2013) Cleavable trifunctional biotin reagents for protein labelling, capture and release. Chem Commun 49(47):5366–5368Google Scholar
  273. Yang J, Gupta V, Tallman KA, Porter NA, Carroll KS, Liebler DC (2015) Global, in situ, site-specific analysis of protein S-sulfenylation. Nat Protoc 10(7):1022–1037PubMedPubMedCentralGoogle Scholar
  274. Yang J, Carroll KS, Liebler DC (2016) The expanding landscape of the thiol redox proteome. Mol Cell Proteomics 15(1):1–11PubMedGoogle Scholar
  275. Yi EC, Li XJ, Cooke K, Lee H, Raught B, Page A, Aneliunas V, Hieter P, Goodlett DR, Aebersold R (2005) Increased quantitative proteome coverage with (13)C/(12)C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics 5(2):380–387PubMedGoogle Scholar
  276. Yu L-R, Conrads TP, Uo T, Issaq HJ, Morrison RS, Veenstra TD (2004) Evaluation of the acid-cleavable isotope-coded affinity tag reagents: application to camptothecin-treated cortical neurons. J Proteome Res 3(3):469–477PubMedGoogle Scholar
  277. Yver A (2016) Osimertinib (AZD9291)-a science-driven, collaborative approach to rapid drug design and development. Ann Oncol 27(6):1165–1170PubMedGoogle Scholar
  278. Zaro BW, Whitby LR, Lum KM, Cravatt BF (2016) Metabolically labile fumarate esters impart kinetic selectivity to irreversible inhibitors. J Am Chem Soc 138(49):15841–15844PubMedPubMedCentralGoogle Scholar
  279. Zhang R, Sioma CS, Wang S, Regnier FE (2001) Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem 73(21):5142–5149PubMedGoogle Scholar
  280. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9(1):28–39PubMedGoogle Scholar
  281. Zhao Z, Bourne PE (2018) Progress with covalent small-molecule kinase inhibitors. Drug Discov Today 23(3):727–735PubMedGoogle Scholar
  282. Zhao Y, Bolton SG, Pluth MD (2017a) Light-activated COS/H2S donation from photocaged thiocarbamates. Org Lett 19(9):2278–2281PubMedGoogle Scholar
  283. Zhao Y, Henthorn HA, Pluth MD (2017b) Kinetic insights into hydrogen sulfide delivery from caged-carbonyl sulfide isomeric donor platforms. J Am Chem Soc 139(45):16365–16376PubMedPubMedCentralGoogle Scholar
  284. Zhou H, Ranish JA, Watts JD, Aebersold R (2002) Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol 20(5):512–515PubMedGoogle Scholar
  285. Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, Cortot AB, Chirieac L, Iacob RE, Padera R, Engen JR, Wong KK, Eck MJ, Gray NS, Janne PA (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR T790 M. Nature 462(7276):1070–1074PubMedPubMedCentralGoogle Scholar
  286. Zhou WY, Zheng H, Du XL, Yang JL (2016) Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients. Cancer Biol Med 13(2):260–268PubMedPubMedCentralGoogle Scholar
  287. Zhu K, Borrelli KW, Greenwood JR, Day T, Abel R, Farid RS, Harder E (2014) Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. J Chem Inf Model 54(7):1932–1940PubMedGoogle Scholar
  288. Zimmermann G, Rieder U, Bajic D, Vanetti S, Chaikuad A, Knapp S, Scheuermann J, Mattarella M, Neri D (2017) A specific and covalent JNK-1 ligand selected from an encoded self-assembling chemical library. Chemistry 23(34):8152–8155PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations