HIV-1 Latency pp 211-248 | Cite as

Cell and Gene Therapy for HIV Cure

  • Christopher W. Peterson
  • Hans-Peter KiemEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 417)


As the HIV pandemic rapidly spread worldwide in the 1980s and 1990s, a new approach to treat cancer, genetic diseases, and infectious diseases was also emerging. Cell and gene therapy strategies are connected with human pathologies at a fundamental level, by delivering DNA and RNA molecules that could correct and/or ameliorate the underlying genetic factors of any illness. The history of HIV gene therapy is especially intriguing, in that the virus that was targeted was soon co-opted to become part of the targeting strategy. Today, HIV-based lentiviral vectors, along with many other gene delivery strategies, have been used to evaluate HIV cure approaches in cell culture, small and large animal models, and in patients. Here, we trace HIV cell and gene therapy from the earliest clinical trials, using genetically unmodified cell products from the patient or from matched donors, through current state-of-the-art strategies. These include engineering HIV-specific immunity in T-cells, gene editing approaches to render all blood cells in the body HIV-resistant, and most importantly, combination therapies that draw from both of these respective “offensive” and “defensive” approaches. It is widely agreed upon that combinatorial approaches are the most promising route to functional cure/remission of HIV infection. This chapter outlines cell and gene therapy strategies that are poised to play an essential role in eradicating HIV-infected cells in vivo.


