HIV-1 Latency pp 157-180 | Cite as

Residual Immune Activation and Latency

  • Elena Bruzzesi
  • Irini SeretiEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 417)


The introduction of combination antiretroviral therapy (cART) in the 1990s has dramatically changed the course of HIV infection, decreasing the risk for both AIDS- and non-AIDS-related events. Cancers, cardiovascular disease (CVD), liver and kidney disease, neurological disorders and frailty have become of great importance lately in the clinical management as they represent the principal cause of death in people living with HIV who receive cART (Kirk et al. in Clin Infect Dis 45(1):103–10, 2007; Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283–2296, 2006; Ances et al. J Infect Dis 201(3):336–340, 2010; Desquilbet et al. J Gerontol A Biol Sci Med Sci 62(11):1279–1286, 2007; Lifson et al. HIV Clin Trials 9(3):177–185, 2008). Despite the undeniable achievements of cART, we are now faced with its limitations: a considerable proportion of individuals, referred as to immunological non-responders, fails to reconstitute the immune system despite optimal treatment and viral suppression (Kelley et al. Clin Infect Dis 48(6):787–794, 2009; Robbins et al. Clin Infect Dis 48(3):350–361, 2009) and remains at high risk for opportunistic infections and non-AIDS-related events (Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283–2296, 2006). Moreover, the generalized state of immune activation and inflammation, linked to serious non-AIDS events, persists despite successful HIV suppression with cART. Finally, the current strategies have so far failed to eradicate the virus, and inflammation appears a driving force in viral persistence. In the light of all this, it is of fundamental importance to investigate the pathophysiological processes that link incomplete immune recovery, immune activation and HIV persistence to design targeted therapies that could impact on the three.



The work of the authors was supported by the Intramural Research Program of NIAID/NIH.


  1. Ances BM et al (2010) HIV infection and aging independently affect brain function as measured by functional magnetic resonance imaging. J Infect Dis 201(3):336–340PubMedPubMedCentralGoogle Scholar
  2. Andrade BB et al (2014) Mycobacterial antigen driven activation of CD14 ++CD16− monocytes is a predictor of tuberculosis-associated immune reconstitution inflammatory syndrome. PLoS Pathog 10(10):e1004433PubMedPubMedCentralGoogle Scholar
  3. Anton PA et al (2000) Enhanced levels of functional HIV-1 co-receptors on human mucosal T cells demonstrated using intestinal biopsy tissue. AIDS 14(12):1761–1765PubMedGoogle Scholar
  4. Baker JV et al (2012) Angiotensin converting enzyme inhibitor and HMG-CoA reductase inhibitor as adjunct treatment for persons with HIV infection: a feasibility randomized trial. PLoS ONE 7(10):e46894PubMedPubMedCentralGoogle Scholar
  5. Baker JV et al (2014) Immunologic predictors of coronary artery calcium progression in a contemporary HIV cohort. AIDS 28(6):831–840PubMedPubMedCentralGoogle Scholar
  6. Bas S et al (2004) CD14 is an acute-phase protein. J Immunol 172(7):4470–4479PubMedGoogle Scholar
  7. Bastard JP et al (2015) Increased systemic immune activation and inflammatory profile of long-term HIV-infected ART-controlled patients is related to personal factors, but not to markers of HIV infection severity. J Antimicrob Chemother 70(6):1816–1824PubMedGoogle Scholar
  8. Benecke A, Gale M Jr, Katze MG (2012) Dynamics of innate immunity are key to chronic immune activation in AIDS. Curr Opin HIV AIDS 7(1):79–85PubMedPubMedCentralGoogle Scholar
  9. Berquist V, Hoy JF, Trevillyan JM (2017) Contribution of common infections to cardiovascular risk in HIV positive individuals. AIDS Rev 19(2)Google Scholar
  10. Boasso A et al (2008) HIV-induced type I interferon and tryptophan catabolism drive T cell dysfunction despite phenotypic activation. PLoS ONE 3(8):e2961PubMedPubMedCentralGoogle Scholar
  11. Bosinger SE et al (2012) Systems biology of natural simian immunodeficiency virus infections. Curr Opin HIV AIDS 7(1):71–78PubMedPubMedCentralGoogle Scholar
  12. Boulassel MR et al (2012) CD4 T cell nadir independently predicts the magnitude of the HIV reservoir after prolonged suppressive antiretroviral therapy. J Clin Virol 53(1):29–32PubMedGoogle Scholar
