Advertisement

The Type III Secretion System of Pathogenic Escherichia coli

  • Sabrina L. Slater
  • Agnes M. Sågfors
  • Dominic J. Pollard
  • David Ruano-Gallego
  • Gad Frankel
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 416)

Abstract

Infection with enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC), enteroinvasive E. coli (EIEC) and Shigella relies on the elaboration of a type III secretion system (T3SS). Few strains also encode a second T3SS, named ETT2. Through the integration of coordinated intracellular and extracellular cues, the modular T3SS is assembled within the bacterial cell wall, as well as the plasma membrane of the host cell. As such, the T3SS serves as a conduit, allowing the chaperone-regulated translocation of effector proteins directly into the host cytosol to subvert eukaryotic cell processes. Recent technological advances revealed high structural resolution of the T3SS apparatus and how it could be exploited to treat enteric disease. This chapter summarises the current knowledge of the structure and function of the E. coli T3SSs.

References

  1. Alsharif G, Ahmad S, Islam MS, Shah R, Busby SJ, Krachler AM (2015) Host attachment and fluid shear are integrated into a mechanical signal regulating virulence in Escherichia coli O157:H7. Proc Natl Acad Sci U S A 112:5503–5508PubMedPubMedCentralGoogle Scholar
  2. Berdichevsky T, Friedberg D, Nadler C, Rokney A, Oppenheim A, Rosenshine I (2005) Ler is a negative autoregulator of the LEE1 operon in enteropathogenic Escherichia coli. J Bacteriol 187:349–357PubMedPubMedCentralGoogle Scholar
  3. Bern C, Martines J, de Zoysa I, Glass RI (1992) The magnitude of the global problem of diarrhoeal disease: a ten-year update. Bull World Health Organ 70:705–714PubMedPubMedCentralGoogle Scholar
  4. Bhat A, Shin M, Jeong J-H, Kim H-J, Lim H-J, Rhee JH, Paik S-Y, Takeyasu K, Tobe T, Yen H et al (2014) DNA looping-dependent autorepression of LEE1 P1 promoters by Ler in enteropathogenic Escherichia coli (EPEC). Proc Natl Acad Sci U S A 111:E2586–E2595PubMedPubMedCentralGoogle Scholar
  5. Bichsel C, Neeld DK, Hamazaki T, Wu D, Chang LJ, Yang L, Terada N, Jin S (2011) Bacterial delivery of nuclear proteins into pluripotent and differentiated cells. PLoS ONE 6Google Scholar
  6. Biemans-Oldehinkel E, Sal-Man N, Deng W, Foster LJ, Finlay BB (2011) Quantitative proteomic analysis reveals formation of an EscL-EscQ-EscN type III complex in enteropathogenic Escherichia coli. J Bacteriol 193:5514–5519PubMedPubMedCentralGoogle Scholar
  7. Bingle LEH, Constantinidou C, Shaw RK, Islam MS, Patel M, Snyder LAS, Lee DJ, Penn CW, Busby SJW, Pallen MJ (2014) Microarray analysis of the Ler regulon in enteropathogenic and enterohaemorrhagic Escherichia coli strains. PLoS ONE 9:1–12Google Scholar
  8. Burkinshaw BJ, Deng W, Lameignère E, Wasney GA, Zhu H, Worrall LJ, Finlay BB, Strynadka NCJ (2015) Structural analysis of a specialized type III secretion system peptidoglycan-cleaving enzyme. J Biol Chem 290:10406–10417PubMedPubMedCentralGoogle Scholar
  9. Bustamante VH, Santana FJ, Calva E, Puente JL (2001) Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: ler antagonizes H-NS-dependent repression. Mol Microbiol 39:664–678PubMedGoogle Scholar
  10. Buttner D (2012) Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76:262–310PubMedPubMedCentralGoogle Scholar
  11. Bzymek KP, Hamaoka BY, Ghosh P (2012) Two translation products of Yersinia yscQ assemble to form a complex essential to type III secretion. Biochemistry 51:1669–1677PubMedPubMedCentralGoogle Scholar
