Advertisement

pp 1-31 | Cite as

Exopolysaccharides of Agrobacterium tumefaciens

  • Ann G. Matthysse
Chapter
Part of the Current Topics in Microbiology and Immunology book series

Abstract

Agrobacterium exopolysaccharides play a major role in the life of the cell. Exopolysaccharides are required for bacterial growth as a biofilm and they protect the bacteria against environmental stresses. Five of the exopolysaccharides made by A. tumefaciens have been characterized extensively with respect to their structure, synthesis, regulation, and role in the life of the bacteria. These are cyclic-β-(1, 2)-glucan, cellulose, curdlan, succinoglycan, and the unipolar polysaccharide (UPP). This chapter describes the structure, synthesis, regulation, and function of these five exopolysaccharides.

References

  1. Abe K, Nakajima M, Yamashita T et al (2017) Biochemical and structural analyses of a bacterial endo-beta-1,2-glucanase reveal a new glycoside hydrolase family. J Biol Chem 292:7487–7506CrossRefGoogle Scholar
  2. Amikam D, Benziman M (1989) Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 171:6649–6655CrossRefGoogle Scholar
  3. Ausmees N, Mayer R, Weinhouse H et al (2001) Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol Lett 204:163–167CrossRefGoogle Scholar
  4. Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K–12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006CrossRefGoogle Scholar
  5. Barnhart DM, Su S, Baccaro BE et al (2013) CelR, an ortholog of the diguanylate cyclase PleD of Caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 79:7188–7202CrossRefGoogle Scholar
  6. Bash R, Matthysse AG (2002) Attachment to roots and virulence of a chvB mutant of Agrobacterium tumefaciens are temperature sensitive. Mol Plant Microbe Interact 15:160–163CrossRefGoogle Scholar
  7. Breedveld MW, Benesi AJ, Marco ML et al (1995) Effect of phosphate limitation on synthesis of periplasmic cyclic (beta)-(1,2)-glucans. Appl Environ Microbiol 61:1045–1053Google Scholar
  8. Breedveld MW, Miller KJ (1994) Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Rev 58:145–161Google Scholar
  9. Brightwell G, Hussain H, Tiburtius A et al (1995) Pleiotropic effects of regulatory ros mutants of Agrobacterium radiobacter and their interaction with Fe and glucose. Mol Plant-Microbe Interact 8:747–754CrossRefGoogle Scholar
  10. Brown RM Jr, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569CrossRefGoogle Scholar
  11. Cangelosi GA, Hung L, Puvanesarajah V et al (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol 169:2086–2091CrossRefGoogle Scholar
  12. Cangelosi GA, Martinetti G, Leigh JA et al (1989) Role for Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J Bacteriol 171:1609–1615CrossRefGoogle Scholar
  13. Castro OA, Zorreguieta A, Ielmini V et al (1996) Cyclic beta-(1,2)-glucan synthesis in Rhizobiaceae: roles of the 319-kilodalton protein intermediate. J Bacteriol 178:6043–6048CrossRefGoogle Scholar
  14. Cheng HP, Walker GC (1998) Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system. J Bacteriol 180:20–26Google Scholar
  15. Chou AY, Archdeacon J, Kado CI (1998) Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogene ipt. Proc Natl Acad Sci USA 95:5293–5298CrossRefGoogle Scholar
  16. Chouly C, Colquhoun IJ, Jodelet A et al (1995) NMR studies of succinoglycan repeating-unit octasaccharides from Rhizobium meliloti and Agrobacterium radiobacter. Int J Biol Macromol 17:357–363CrossRefGoogle Scholar
  17. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422CrossRefGoogle Scholar
  18. Danhorn T, Hentzer M, Givskov M et al (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 186:4492–4501CrossRefGoogle Scholar
  19. Douglas CJ, Halperin W, Nester EW (1982) Agrobacterium tumefaciens mutants affected in attachment to plant cells. J Bacteriol 152:1265–1275Google Scholar