  13. Boulware DR et al (2011) Higher levels of CRP, D-dimer, IL-6, and hyaluronic acid before initiation of antiretroviral therapy (ART) are associated with increased risk of AIDS or death. J Infect Dis 203(11):1637–1646PubMedPubMedCentralGoogle Scholar
  14. Brenchley JM et al (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200(6):749–759PubMedPubMedCentralGoogle Scholar
  15. Brenchley JM et al (2006a) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12(12):1365–1371PubMedGoogle Scholar
  16. Brenchley JM, Price DA, Douek DC (2006b) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7(3):235–239PubMedGoogle Scholar
  17. Brown D, Mattapallil JJ (2014) Gastrointestinal tract and the mucosal macrophage reservoir in HIV infection. Clin Vaccine Immunol 21(11):1469–1473PubMedPubMedCentralGoogle Scholar
  18. Bruner KM et al (2016) Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med 22(9):1043–1049PubMedPubMedCentralGoogle Scholar
  19. Burdo TH et al (2011) Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis 204(1):154–163PubMedPubMedCentralGoogle Scholar
  20. Buzon MJ et al (2010) HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 16(4):460–465PubMedGoogle Scholar
  21. Buzon MJ et al (2014a) Long-term antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J Virol 88(17):10056–10065PubMedPubMedCentralGoogle Scholar
  22. Buzon MJ et al (2014b) HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat Med 20(2):139–142PubMedPubMedCentralGoogle Scholar
  23. Cameron PU et al (2010) Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci U S A 107(39):16934–16939PubMedPubMedCentralGoogle Scholar
  24. Chahroudi A et al (2012) Natural SIV hosts: showing AIDS the door. Science 335(6073):1188–1193Google Scholar
  25. Chan MM et al (1990) Beta 2-microglobulin and neopterin: predictive markers for human immunodeficiency virus type 1 infection in children? J Clin Microbiol 28(10):2215–2219PubMedPubMedCentralGoogle Scholar
  26. Chan CN et al (2016) HIV-1 latency and virus production from unintegrated genomes following direct infection of resting CD4 T cells. Retrovirology 13:1PubMedPubMedCentralGoogle Scholar
  27. Chege D et al (2011) Sigmoid Th17 populations, the HIV latent reservoir, and microbial translocation in men on long-term antiretroviral therapy. AIDS 25(6):741–749PubMedGoogle Scholar
  28. Cheung AKL, Huang Y, Kwok HY, Chen M, Chen Z (2017) Latent human cytomegalovirus enhances HIV-1 infection in CD34+ progenitor cells. Blood Adv 1(5):306–318PubMedPubMedCentralGoogle Scholar
  29. Chevalier MF, Weiss L (2013) The split personality of regulatory T cells in HIV infection. Blood 121(1):29–37PubMedGoogle Scholar
  30. Chew KW et al (2014) The effect of hepatitis C virologic clearance on cardiovascular disease biomarkers in human immunodeficiency virus/hepatitis C virus coinfection. Open Forum Infect Dis 1(3):ofu104Google Scholar
  31. Chomont N et al (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15(8):893–900PubMedPubMedCentralGoogle Scholar
  32. Choudhary SK et al (2007) Low immune activation despite high levels of pathogenic human immunodeficiency virus type 1 results in long-term asymptomatic disease. J Virol 81(16):8838–8842PubMedPubMedCentralGoogle Scholar
  33. Chun TW et al (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387(6629):183–188PubMedGoogle Scholar
  34. Chun TW et al (1998a) Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci U S A 95(15):8869–8873PubMedPubMedCentralGoogle Scholar
  35. Chun TW et al (1998b) Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med 188(1):83–91PubMedPubMedCentralGoogle Scholar
  36. Chun TW et al (2005) HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J Clin Invest 115(11):3250–3255PubMedPubMedCentralGoogle Scholar
  37. Chung CY et al (2014) Progressive proximal-to-distal reduction in expression of the tight junction complex in colonic epithelium of virally-suppressed HIV+ individuals. PLoS Pathog 10(6):e1004198PubMedPubMedCentralGoogle Scholar
  38. Churchill MJ et al (2006) Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol 12(2):146–152PubMedGoogle Scholar
  39. Cockerham LR et al (2014) CD4+ and CD8+ T cell activation are associated with HIV DNA in resting CD4+ T cells. PLoS ONE 9(10):e110731PubMedPubMedCentralGoogle Scholar