  12. Carlson-Banning KM, Sperandio V (2018) Enterohemorrhagic Escherichia coli outwits hosts through sensing small molecules. Curr Opin Microbiol 41:83–88PubMedGoogle Scholar
  13. Charro N, Mota LJ (2015) Approaches targeting the type III secretion system to treat or prevent bacterial infections. Expert Opin Drug Discov 10:373–387PubMedGoogle Scholar
  14. Chen HD, Frankel G (2005) Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol Rev 29:83–98PubMedGoogle Scholar
  15. Cheng D, Zhu S, Su Z, Zuo W, Lu H (2012) Prevalence and isoforms of the pathogenicity island ETT2 among Escherichia coli isolates from colibacillosis in pigs and mastitis in cows. Curr Microbiol 64:43–49PubMedGoogle Scholar
  16. Cleary J, Lai L-C, Shaw RK, Straatman-Iwanowska A, Donnenberg MS, Frankel G, Knutton S (2004) Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology 150:527–538PubMedGoogle Scholar
  17. Clements A, Young JC, Constantinou N, Frankel G (2011) Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 3:71–87Google Scholar
  18. Collins JW, Keeney KM, Crepin VF, Rathinam VAK, Fitzgerald KA, Finlay BB, Frankel G (2014) Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol 12:612–623PubMedGoogle Scholar
  19. Connolly JPR, Brett Finlay B, Roe AJ (2015) From ingestion to colonization: the influence of the host environment on regulation of the LEE encoded type III secretion system in enterohaemorrhagic Escherichia coli. Front Microbiol 6:1–15Google Scholar
  20. Creasey EA, Delahay RM, Daniell SJ, Frankel G (2003a) Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli. Microbiology 149:2093–2106PubMedGoogle Scholar
  21. Creasey EA, Friedberg D, Shaw RK, Umanski T, Knutton S, Rosenshine I, Frankel G (2003b) CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149:3639–3647PubMedGoogle Scholar
  22. Crepin V, Shaw R, Abe C, Knutton S, Frankel G (2005) Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion. J Bacteriol 187:2881–2889PubMedPubMedCentralGoogle Scholar
  23. Dahan S, Knutton S, Shaw RK, Crepin VF, Dougan G, Frankel G (2004) Transcriptome of enterohemorrhagic Escherichia coli O157 adhering to eukaryotic plasma membranes. Infect Immun 72:5452–5459PubMedPubMedCentralGoogle Scholar
  24. Daniell SJ, Takahashi N, Wilson R, Friedberg D, Rosenshine I, Booy FP, Shaw RK, Knutton S, Frankel G, Aizawa S (2001a) The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol 3:865–871PubMedGoogle Scholar
  25. Daniell SJ, Delahay RM, Shaw RK, Hartland EL, Pallen MJ, Booy F, Ebel F, Knutton S, Frankel G (2001b) Coiled-coil domain of enteropathogenic Escherichia coli type III secreted protein EspD is involved in EspA filament-mediated cell attachment and hemolysis. Infect Immun 69:4055–4064PubMedPubMedCentralGoogle Scholar
  26. De Nisco NJ, Rivera-Cancel G, Orth K (2018) The biochemistry of sensing: enteric pathogens regulate type III secretion in response to environmental and host cues. MBio 9:e02122-17Google Scholar
  27. Delahay RM, Knutton S, Shaw RK, Hartland EL, Pallen MJ, Frankel G (1999) The coiled-coil domain of EspA is essential for the assembly of the type III secretion translocon on the surface of enteropathogenic Escherichia coli. J Biol Chem 274:35969–35974PubMedGoogle Scholar
  28. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, Vázquez A, Barba J, Ibarra JA, O’Donnell P, Metalnikov P et al (2004) Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci 101:3597–3602PubMedGoogle Scholar
  29. Deng W, Li Y, Hardwidge PR, Frey EA, Pfuetzner RA, Lee S, Gruenheid S, Strynakda NCJ, Puente JL, Finlay BB (2005) Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun 73:2135–2146PubMedPubMedCentralGoogle Scholar