  20. Evans LR, Linker A, Impallomeni G (2000) Structure of succinoglycan from an infectious strain of Agrobacterium radiobacter. Int J Biol Macromol 27:319–326CrossRefGoogle Scholar
  21. Feirer N, Kim D, Xu J, Fernandez et al (2017) The Agrobacterium tumefaciens CheY-like protein ClaR regulates biofilm formation. Microbiol 163:1680–1691CrossRefGoogle Scholar
  22. Feirer N, Xu J, Allen KD et al (2015) A pterin-dependent signaling pathway regulates a dual-function diguanylate cyclase-phosphodiesterase controlling surface attachment in Agrobacterium tumefaciens. MBio 6:e00156CrossRefGoogle Scholar
  23. Glucksmann MA, Reuber TL, Walker GC (1993) Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J Bacteriol 175:7045–7055CrossRefGoogle Scholar
  24. Gonzalez JE, York GM, Walker GC (1996) Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 179:141–146CrossRefGoogle Scholar
  25. Halder U, Banerjee A, Bandopadhyay R (2017) Structural and functional properties, biosynthesis, and patenting trends of bacterial succinoglycan: a review. Indian J Microbiol 57:278–284CrossRefGoogle Scholar
  26. Hawes MC, Pueppke SG (1987) Correlation between binding of Agrobacterium-tumefaciens by root cap cells and susceptibility of plants to crown gall. Plant Cell Rep 6:287–290CrossRefGoogle Scholar
  27. Hawes MC, Pueppke SG (1989) Variation in binding and virulence of Agrobacterium tumefaciens chromosomal virulence (Chv) mutant bacteria on different plant-species. Plant Physiol 91:113–118CrossRefGoogle Scholar
  28. Heckel BC, Tomlinson AD, Morton ER et al (2014) Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression. J Bacteriol 196:3221–3233CrossRefGoogle Scholar
  29. Heindl JE, Wang Y, Heckel BC et al (2014) Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Front Plant Sci 5:176CrossRefGoogle Scholar
  30. Hou CT, Ahlgren JA, Brown W et al (1996) Production of an extracellular polysaccharide by Agrobacterium sp DS3 NRRL B-14297 isolated from soil. J Ind Microbiol 16:129–133CrossRefGoogle Scholar
  31. Hussain H, Johnston AW (1997) Iron-dependent transcription of the regulatory gene ros of Agrobacterium radiobacter. Mol Plant Microbe Interact 10:1087–1093CrossRefGoogle Scholar
  32. Ingram-Smith C, Miller KJ (1998) Effects of ionic and osmotic strength on the glucosyltransferase of Rhizobium meliloti responsible for cyclic beta-(1,2)-glucan biosynthesis. Appl Environ Microbiol 64:1290–1297Google Scholar
  33. Kamoun S, Cooley MB, Rogowsky PM et al (1989) Two chromosomal loci involved in production of exopolysaccharide in Agrobacterium tumefaciens. J Bacteriol 171:1755–1759CrossRefGoogle Scholar
  34. Karnezis T, Epa VC, Stone BA et al (2003) Topological characterization of an inner membrane (1→3)-{beta}-d-glucan (curdlan) synthase from Agrobacterium sp. strain ATCC31749. Glycobiology 13:693–706CrossRefGoogle Scholar
  35. Keiski CL, Harwich M, Jain S, Neculai AM et al (2010) AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18:265–273CrossRefGoogle Scholar
  36. Kim MK, Lee IY, Kim KT et al (2000) Residual phosphate concentration under nitrogen-limiting conditions regulates curdlan production in Agrobacterium species. J Ind Microbiol Biotechnol 25:180–183CrossRefGoogle Scholar
  37. Kuroda A, Murphy H, Cashel M et al (1997) Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J BiolChem 27:21240–21243Google Scholar
  38. Laus MC, Logman TJ, Lamers GE et al (2006) A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 59:1704–1713CrossRefGoogle Scholar
  39. Li G, Brown PJ, Tang JX et al (2012) Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol Microbiol 83:41–51CrossRefGoogle Scholar
  40. Liu Y, Gu Q, Ofosu FK et al (2016) Production, structural characterization and gel forming property of a new exopolysaccharide produced by Agrobacterium HX1126 using glycerol or d-mannitol as substrate. Carbohydr Polym 136:917–922CrossRefGoogle Scholar