  40. Cohn LB et al (2015) HIV-1 integration landscape during latent and active infection. Cell 160(3):420–432PubMedPubMedCentralGoogle Scholar
  41. Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51PubMedPubMedCentralGoogle Scholar
  42. Crowe S, Zhu T, Muller WA (2003) The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J Leukoc Biol 74(5):635–641PubMedGoogle Scholar
  43. Dahl V et al (2014) An example of genetically distinct HIV type 1 variants in cerebrospinal fluid and plasma during suppressive therapy. J Infect Dis 209(10):1618–1622PubMedGoogle Scholar
  44. De Martinis M et al (2006) Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol 80(3):219–227PubMedGoogle Scholar
  45. Deeks SG (2011) HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 62:141–155PubMedPubMedCentralGoogle Scholar
  46. Deeks SG (2012) HIV: shock and kill. Nature 487(7408):439–440PubMedGoogle Scholar
  47. Deeks SG et al (2004) Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 104(4):942–947PubMedGoogle Scholar
  48. Descours B et al (2017) CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature 543(7646):564–567PubMedGoogle Scholar
  49. Desquilbet L et al (2007) HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J Gerontol A Biol Sci Med Sci 62(11):1279–1286PubMedGoogle Scholar
  50. Dillon SM et al (2014) An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol 7(4):983–994PubMedPubMedCentralGoogle Scholar
  51. Dion ML et al (2004) HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21(6):757–768PubMedGoogle Scholar
  52. Doitsh G et al (2010) Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143(5):789–801PubMedPubMedCentralGoogle Scholar
  53. Doitsh G et al (2014) Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505(7484):509–514PubMedPubMedCentralGoogle Scholar
  54. Dowd JB et al (2013) Cytomegalovirus is associated with reduced telomerase activity in the Whitehall II cohort. Exp Gerontol 48(4):385–390PubMedPubMedCentralGoogle Scholar
  55. Eden A et al (2010) HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis 202(12):1819–1825PubMedPubMedCentralGoogle Scholar
  56. Effros RB et al (1996) Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 10(8):F17–F22PubMedGoogle Scholar
  57. Eisele E, Siliciano RF (2012) Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37(3):377–388PubMedPubMedCentralGoogle Scholar
  58. Ericsen AJ et al (2016) Microbial translocation and inflammation occur in hyperacute immunodeficiency virus infection and compromise host control of virus replication. PLoS Pathog 12(12):e1006048PubMedPubMedCentralGoogle Scholar
  59. Estes JD (2013) Pathobiology of HIV/SIV-associated changes in secondary lymphoid tissues. Immunol Rev 254(1):65–77PubMedPubMedCentralGoogle Scholar
  60. Estes JD, Haase AT, Schacker TW (2008) The role of collagen deposition in depleting CD4+ T cells and limiting reconstitution in HIV-1 and SIV infections through damage to the secondary lymphoid organ niche. Semin Immunol 20(3):181–186PubMedPubMedCentralGoogle Scholar
  61. Falk S, Stutte HJ (1990) The spleen in HIV infection–morphological evidence of HIV-associated macrophage dysfunction. Res Virol 141(2):161–169PubMedGoogle Scholar
  62. Folkvord JM, Armon C, Connick E (2005) Lymphoid follicles are sites of heightened human immunodeficiency virus type 1 (HIV-1) replication and reduced antiretroviral effector mechanisms. AIDS Res Hum Retroviruses 21(5):363–370PubMedGoogle Scholar
  63. Freeman ML et al (2016) CD8 T-Cell expansion and inflammation linked to CMV coinfection in ART-treated HIV infection. Clin Infect Dis 62(3):392–396PubMedGoogle Scholar
  64. Fuchs D et al (1984) Urinary neopterin in the diagnosis of acquired immune deficiency syndrome. Eur J Clin Microbiol 3(1):70–71PubMedGoogle Scholar
  65. Fulop T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:271PubMedPubMedCentralGoogle Scholar
  66. George VK et al (2015) HIV infection Worsens Age-Associated Defects in Antibody Responses to Influenza Vaccine. J Infect Dis 211(12):1959–1968PubMedPubMedCentralGoogle Scholar
  67. Gianella S et al (2013) Cytomegalovirus DNA in semen and blood is associated with higher levels of proviral HIV DNA. J Infect Dis 207(6):898–902PubMedGoogle Scholar