  30. Deng W, Yu HB, Li Y, Finlay BB (2015) SepD/SepL-dependent secretion signals of the type III secretion system translocator proteins in enteropathogenic Escherichia coli. J Bacteriol 197:1263–1275PubMedPubMedCentralGoogle Scholar
  31. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A et al (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167(1339–1353):e21Google Scholar
  32. Diepold A, Amstutz M, Abel S, Sorg I, Jenal U, Cornelis GR (2010) Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J 29:1928–1940PubMedPubMedCentralGoogle Scholar
  33. Diepold A, Wiesand U, Cornelis GR (2011) The assembly of the export apparatus (YscR, S, T, U, V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol Microbiol 82:502–514PubMedGoogle Scholar
  34. Donnenberg MS, Tacket CO, James SP, Losonsky G, Nataro JP, Wasserman SS, Kaper JB, Levine MM (1993) Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J Clin Invest 92:1412–1417PubMedPubMedCentralGoogle Scholar
  35. Elliott SJ, Sperandio V, Girón JA, Shin S, Mellies JL, Wainwright L, Hutcheson SW, McDaniel TK, Kaper JB (2000) The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 68:6115–6126PubMedPubMedCentralGoogle Scholar
  36. Feria JM, García-Gómez E, Espinosa N, Minamino T, Namba K, González-Pedrajo B (2012) Role of escp (Orf16) in injectisome biogenesis and regulation of type III protein secretion in enteropathogenic Escherichia coli. J Bacteriol 194:6029–6045Google Scholar
  37. Freedman SB, Xie J, Neufeld MS, Hamilton WL, Hartling L, Tarr PI (2016) Shiga toxin-producing Escherichia coli infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis. Clin Infect Dis 62:1251–1258PubMedPubMedCentralGoogle Scholar
  38. Furniss RCD, Clements A (2017) Regulation of the locus of enterocyte effacement in attaching and effacing pathogens. J Bacteriol JB.00336-17Google Scholar
  39. García-Gómez E, Espinosa N, de la Mora J, Dreyfus G, González-Pedrajo B (2011) The muramidase EtgA from enteropathogenic Escherichia coli is required for efficient type III secretion. Microbiology 157:1145–1160PubMedGoogle Scholar
  40. Gauthier A, Finlay BB (2003) Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli. J Bacteriol 185:6747–6755PubMedPubMedCentralGoogle Scholar
  41. Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B (2016) Type three secretion system in attaching and effacing pathogens. Front Cell Infect Microbiol 6:129PubMedPubMedCentralGoogle Scholar
  42. Gaytán MO, Monjarás Feria J, Soto E, Espinosa N, Benítez JM, Georgellis D, González-Pedrajo B (2017) Novel insights into the mechanism of SepL-mediated control of effector secretion in enteropathogenic Escherichia coli. Microbiologyopen e00571Google Scholar
  43. Gomez-Duarte OG, Kaper JB (1995) A plasmid-encoded regulatory region activates chromosomal eaeA expression in enteropathogenic Escherichia coli. Infect Immun 63:1767–1776PubMedPubMedCentralGoogle Scholar
  44. González-Prieto C, Lesser CF (2018) Rationale redesign of type III secretion systems: toward the development of non-pathogenic E. coli for in vivo delivery of therapeutic payloads. Curr Opin Microbiol 41:1–7PubMedGoogle Scholar
  45. Hodges K, Gill R (2010) Infectious diarrhea: cellular and molecular mechanisms. Gut Microbes 1:4–21PubMedPubMedCentralGoogle Scholar
  46. Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120PubMedPubMedCentralGoogle Scholar
  47. Hyma KE, Lacher DW, Nelson AM, Bumbaugh AC, Janda JM, Strockbine NA, Young VB, Whittam TS (2005) Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J Bacteriol 187:619–628PubMedPubMedCentralGoogle Scholar