  41. Marks JR, Lynch TJ, Karlinsey JE et al (1987) Agrobacterium tumefaciens virulence locus pscA is related to the Rhizobium meliloti exoC locus. J Bacteriol 169:5835–5837CrossRefGoogle Scholar
  42. Matthysse AG (1983) Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 15:906–915Google Scholar
  43. Matthysse AG (1994) Conditioned medium promotes the attachment of Agrobacterium tumefaciens strain NT1 to carrot cells. Protoplasma 183:131–136CrossRefGoogle Scholar
  44. Matthysse AG (2014) Attachment of Agrobacterium to plant surfaces. Front Plant Sci 5:252CrossRefGoogle Scholar
  45. Matthysse AG, Holmes KV, Gurlitz RH (1981) Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145:583–595Google Scholar
  46. Matthysse AG, Marry M, Krall L et al (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant-Microbe Interact 18:1002–1010CrossRefGoogle Scholar
  47. Matthysse AG, McMahan S (1998) Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Appl Environ Microbiol 64:2341–2345Google Scholar
  48. Matthysse AG, White S, Lightfoot R (1995) Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1069–1075CrossRefGoogle Scholar
  49. McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1→3)-beta-D-glucans. Appl Microbiol Biotechnol 68:163–173CrossRefGoogle Scholar
  50. Miller KJ, Kennedy EP, Reinhold VN (1986) Osmotic adaptation by Gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231:48–51CrossRefGoogle Scholar
  51. Molhoj M, Pagant S, Hofte H (2002) Towards understanding the role of membrane-bound endo-{beta}-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol 43:1399–1406CrossRefGoogle Scholar
  52. Morgan JL, McNamara JT, Fischer M et al (2016) Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531:329–334CrossRefGoogle Scholar
  53. Morgan JL, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21:489–496CrossRefGoogle Scholar
  54. O’Connell KP, Handelsman J (1989) chvA locus may be involved in export of neutral cyclic beta-1,2-linked d-glucan from Agrobacterium tumefaciens. Mol Plant-Microbe Interact 2:11–16CrossRefGoogle Scholar
  55. O’Neill MA, Robison PD, Chou KJ et al (1992) Evidence that the acidic polysaccharide secreted by Agrobacterium radiobacter (ATCC 53271) has a seventeen glycosyl-residue repeating unit. Carbohydr Res 226:131–154CrossRefGoogle Scholar
  56. Puvanesarajah V, Schell FM, Stacey G et al (1985) Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol 164:102–106Google Scholar
  57. Reuber TL, Walker GC (1993) Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 74:269–280CrossRefGoogle Scholar
  58. Reuhs BL, Kim JS, Matthysse AG (1997) Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide. J Bacteriol 179:5372–5379CrossRefGoogle Scholar
  59. Romling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212CrossRefGoogle Scholar
  60. Ruffing AM, Castro-Melchor M, Hu WS et al (2011) Genome sequence of the curdlan-producing Agrobacterium sp. strain ATCC 31749. J Bacteriol 193:4294–4295CrossRefGoogle Scholar
  61. Ruffing AM, Chen RR (2012) Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis. Microb Cell Fact 11:17CrossRefGoogle Scholar
  62. Slabaugh E, Davis JK, Haigler CH et al (2014) Cellulose synthases: new insights from crystallography and modeling. Trends Plant Sci 19:99–106CrossRefGoogle Scholar
  63. Spiers AJ, Bohannon J, Gehrig SM et al (2003) Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50:15–27CrossRefGoogle Scholar
  64. Srivatsan A, Wang JD (2008) Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol 11:100–105CrossRefGoogle Scholar
  65. Stanisich VA, Stone BA (2009) Enzymology and molecular genetics of biosynthetic enzymes for (1,3)-beta-glucans: prokaryotes. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry, and biology of (1-3)-beta-glucans and related polysaccharides. Elsevier, Amsterdam, pp 201–232Google Scholar