  68. Gianella S et al (2014) Cytomegalovirus replication in semen is associated with higher levels of proviral HIV DNA and CD4+ T cell activation during antiretroviral treatment. J Virol 88(14):7818–7827PubMedPubMedCentralGoogle Scholar
  69. Gianella S et al (2016) Replication of human herpesviruses is associated with higher HIV DNA levels during antiretroviral therapy started at early phases of HIV infection. J Virol 90(8):3944–3952PubMedPubMedCentralGoogle Scholar
  70. Gioannini TL, Weiss JP (2007) Regulation of interactions of gram-negative bacterial endotoxins with mammalian cells. Immunol Res 39(1–3):249–260PubMedGoogle Scholar
  71. Giorgi JV et al (1993) Elevated levels of CD38+CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr 6(8):904–912PubMedGoogle Scholar
  72. Giorgi JV et al (1999) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179(4):859–870PubMedGoogle Scholar
  73. Giron-Gonzalez JA et al (2007) Natural history of compensated and decompensated HCV-related cirrhosis in HIV-infected patients: a prospective multicentre study. Antivir Ther 12(6):899–907PubMedGoogle Scholar
  74. Gonzalez VD et al (2009) High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment. J Virol 83(21):11407–11411PubMedPubMedCentralGoogle Scholar
  75. Gonzalez-Hernandez LA et al (2012) Synbiotic therapy decreases microbial translocation and inflammation and improves immunological status in HIV-infected patients: a double-blind randomized controlled pilot trial. Nutr J 11:90PubMedPubMedCentralGoogle Scholar
  76. Grieco MH et al (1984) Elevated beta 2-microglobulin and lysozyme levels in patients with acquired immune deficiency syndrome. Clin Immunol Immunopathol 32(2):174–184PubMedGoogle Scholar
  77. Guadalupe M et al (2003) Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 77(21):11708–11717PubMedPubMedCentralGoogle Scholar
  78. Haase AT et al (1996) Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274(5289):985–989PubMedGoogle Scholar
  79. Hadrup SR et al (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 176(4):2645–2653PubMedGoogle Scholar
  80. Han Y et al (2008) Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 4(2):134–146PubMedPubMedCentralGoogle Scholar
  81. Haraguchi S et al (2006) LMP-420, a small-molecule inhibitor of TNF-alpha, reduces replication of HIV-1 and Mycobacterium tuberculosis in human cells. AIDS Res Ther 3:8PubMedPubMedCentralGoogle Scholar
  82. Hardy GA et al (2013) Interferon-alpha is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. PLoS ONE 8(2):e56527PubMedPubMedCentralGoogle Scholar
  83. Hatano H et al (2013a) Comparison of HIV DNA and RNA in gut-associated lymphoid tissue of HIV-infected controllers and noncontrollers. AIDS 27(14):2255–2260PubMedPubMedCentralGoogle Scholar
  84. Hatano H et al (2013b) Cell-based measures of viral persistence are associated with immune activation and programmed cell death protein 1 (PD-1)-expressing CD4+ T cells. J Infect Dis 208(1):50–56PubMedGoogle Scholar
  85. Hatano H et al (2013c) Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized, placebo-controlled trial. J Infect Dis 208(9):1436–1442PubMedPubMedCentralGoogle Scholar
  86. Hazenberg MD et al (2003) Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17(13):1881–1888PubMedGoogle Scholar
  87. Ho DD et al (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373(6510):123–126PubMedGoogle Scholar
  88. Ho YC et al (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155(3):540–551PubMedPubMedCentralGoogle Scholar
  89. Hunt PW et al (2008) Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis 197(1):126–133PubMedPubMedCentralGoogle Scholar
  90. Hunt PW et al (2011a) Impact of CD8+ T-cell activation on CD4+ T-cell recovery and mortality in HIV-infected Ugandans initiating antiretroviral therapy. AIDS 25(17):2123–2131PubMedPubMedCentralGoogle Scholar
  91. Hunt PW et al (2011b) Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis 203(10):1474–1483PubMedPubMedCentralGoogle Scholar
  92. Jacquelin B et al (2009) Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest 119(12):3544–3555PubMedPubMedCentralGoogle Scholar
  93. Jarvis MA, Nelson JA (2007) Human cytomegalovirus tropism for endothelial cells: not all endothelial cells are created equal. J Virol 81(5):2095–2101PubMedGoogle Scholar
  94. Jiang W et al (2009) Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis 199(8):1177–1185PubMedPubMedCentralGoogle Scholar