  48. Ibuki T, Imada K, Minamino T, Kato T, Miyata T, Namba K (2011) Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol 18:277–282PubMedGoogle Scholar
  49. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA (2001) Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3:669–679PubMedGoogle Scholar
  50. Ide T, Michgehl S, Knappstein S, Heusipp G, Schmidt MA (2003) Differential modulation by Ca2+ of type III secretion of diffusely adhering enteropathogenic Escherichia coli. Infect Immun 71:1725–1732PubMedPubMedCentralGoogle Scholar
  51. Ideses D, Gophna U, Paitan Y, Chaudhuri RR, Pallen MJ, Ron EZ (2005) A degenerate type III secretion system from septicemic Escherichia coli contributes to pathogenesis. J Bacteriol 187:8164–8171PubMedPubMedCentralGoogle Scholar
  52. Imada K, Minamino T, Tahara A, Namba K (2007) Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc Natl Acad Sci U S A 104:485–490PubMedPubMedCentralGoogle Scholar
  53. Iyoda S, Watanabe H (2005) ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol 187:4086–4094PubMedPubMedCentralGoogle Scholar
  54. Izoré T, Job V, Dessen A (2011) Biogenesis, regulation, and targeting of the type III secretion system. Structure 19:603–612PubMedGoogle Scholar
  55. Jimenez R, Cruz-Migoni SB, Huerta-Saquero A, Bustamante VH, Puente JL (2010) Molecular characterization of GrlA, a specific positive regulator of ler expression in enteropathogenic Escherichia coli. J Bacteriol 192:4627–4642PubMedPubMedCentralGoogle Scholar
  56. Journet L, Agrain C, Broz P, Cornelis GR (2003) The needle length of bacterial injectisomes is determined by a molecular ruler. Science (80-) 302:1757–1760PubMedGoogle Scholar
  57. Kenny B, Abe A, Stein M, Finlay BB (1997) Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract. Infect Immun 65:2606–2612PubMedPubMedCentralGoogle Scholar
  58. Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff C, Dougan G (1998) A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17:2166–2176PubMedPubMedCentralGoogle Scholar
  59. Kosek M, Bern C, Guerrant RL (2003) The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ 81:197–204PubMedPubMedCentralGoogle Scholar
  60. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galán JE, Aizawa SI (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605PubMedGoogle Scholar
  61. Lara-Tejero M, Kato J, Wagner S, Liu X, Galán JE (2011) A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331:1188–1191PubMedGoogle Scholar
  62. Larzábal M, Mercado EC, Vilte DA, Salazar-González H, Cataldi A, Navarro-Garcia F (2010) Designed coiled-coil peptides inhibit the type three secretion system of enteropathogenic Escherichia coli. PLoS ONE 5Google Scholar
  63. Law RJ, Gur-Arie L, Rosenshine I, Brett Finlay B (2013) In vitro and in vivo model systems for studying enteropathogenic Escherichia coli infections. Cold Spring Harb Perspect Med 3:a009977PubMedPubMedCentralGoogle Scholar
  64. Le Gouëllec A, Chauchet X, Laurin D, Aspord C, Verove J, Wang Y, Genestet C, Trocme C, Ahmadi M, Martin S et al (2013) A safe bacterial microsyringe for in vivo antigen delivery and immunotherapy. Mol Ther 21:1076–1086PubMedPubMedCentralGoogle Scholar
  65. Litvak Y, Sharon S, Hyams M, Zhang L, Kobi S, Katsowich N, Dishon S, Nussbaum G, Dong N, Shao F et al (2017) Epithelial cells detect functional type III secretion system of enteropathogenic Escherichia coli through a novel NF-κB signaling pathway. PLoS Pathog 13:e1006472PubMedPubMedCentralGoogle Scholar