  66. Stasinopoulos SJ, Fisher PR, Stone BA et al (1999) Detection of two loci involved in (1→3)-beta-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene. Glycob 9:31–41CrossRefGoogle Scholar
  67. Swart S, Lugtenberg B, Smit G et al (1994) Rhicadhesin-mediated attachment and virulence of an Agrobacterium tumefaciens chvB mutant can be restored by growth in a highly osmotic medium. J Bacteriol 176:3816–3819CrossRefGoogle Scholar
  68. Sykes LC, Matthysse AG (1986) Time required for tumor induction by Agrobacterium tumefaciens. Appl Environ Microbiol 52:597–598Google Scholar
  69. Thomashow MF, Karlinsey JE, Marks JR et al (1987) Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol 169:3209–3216CrossRefGoogle Scholar
  70. Tiburtius A, de Luca NG, Hussain H et al (1996) Expression of the exoY gene, required for exopolysaccharide synthesis in Agrobacterium, is activated by the regulatory ros gene. Microbiol 142:2621–2629CrossRefGoogle Scholar
  71. Tomlinson AD, Ramey-Hartung B, Day TW et al (2010) Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. Microbiol 156:2670–2681CrossRefGoogle Scholar
  72. Uttaro AD, Cangelosi GA, Geremia RA et al (1990) Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens. J Bacteriol 172:1640–1646CrossRefGoogle Scholar
  73. Wang D, Xue H, Wang Y et al (2013) The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa. Appl Environ Microbiol 79:7150–7159CrossRefGoogle Scholar
  74. Wang Y, Kim SH, Natarajan R et al (2016) Spermidine Inversely Influences Surface Interactions and Planktonic Growth in Agrobacterium tumefaciens. J Bacteriol 198:2682–2691CrossRefGoogle Scholar
  75. Weiner R, Langille S, Quintero E (1995) Structure, function and immunochemistry of bacterial exopolysaccharides. J Ind Microbiol 15:339–346CrossRefGoogle Scholar
  76. Whitney JC, Hay ID, Li C et al (2011) Structural basis for alginate secretion across the bacterial outer membrane. Proc Natl Acad Sci USA 108:13083–13088CrossRefGoogle Scholar
  77. Wong HC, Fear AL, Calhoon RD et al (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci USA 87:8130–8134CrossRefGoogle Scholar
  78. Wu CF, Lin JS, Shaw GC et al (2012) Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog 8:e1002938CrossRefGoogle Scholar
  79. Wu D, Li A, Ma F et al (2016) Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium. Appl Microbiol Biotechnol 100:6183–6192CrossRefGoogle Scholar
  80. Xu J, Kim J, Danhorn T et al (2012) Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Res Microbiol 163:674–684CrossRefGoogle Scholar
  81. Xu J, Kim J, Koestler BJ et al (2013) Genetic analysis of Agrobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile-to-sessile switch. Mol Microbiol 89:929–948CrossRefGoogle Scholar
  82. York GM, Walker GC (1998) The Rhizobium meliloti ExoK and ExsH glycanases specifically depolymerize nascent succinoglycan chains. Proc Natl Acad Sci USA 95:4912–4917CrossRefGoogle Scholar
  83. Yu LJ, Wu JR, Zheng ZY et al (2011a) Changes of curdlan biosynthesis and nitrogenous compounds utilization characterized in ntrC mutant of Agrobacterium sp. ATCC 31749. Curr Microbiol 63:60–67CrossRefGoogle Scholar
  84. Yu LJ, Wu JR, Zheng ZZ et al (2011b) Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production. Prikl Biokhim Mikrobiol 47:537–543Google Scholar
  85. Zorreguieta A, Geremia RA, Cavaignac S et al (1988) Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol Plant-Microbe Interact 1:121–127CrossRefGoogle Scholar
  86. Zorreguieta A, Ugalde RA, Leloir LF (1985) An intermediate in cyclic beta 1-2 glucan biosynthesis. Biochem Biophys Res Commun 126:352–357CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of North CarolineChapel HillUSA

Personalised recommendations