  95. Josefsson L et al (2012) Hematopoietic precursor cells isolated from patients on long-term suppressive HIV therapy did not contain HIV-1 DNA. J Infect Dis 206(1):28–34PubMedPubMedCentralGoogle Scholar
  96. Josefsson L et al (2013) The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc Natl Acad Sci U S A 110(51):E4987–E4996PubMedPubMedCentralGoogle Scholar
  97. Kearney MF et al (2014) Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathog 10(3):e1004010PubMedPubMedCentralGoogle Scholar
  98. Kelley CF et al (2009) Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clin Infect Dis 48(6):787–794PubMedPubMedCentralGoogle Scholar
  99. Kim SK et al (1997) Activation and migration of CD8 T cells in the intestinal mucosa. J Immunol 159(9):4295–4306PubMedGoogle Scholar
  100. Kinter AL et al (2008) The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 181(10):6738–6746PubMedGoogle Scholar
  101. Kirk GD et al (2007) HIV infection is associated with an increased risk for lung cancer, independent of smoking. Clin Infect Dis 45(1):103–110PubMedPubMedCentralGoogle Scholar
  102. Klatt NR, Funderburg NT, Brenchley JM (2006) Microbial translocation, immune activation, and HIV disease. Trends Microbiol 21(1):6–13Google Scholar
  103. Klatt NR et al (2011) SIV infection of rhesus macaques results in dysfunctional T- and B-cell responses to neo and recall Leishmania major vaccination. Blood 118(22):5803–5812PubMedPubMedCentralGoogle Scholar
  104. Klatt NR et al (2013) Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques. J Clin Invest 123(2):903–907PubMedPubMedCentralGoogle Scholar
  105. Kolte L et al (2002) Association between larger thymic size and higher thymic output in human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy. J Infect Dis 185(11):1578–1585PubMedGoogle Scholar
  106. Kovacs A et al (1999) Cytomegalovirus infection and HIV-1 disease progression in infants born to HIV-1-infected women. Pediatric pulmonary and cardiovascular complications of vertically transmitted HIV Infection Study Group. N Engl J Med 341(2):77–84PubMedPubMedCentralGoogle Scholar
  107. Kuller LH et al (2008) Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 5(10):e203PubMedPubMedCentralGoogle Scholar
  108. Kulpa DA et al (2013) The immunological synapse: the gateway to the HIV reservoir. Immunol Rev 254(1):305–325PubMedPubMedCentralGoogle Scholar
  109. Kushner LE et al (2013) Immune biomarker differences and changes comparing HCV mono-infected, HIV/HCV co-infected, and HCV spontaneously cleared patients. PLoS ONE 8(4):e60387PubMedPubMedCentralGoogle Scholar
  110. Lafeuillade A et al (2001) Persistence of HIV-1 resistance in lymph node mononuclear cell RNA despite effective HAART. AIDS 15(15):1965–1969PubMedGoogle Scholar
  111. Lassen K et al (2004) The multifactorial nature of HIV-1 latency. Trends Mol Med 10(11):525–531PubMedGoogle Scholar
  112. Lee SA et al (2014) Low proportions of CD28- CD8+ T cells expressing CD57 can be reversed by early ART initiation and predict mortality in treated HIV infection. J Infect Dis 210(3):374–382PubMedPubMedCentralGoogle Scholar
  113. Lelievre JD et al (2012) Initiation of c-ART in HIV-1 infected patients is associated with a decrease of the metabolic activity of the thymus evaluated using FDG-PET/computed tomography. J Acquir Immune Defic Syndr 61(1):56–63PubMedGoogle Scholar
  114. Levy Y et al (2012) Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin Infect Dis 55(2):291–300PubMedPubMedCentralGoogle Scholar
  115. Li JZ et al (2015) Differential levels of soluble inflammatory markers by human immunodeficiency virus controller status and demographics. Open Forum Infect Dis 2(1):ofu117Google Scholar
  116. Lichtner M et al (2015) Cytomegalovirus coinfection is associated with an increased risk of severe non-AIDS-defining events in a large cohort of HIV-infected patients. J Infect Dis 211(2):178–186PubMedGoogle Scholar
  117. Lifson AR et al (2008) Determination of the underlying cause of death in three multicenter international HIV clinical trials. HIV Clin Trials 9(3):177–185PubMedPubMedCentralGoogle Scholar
  118. Lindqvist M et al (2012) Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J Clin Invest 122(9):3271–3280PubMedPubMedCentralGoogle Scholar