  66. Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, Cousens S, Mathers C, Black RE (2015) Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385:430–440PubMedGoogle Scholar
  67. Lorenz C, Hausner J, Büttner D (2012) HrcQ provides a docking site for early and late type III secretion substrates from Xanthomonas. PLoS ONE 7Google Scholar
  68. Loureiro I, Frankel G, Adu-Bobie J, Dougan G, Trabulsi LR, Carneiro-Sampaio MM (1998) Human colostrum contains IgA antibodies reactive to enteropathogenic Escherichia coli virulence-associated proteins: intimin, BfpA, EspA, and EspB. J Pediatr Gastroenterol Nutr 27:166–171PubMedGoogle Scholar
  69. Luzader DH, Willsey GG, Wargo MJ, Kendall MM (2016) The ETT2-encoded regulator EtrB modulates enterohemorrhagic Escherichia coli virulence gene expression. Infect Immun 84:2555–2565PubMedPubMedCentralGoogle Scholar
  70. Martínez-Santos VI, Medrano-López A, Saldaña Z, Girón JA, Puente JL (2012) Transcriptional regulation of the ecp operon by EcpR, IHF, and H-NS in attaching and effacing Escherichia coli. J Bacteriol 194:5020–5033PubMedPubMedCentralGoogle Scholar
  71. McNeilly TN, Mitchell MC, Corbishley A, Nath M, Simmonds H, McAteer SP, Mahajan A, Low JC, Smith DGE, Huntley JF et al (2015) Optimizing the protection of cattle against Escherichia coli O157:H7 colonization through immunization with different combinations of H7 flagellin, Tir, intimin-531 or EspA. PLoS ONE 10:1–19Google Scholar
  72. Mcshan AC, Guzman RN De (2015) The bacterial type III secretion system as a target for developing new antibiotics. Chem Biol Drug Des 85:30–42PubMedPubMedCentralGoogle Scholar
  73. Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB (1999) The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33:296–306PubMedGoogle Scholar
  74. Mellies JL, Navarro-Garcia F, Okeke I, Frederickson J, Nataro JP, Kaper JB (2001) espC pathogenicity island of enteropathogenic Escherichia coli encodes an enterotoxin. Infect Immun 69:315–324PubMedPubMedCentralGoogle Scholar
  75. Miletic S, Hünerberg M, Kaldis A, MacDonald J, Leuthreau A, McAllister T, Menassa R (2017) A plant-produced candidate subunit vaccine reduces shedding of enterohemorrhagic Escherichia coli in ruminants. Biotechnol J 12:1–9Google Scholar
  76. Milon A, Oswald E, De Rycke J (1999) Rabbit EPEC: a model for the study of enteropathogenic Escherichia coli. Vet Res 30:203–219PubMedGoogle Scholar
  77. Minamino T, Saijo-Hamano Y, Furukawa Y, González-Pedrajo B, Macnab RM, Namba K (2004) Domain organization and function of Salmonella FliK, a flagellar hook-length control protein. J Mol Biol 341:491–502PubMedGoogle Scholar
  78. Moreira CG, Russell R, Mishra AA, Narayanan S, Ritchie JM, Waldor MK, Curtis MM, Winter SE, Weinshenker D, Sperandio V (2016) Bacterial adrenergic sensors regulate virulence of enteric pathogens in the gut. MBio 7:e00826-16Google Scholar
  79. Navarro-Garcia F, Serapio-Palacios A, Vidal JE, Isabel Salazar M, Tapia-Pastrana G (2014) EspC promotes epithelial cell detachment by enteropathogenic Escherichia coli via sequential cleavages of a cytoskeletal protein and then focal adhesion proteins. Infect Immun 82:2255–2265PubMedPubMedCentralGoogle Scholar
  80. Neves BC, Shaw RK, Frankel G, Knutton S (2003a) Polymorphisms within Espa filaments of enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 71:2262–2265PubMedPubMedCentralGoogle Scholar
  81. Neves BC, Mundy R, Petrovska L, Dougan G, Knutton S, Frankel G (2003b) CesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD. Infect Immun 71:2130–2141PubMedPubMedCentralGoogle Scholar