  119. Long AT et al (2016) Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 14(3):427–437PubMedGoogle Scholar
  120. Longenecker CT et al (2014) Soluble CD14 is independently associated with coronary calcification and extent of subclinical vascular disease in treated HIV infection. AIDS 28(7):969–977PubMedPubMedCentralGoogle Scholar
  121. Lorenzo-Redondo R et al (2016) Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530(7588):51–56PubMedPubMedCentralGoogle Scholar
  122. Lu W et al (2015) CD4:CD8 ratio as a frontier marker for clinical outcome, immune dysfunction and viral reservoir size in virologically suppressed HIV-positive patients. J Int AIDS Soc 18:20052PubMedPubMedCentralGoogle Scholar
  123. Luo R et al (2013) Modelling HIV-1 2-LTR dynamics following raltegravir intensification. J R Soc Interface 10(84):20130186PubMedPubMedCentralGoogle Scholar
  124. Maidji E et al (2017) Replication of CMV in the gut of HIV-infected individuals and epithelial barrier dysfunction. PLoS Pathog 13(2):e1006202PubMedPubMedCentralGoogle Scholar
  125. Maldarelli F et al (2014) HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345(6193):179–183PubMedPubMedCentralGoogle Scholar
  126. Marchetti G, Tincati C, Silvestri G (2013) Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev 26(1):2–18PubMedPubMedCentralGoogle Scholar
  127. Marcos V et al (2010) Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases. Respir Res 11:32PubMedPubMedCentralGoogle Scholar
  128. Marriott JB et al (1997) A double-blind placebo-controlled phase II trial of thalidomide in asymptomatic HIV-positive patients: clinical tolerance and effect on activation markers and cytokines. AIDS Res Hum Retroviruses 13(18):1625–1631PubMedGoogle Scholar
  129. Mehandru S et al (2004) Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 200(6):761–770PubMedPubMedCentralGoogle Scholar
  130. Melnick JL, Adam E, Debakey ME (1993) Cytomegalovirus and atherosclerosis. Eur Heart J 14 Suppl K:30–38Google Scholar
  131. Micci L et al (2015) Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques. J Clin Invest 125(12):4497–4513PubMedPubMedCentralGoogle Scholar
  132. Miles B, Connick E (2016) TFH in HIV latency and as sources of replication-competent virus. Trends Microbiol 24(5):338–344PubMedPubMedCentralGoogle Scholar
  133. Moir S et al (2008) Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 205(8):1797–1805PubMedPubMedCentralGoogle Scholar
  134. Mousseau G, Valente ST (2016) Didehydro-cortistatin a: a new player in HIV-therapy? Expert Rev Anti Infect Ther 14(2):145–148PubMedGoogle Scholar
  135. Munch J et al (2007) Nef-mediated enhancement of virion infectivity and stimulation of viral replication are fundamental properties of primate lentiviruses. J Virol 81(24):13852–13864PubMedPubMedCentralGoogle Scholar
  136. Mutlu EA et al (2014) A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog 10(2):e1003829PubMedPubMedCentralGoogle Scholar
  137. Nazli A et al (2010) Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog 6(4):e1000852PubMedPubMedCentralGoogle Scholar
  138. Neuhaus J et al (2010) Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis 201(12):1788–1795PubMedPubMedCentralGoogle Scholar
  139. Nixon CC et al (2013) HIV-1 infection of hematopoietic progenitor cells in vivo in humanized mice. Blood 122(13):2195–2204PubMedPubMedCentralGoogle Scholar
  140. O’Brien M et al (2011) Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype. J Clin Invest 121(3):1088–1101PubMedPubMedCentralGoogle Scholar
  141. Olesen R et al (2015) Innate Immune Activity Correlates with CD4 T Cell-Associated HIV-1 DNA decline during latency-reversing treatment with panobinostat. J Virol 89(20):10176–10189PubMedPubMedCentralGoogle Scholar
  142. Palmer S et al (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41(10):4531–4536PubMedPubMedCentralGoogle Scholar
  143. Pandrea I et al (2016) Antibiotic and antiinflammatory therapy transiently reduces inflammation and hypercoagulation in acutely SIV-infected pigtailed Macaques. PLoS Pathog 12(1):e1005384PubMedPubMedCentralGoogle Scholar
  144. Pantaleo G, Graziosi C, Fauci AS (1993) The role of lymphoid organs in the pathogenesis of HIV infection. Semin Immunol 5(3):157–163PubMedGoogle Scholar