  82. Nguyen Y, Sperandio V (2012) Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol 2:1–7Google Scholar
  83. Notti RQ, Bhattacharya S, Lilic M, Stebbins CE (2015) A common assembly module in injectisome and flagellar type III secretion sorting platforms. Nat Commun 6:7125PubMedPubMedCentralGoogle Scholar
  84. O’Connell CB, Creasey EA, Knutton S, Elliott S, Crowther LJ, Luo W, John Albert M, Kaper JB, Frankel G, Donnenberg MS (2004) SepL, a protein required for enteropathogenic Escherichia coli type III translocation, interacts with secretion component SepD. Mol Microbiol 52:1613–1625PubMedGoogle Scholar
  85. Ogino T, Ohno R, Sekiya K, Kuwae A, Matsuzawa T, Nonaka T, Fukuda H, Imajoh-ohmi S, Abe A (2006) Assembly of the type III secretion apparatus of enteropathogenic Escherichia coli. J Bacteriol 188:2801–2811PubMedPubMedCentralGoogle Scholar
  86. Ooka T, Ogura Y, Katsura K, Seto K, Kobayashi H, Kawano K, Tokuoka E, Furukawa M, Harada S, Yoshino S et al (2015) Defining the genome features of Escherichia albertii, an emerging enteropathogen closely related to Escherichia coli. Genome Biol Evol 7:3170–3179PubMedPubMedCentralGoogle Scholar
  87. O’Ryan M, Vidal R, del Canto F, Salazar JC, Montero D (2015) Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae. Hum Vaccin Immunother 11:584–600PubMedPubMedCentralGoogle Scholar
  88. Osawa K, Shibata M, Nishiyama Y, Kurokawa M, Yamamoto G, Kinoshita S, Kataoka N (2006) Identification of the ETT2 locus in human diarrheagenic Escherichia coli by multiplex PCR. J Infect Chemother 12:157–159PubMedGoogle Scholar
  89. Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, Moreira CG, Sperandio V (2012) Fucose sensing regulates bacterial intestinal colonization. Nature 492:113–117PubMedPubMedCentralGoogle Scholar
  90. Padavannil A, Jobichen C, Mills E, Velazquez-Campoy A, Li M, Leung KY, Mok YK, Rosenshine I, Sivaraman J (2013) Structure of GrlR–GrlA complex that prevents GrlA activation of virulence genes. Nat Commun 4:2–11Google Scholar
  91. Pallen MJ, Beatson SA, Bailey CM (2005) Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 5:9PubMedPubMedCentralGoogle Scholar
  92. Petty NK, Feltwell T, Pickard D, Clare S, Toribio AL, Fookes M, Roberts K, Monson R, Nair S, Kingsley RA et al (2011) Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux. PLoS Pathog 7Google Scholar
  93. Potter AA, Klashinsky S, Li Y, Frey E, Townsend H, Rogan D, Erickson G, Hinkley S, Klopfenstein T, Moxley RA et al (2004) Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22:362–369PubMedGoogle Scholar
  94. Ren CP, Chaudhuri RR, Fivian A, Bailey CM, Antonio M, Barnes WM, Pallen MJ (2004) The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J Bacteriol 186:3547–3560PubMedPubMedCentralGoogle Scholar
  95. Ritchie JM (2014) Animal models of enterohemorrhagic Escherichia coli infection. Microbiol, Spectr, p 2Google Scholar
  96. Romo-Castillo M, Andrade A, Espinosa N, Feria JM, Soto E, Díaz-Guerrero M, González-Pedrajo B (2014) EscO, a functional and structural analog of the flagellar fliJ protein, is a positive regulator of EscN ATPase activity of the enteropathogenic Escherichia coli injectisome. J Bacteriol 196:2227–2241PubMedPubMedCentralGoogle Scholar
  97. Ruano-Gallego D, Álvarez B, Fernández LÁ (2015) Engineering the controlled assembly of filamentous injectisomes in E. coli K-12 for protein translocation into mammalian cells. ACS Synth Biol 4:1030–1041PubMedPubMedCentralGoogle Scholar
  98. Russell RM, Sharp FC, Rasko DA, Sperandio V (2007) QseA and GrlR/GrlA regulation of the locus of enterocyte effacement genes in enterohemorrhagic Escherichia coli. J Bacteriol 189:5387–5392PubMedPubMedCentralGoogle Scholar
  99. Salinger N, Kokona B, Fairman R, Okeke IN (2009) The plasmid-encoded regulator activates factors conferring lysozyme resistance on enteropathogenic Escherichia coli strains. Appl Environ Microbiol 75:275–280PubMedGoogle Scholar
  100. Sal-Man N, Deng W, Finlay BB (2012) EscI: a crucial component of the type III secretion system forms the inner rod structure in enteropathogenic Escherichia coli. Biochem J 442:119–125PubMedGoogle Scholar
  101. Sal-Man N, Setiaputra D, Scholz R, Deng W, Yu ACY, Strynadka NCJ, Finlay BB (2013) EscE and EscG are cochaperones for the type III needle protein EscF of enteropathogenic Escherichia coli. J Bacteriol 195:2481–2489PubMedPubMedCentralGoogle Scholar
  102. Schauer DB, Zabel BA, Pedraza IF, O’Hara CM, Steigerwalt AG, Brenner DJ (1995) Genetic and biochemical characterization of Citrobacter rodentium sp. nov. J Clin Microbiol 33:2064–2068PubMedPubMedCentralGoogle Scholar
  103. Sekiya K, Ohishi M, Ogino T, Tamano K, Sasakawa C, Abe A (2001) Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci U S A 98:11638–11643Google Scholar
  104. Shaulov L, Gershberg J, Deng W, Finlay BB, Sal-Man N (2017) The ruler protein EscP of the enteropathogenic Escherichia coli type III secretion system is involved in calcium sensing and secretion hierarchy regulation by interacting with the gatekeeper protein SepL. MBio 8:1–15Google Scholar
  105. Shaw RK, Cleary J, Murphy MS, Frankel G, Knutton S (2005) Interaction of enteropathogenic Escherichia coli with human intestinal mucosa: role of effector proteins in brush border remodeling and formation of attaching and effacing lesions. Infect Immun 73(2):1243–1251.  https://doi.org/10.1128/IAI.73.2.1243-1251.2005PubMedPubMedCentralGoogle Scholar
  106. Shi L, Yu B, Cai C-H, Huang J-D (2016) Angiogenic inhibitors delivered by the type III secretion system of tumor-targeting Salmonella typhimurium safely shrink tumors in mice. AMB Express 6:56PubMedPubMedCentralGoogle Scholar
  107. Snyder JD, Merson MH (1982) The magnitude of the global problem of acute diarrhoeal disease: a review of active surveillance data. Bull World Health Organ 60:605–613PubMedPubMedCentralGoogle Scholar
  108. Soto E, Espinosa N, Díaz-Guerrero M, Gaytán MO, Puente JL, González-Pedrajo B (2017) Functional characterization of EscK (Orf4), a sorting platform component of the enteropathogenic Escherichia coli injectisome. J Bacteriol 199Google Scholar
  109. Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB (1999) Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 96:15196–15201PubMedPubMedCentralGoogle Scholar
  110. Su MSW, Kao HC, Lin CN, Syu WJ (2008) Gene l0017 encodes a second chaperone for EspA of enterohaemorrhagic Escherichia coli O157: H7. Microbiology 154:1094–1103PubMedGoogle Scholar
  111. Tacket CO, Sztein MB, Losonsky G, Abe A, Finlay BB, McNamara BP, Fantry GT, James SP, Nataro JP, Levine MM, Donnenberg MS (2000) Role of EspB in experimental human enteropathogenic Escherichia coli infection. Infect Immun 68(6):3689–3695PubMedPubMedCentralGoogle Scholar
  112. Thomas J, Stafford GP, Hughes C (2004) Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc Natl Acad Sci U S A 101:3945–3950PubMedPubMedCentralGoogle Scholar
  113. Thomas NA, Deng W, Baker N, Puente J, Finlay BB (2007) Hierarchical delivery of an essential host colonization factor in enteropathogenic Escherichia coli. J Biol Chem 282:29634–29645PubMedGoogle Scholar