  145. Pillai SK, Deeks SG (2017) Signature of the sleeper cell: a biomarker of HIV latency revealed. Trends ImmunolGoogle Scholar
  146. Ploquin MJ, Silvestri G, Muller-Trutwin M (2016) Immune activation in HIV infection: what can the natural hosts of simian immunodeficiency virus teach us? Curr Opin HIV AIDS 11(2):201–208PubMedGoogle Scholar
  147. Reuse S et al (2009) Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS ONE 4(6):e6093PubMedPubMedCentralGoogle Scholar
  148. Revello MG, Gerna G (2010) Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications. Rev Med Virol 20(3):136–155PubMedGoogle Scholar
  149. Robbins GK et al (2009) Incomplete reconstitution of T cell subsets on combination antiretroviral therapy in the AIDS Clinical Trials Group protocol 384. Clin Infect Dis 48(3):350–361PubMedPubMedCentralGoogle Scholar
  150. Saez-Cirion A et al (2013) Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog 9(3):e1003211PubMedPubMedCentralGoogle Scholar
  151. Sajadi MM et al (2012) Chronic immune activation and decreased CD4 cell counts associated with hepatitis C infection in HIV-1 natural viral suppressors. AIDS 26(15):1879–1884PubMedPubMedCentralGoogle Scholar
  152. Sandberg JK, Falconer K, Gonzalez VD (2010) Chronic immune activation in the T cell compartment of HCV/HIV-1 co-infected patients. Virulence 1(3):177–179PubMedGoogle Scholar
  153. Sandler NG et al (2011) Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection. Gastroenterology 141(4):1220–1230, 1230 e1-3PubMedCentralGoogle Scholar
  154. Sandler NG et al (2011) Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis 203(6):780–790PubMedPubMedCentralGoogle Scholar
  155. Sauce D et al (2011) HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. Blood 117(19):5142–5151PubMedPubMedCentralGoogle Scholar
  156. Sauter R et al (2016) CD4/CD8 ratio and CD8 counts predict CD4 response in HIV-1-infected drug naive and in patients on cART. Medicine (Baltimore) 95(42):e5094Google Scholar
  157. Scaggiante R et al (2016) Epstein-Barr and cytomegalovirus DNA salivary shedding correlate with long-term plasma HIV RNA detection in HIV-infected men who have sex with men. J Med Virol 88(7):1211–1221PubMedGoogle Scholar
  158. Schacker TW et al (2005) Amount of lymphatic tissue fibrosis in HIV infection predicts magnitude of HAART-associated change in peripheral CD4 cell count. AIDS 19(18):2169–2171PubMedGoogle Scholar
  159. Schacker TW et al (2006) Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 13(5):556–560PubMedPubMedCentralGoogle Scholar
  160. Schuetz A et al (2014) Initiation of ART during early acute HIV infection preserves mucosal Th17 function and reverses HIV-related immune activation. PLoS Pathog 10(12):e1004543PubMedPubMedCentralGoogle Scholar
  161. Sereti I, Rodger AJ, French MA (2010) Biomarkers in immune reconstitution inflammatory syndrome: signals from pathogenesis. Curr Opin HIV AIDS 5(6):504–510PubMedPubMedCentralGoogle Scholar
  162. Sereti I et al (2017) Persistent, albeit reduced, chronic inflammation in persons starting antiretroviral therapy in acute HIV infection. Clin Infect Dis 64(2):124–131PubMedGoogle Scholar
  163. Serrano-Villar S et al (2014) Increased risk of serious non-AIDS-related events in HIV-infected subjects on antiretroviral therapy associated with a low CD4/CD8 ratio. PLoS ONE 9(1):e85798PubMedPubMedCentralGoogle Scholar
  164. Shan L et al (2011) Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J Virol 85(11):5384–5393PubMedPubMedCentralGoogle Scholar
  165. Shan L et al (2012) Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36(3):491–501PubMedPubMedCentralGoogle Scholar
  166. Siliciano RF, Greene WC (2011) HIV latency. Cold Spring Harb Perspect Med 1(1):a007096PubMedPubMedCentralGoogle Scholar
  167. Siliciano JD et al (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9(6):727–728PubMedPubMedCentralGoogle Scholar
  168. Simonetti FR et al (2016) Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci U S A 113(7):1883–1888PubMedPubMedCentralGoogle Scholar
  169. Sousa AE et al (2002) CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol 169(6):3400–3406PubMedGoogle Scholar
  170. Stacey AR et al (2009) Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol 83(8):3719–3733PubMedPubMedCentralGoogle Scholar
  171. Steininger C, Puchhammer-Stockl E, Popow-Kraupp T (2006) Cytomegalovirus disease in the era of highly active antiretroviral therapy (HAART). J Clin Virol 37(1):1–9PubMedGoogle Scholar
  172. Stock PG et al (2010) Outcomes of kidney transplantation in HIV-infected recipients. N Engl J Med 363(21):2004–2014PubMedPubMedCentralGoogle Scholar
  173. Strategic Timing of Antiretroviral Therapy (START) (2006) CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med 355(22):2283–2296 Google Scholar
  174. Sullivan ZA et al (2015) Latent and active tuberculosis infection increase immune activation in individuals co-infected with HIV. EBioMedicine 2(4):334–340PubMedPubMedCentralGoogle Scholar
  175. Sundaravaradan V et al (2013) Multifunctional double-negative T cells in sooty mangabeys mediate T-helper functions irrespective of SIV infection. PLoS Pathog 9(6):e1003441PubMedPubMedCentralGoogle Scholar
  176. Tabb B et al (2013) Reduced inflammation and lymphoid tissue immunopathology in rhesus macaques receiving anti-tumor necrosis factor treatment during primary simian immunodeficiency virus infection. J Infect Dis 207(6):880–892PubMedGoogle Scholar
  177. Tenorio AR et al (2014) Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis 210(8):1248–1259PubMedPubMedCentralGoogle Scholar
  178. Thierry S et al (2015) Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration. Retrovirology 12:24PubMedPubMedCentralGoogle Scholar
  179. Thompson KA et al (2011) Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol 179(4):1623–1629PubMedPubMedCentralGoogle Scholar
  180. Tran TA et al (2008) Resting regulatory CD4 T cells: a site of HIV persistence in patients on long-term effective antiretroviral therapy. PLoS ONE 3(10):e3305PubMedPubMedCentralGoogle Scholar
  181. Valantine HA et al (1999) Impact of prophylactic immediate posttransplant ganciclovir on development of transplant atherosclerosis: a post hoc analysis of a randomized, placebo-controlled study. Circulation 100(1):61–66PubMedGoogle Scholar
  182. Vallejo A et al (2012) The effect of intensification with raltegravir on the HIV-1 reservoir of latently infected memory CD4 T cells in suppressed patients. AIDS 26(15):1885–1894PubMedGoogle Scholar
  183. Vandergeeten C, Fromentin R, Chomont N (2012) The role of cytokines in the establishment, persistence and eradication of the HIV reservoir. Cytokine Growth Factor Rev 23(4–5):143–149PubMedPubMedCentralGoogle Scholar
  184. Vandergeeten C et al (2013) Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood 121(21):4321–4329PubMedPubMedCentralGoogle Scholar
  185. Veazey RS et al (2000) Dynamics of CCR5 expression by CD4(+) T cells in lymphoid tissues during simian immunodeficiency virus infection. J Virol 74(23):11001–11007PubMedPubMedCentralGoogle Scholar
  186. Vinton C et al (2011) CD4-like immunological function by CD4-T cells in multiple natural hosts of simian immunodeficiency virus. J Virol 85(17):8702–8708PubMedPubMedCentralGoogle Scholar
  187. von Sydow M et al (1991) Interferon-alpha and tumor necrosis factor-alpha in serum of patients in various stages of HIV-1 infection. AIDS Res Hum Retroviruses 7(4):375–380Google Scholar
  188. Wagner TA et al (2013) An increasing proportion of monotypic HIV-1 DNA sequences during antiretroviral treatment suggests proliferation of HIV-infected cells. J Virol 87(3):1770–1778PubMedPubMedCentralGoogle Scholar
  189. Wallet MA et al (2015) Increased inflammation but similar physical composition and function in older-aged, HIV-1 infected subjects. BMC Immunol 16:43PubMedPubMedCentralGoogle Scholar
  190. Whitney JB et al (2014) Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512(7512):74–77PubMedPubMedCentralGoogle Scholar
  191. Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog 4(8):e1000134PubMedPubMedCentralGoogle Scholar
  192. Yukl SA et al (2010) Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. AIDS 24(16):2451–2460PubMedPubMedCentralGoogle Scholar
  193. Zhang J, Perelson AS (2013) Contribution of follicular dendritic cells to persistent HIV viremia. J Virol 87(14):7893–7901PubMedPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Laboratory of ImmunoregulationNational Institutes of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA
  2. 2.Department of Infectious DiseasesIRCCS, San Raffaele Scientific InstituteMilanItaly

Personalised recommendations