  114. Umanski T, Rosenshine I, Friedberg D (2002) Thermoregulated expression of virulence genes in enteropathogenic Escherichia coli. Microbiology 148:2735–2744PubMedGoogle Scholar
  115. Vilte DA, Larzábal M, Cataldi ÁA, Mercado EC (2008) Bovine colostrum contains immunoglobulin G antibodies against intimin, EspA, and EspB and inhibits hemolytic activity mediated by the type three secretion system of attaching and effacing Escherichia coli. Clin Vaccine Immunol 15:1208–1213PubMedPubMedCentralGoogle Scholar
  116. Wagner S, Königsmaier L, Lara-Tejero M, Lefebre M, Marlovits TC, Galán JE (2010) Organization and coordinated assembly of the type III secretion export apparatus. Proc Natl Acad Sci U S A 107:17745–17750PubMedPubMedCentralGoogle Scholar
  117. Wainwright LA, Kaper JB (1998) EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli. Mol Microbiol 27:1247–1260PubMedGoogle Scholar
  118. Wang D, Roe AJ, McAteer S, Shipston MJ, Gally DL (2008) Hierarchal type III secretion of translocators and effectors from Escherichia coli O157:H7 requires the carboxy terminus of SepL that binds to Tir. Mol Microbiol 69:1499–1512PubMedGoogle Scholar
  119. Wang S, Liu X, Xu X, Yang D, Wang D, Han X, Shi Y, Tian M, Ding C, Peng D et al (2016) Escherichia coli type III secretion system 2 ATPase EivC Is involved in the motility and virulence of avian pathogenic Escherichia coli. Front Microbiol 7:1–14Google Scholar
  120. Wang S, Xu X, Liu X, Wang D, Liang H, Wu X, Tian M, Ding C, Wang G, Yu S (2017) Escherichia coli type III secretion system 2 regulator EtrA promotes virulence of avian pathogenic Escherichia coli. Microbiology (United Kingdom) 163:1515–1524Google Scholar
  121. Winardhi RS, Gulvady R, Mellies JL, Yan J (2014) Locus of enterocyte effacement-encoded regulator (Ler) of pathogenic Escherichia coli competes off histone-like nucleoid-structuring protein (H-NS) through noncooperative DNA binding. J Biol Chem 289:13739–13750PubMedPubMedCentralGoogle Scholar
  122. Wong AR, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, Frankel G, Hartland EL (2011) Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80(6):1420–1438.  https://doi.org/10.1111/j.1365-2958.2011.07661.x. Epub 2011 May 5 PubMedGoogle Scholar
  123. Wood SE, Jin J, Lloyd SA (2008) YscP and YscU switch the substrate specificity of the Yersinia type III secretion system by regulating export of the inner rod protein YscI. J Bacteriol 190:4252–4262PubMedPubMedCentralGoogle Scholar
  124. Yip CK, Finlay BB, Strynadka NCJ (2005) Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nat Struct Mol Biol 12:75–81PubMedGoogle Scholar
  125. Zarivach R, Vuckovic M, Deng W, Finlay BB, Strynadka NCJ (2007) Structural analysis of a prototypical ATPase from the type III secretion system. Nat Struct Mol Biol 14:131–137PubMedGoogle Scholar
  126. Zhang L, Chaudhuri RR, Hobman JL, Patel MD, Antony C, Sarti D, Roe AJ, Vlisidou I, Shaw RK, Falciani F et al (2004) Regulators encoded in the Escherichia coli type III secretion system 2 gene cluster influence exression of genes withing the locus of enterocyte effacement in Enterohemorrhagic E. coli O157:H7. Infect Immun 72:7282–7293PubMedPubMedCentralGoogle Scholar
  127. Zhou M, Guo Z, Duan Q, Hardwidge PR, Zhu G (2014) Escherichia coli type III secretion system 2: a new kind of T3SS? Vet Res 45:32PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sabrina L. Slater
    • 1
  • Agnes M. Sågfors
    • 1
  • Dominic J. Pollard
    • 1
  • David Ruano-Gallego
    • 1
  • Gad Frankel
    • 1
  1. 1.Department of Life SciencesMRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUK

Personalised recommendations