  1. Aboulafia DM, Mitsuyasu RT, Miles SA (1991) Syngeneic bone-marrow transplantation and failure to eradicate HIV. AIDS 5:344PubMedGoogle Scholar
  2. Aires Da Silva F, Santa-Marta M, Freitas-Vieira A et al (2004) Camelized rabbit-derived VH single-domain intrabodies against Vif strongly neutralize HIV-1 infectivity. J Mol Biol 340:525–542PubMedGoogle Scholar
  3. Ali A, Kitchen SG, Chen IS et al (2016) HIV-1-specific chimeric antigen receptors based on broadly neutralizing antibodies. J Virol 90:6999–7006PubMedPubMedCentralGoogle Scholar
  4. Allers K, Hutter G, Hofmann J et al (2011) Evidence for the cure of HIV infection by CCR5 DELTA32/DELTA32 stem cell transplantation. Blood 117:2791–2799PubMedGoogle Scholar
  5. Alvarnas JC, Le Rademacher J, Wang Y et al (2016) Autologous hematopoietic cell transplantation for HIV-related lymphoma: results of the BMT CTN 0803/AMC 071 trial. Blood 128:1050–1058PubMedPubMedCentralGoogle Scholar
  6. Amado RG, Mitsuyasu RT, Rosenblatt JD et al (2004) Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther 15:251–262PubMedGoogle Scholar
  7. An DS, Donahue RE, Kamata M et al (2007) Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci 104:13110–13115PubMedGoogle Scholar
  8. Anderson J, Akkina R (2008) Human immunodeficiency virus type 1 restriction by human-rhesus chimeric tripartite motif 5alpha (TRIM 5alpha) in CD34(+) cell-derived macrophages in vitro and in T cells in vivo in severe combined immunodeficient (SCID-hu) mice transplanted with human fetal tissue. Hum Gene Ther 19:217–228PubMedGoogle Scholar
  9. Anderson JS, Javien J, Nolta JA et al (2009) Preintegration HIV-1 inhibition by a combination lentiviral vector containing a chimeric TRIM5 alpha protein, a CCR5 shRNA, and a TAR decoy. Mol Ther 17:2103–2114PubMedPubMedCentralGoogle Scholar
  10. Andres C, Plana M, Guardo AC et al (2015) HIV-1 reservoir dynamics after vaccination and antiretroviral therapy interruption are associated with dendritic cell vaccine-induced T Cell Responses. J Virol 89:9189–9199PubMedPubMedCentralGoogle Scholar
  11. Angelucci E, Lucarelli G, Baronciani D et al (1990) Bone marrow transplantation in an HIV positive thalassemic child following therapy with azidothymidine. Haematologica 75:285–287PubMedGoogle Scholar
  12. Ao Z, Wang X, Bello A et al (2011) Characterization of anti-HIV activity mediated by R88-APOBEC3G mutant fusion proteins in CD4+ T cells, peripheral blood mononuclear cells, and macrophages. Hum Gene Ther 22:1225–1237PubMedGoogle Scholar
  13. Bahner I, Kearns K, Hao QL et al (1996) Transduction of human CD34+ hematopoietic progenitor cells by a retroviral vector expressing an RRE decoy inhibits human immunodeficiency virus type 1 replication in myelomonocytic cells produced in long-term culture. J Virol 70:4352–4360PubMedPubMedCentralGoogle Scholar
  14. Bahner I, Sumiyoshi T, Kagoda M et al (2007) Lentiviral vector transduction of a dominant-negative Rev gene into human CD34+ hematopoietic progenitor cells potently inhibits human immunodeficiency virus-1 replication. Mol Ther 15:76–85PubMedGoogle Scholar
  15. Banerjea A, Li MJ, Bauer G et al (2003) Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. Mol Ther 8:62–71PubMedGoogle Scholar
  16. Barker E, Planelles V (2003) Vectors derived from the human immunodeficiency virus, HIV-1. Front Biosci 8:d491–d510PubMedGoogle Scholar
  17. Barouch DH, Picker LJ (2014) Novel vaccine vectors for HIV-1. Nat Rev Microbiol 12:765–771PubMedPubMedCentralGoogle Scholar
  18. Bauer G, Valdez P, Kearns K et al (1997) Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor-mobilized CD34+ cells from HIV-1-infected donors using retroviral vectors containing anti-HIV-1 genes. Blood 89:2259–2267PubMedGoogle Scholar
  19. Beard BC, Trobridge GD, Ironside C et al (2010) Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates. J Clin Invest 120:2345–2354PubMedPubMedCentralGoogle Scholar
  20. Bednarik DP, Mosca JD, Raj NB et al (1989) Inhibition of human immunodeficiency virus (HIV) replication by HIV-trans-activated alpha 2-interferon. Proc Natl Acad Sci U S A 86:4958–4962PubMedPubMedCentralGoogle Scholar
  21. Benjamin R, Berges BK, Solis-Leal A et al (2016) TALEN gene editing takes aim on HIV. Hum Genet 135:1059–1070PubMedPubMedCentralGoogle Scholar
  22. Berger C, Flowers ME, Warren EH et al (2006) Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107:2294–2302PubMedPubMedCentralGoogle Scholar
  23. Bevec D, Dobrovnik M, Hauber J et al (1992) Inhibition of human immunodeficiency virus type 1 replication in human T cells by retroviral-mediated gene transfer of a dominant-negative Rev trans-activator. Proc Natl Acad Sci U S A 89:9870–9874PubMedPubMedCentralGoogle Scholar
  24. Bex F, Hermans P, Sprecher S et al (1994) Syngeneic adoptive transfer of anti-human immunodeficiency virus (HIV-1)-primed lymphocytes from a vaccinated HIV-seronegative individual to his HIV-1-infected identical twin. Blood 84:3317–3326PubMedGoogle Scholar
  25. Bibikova M, Beumer K, Trautman JK et al (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764PubMedGoogle Scholar
  26. Blaese RM, Culver KW, Miller AD et al (1995) T lymphocyte-directed gene therapy for ADA-SCID; initial trial results after 4 years. Science 270:475–480PubMedGoogle Scholar
  27. Bordignon C, Notarangelo LD, Nobili N et al (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA− immunodeficient patients. Science 270:470–475PubMedGoogle Scholar
  28. Borducchi EN, Cabral C, Stephenson KE et al (2016) Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature 540:284–287PubMedPubMedCentralGoogle Scholar
  29. Brauer F, Schmidt K, Zahn RC et al (2013) A rationally engineered anti-HIV peptide fusion inhibitor with greatly reduced immunogenicity. Antimicrob Agents Chemother 57:679–688PubMedPubMedCentralGoogle Scholar
  30. Braun SE, Taube R, Zhu Q et al (2012) In vivo selection of CD4(+) T cells transduced with a gamma-retroviral vector expressing a single-chain intrabody targeting HIV-1 tat. Hum Gene Ther 23:917–931PubMedPubMedCentralGoogle Scholar
  31. Breckpot K, Escors D, Arce F et al (2010) HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. J Virol 84:5627–5636PubMedPubMedCentralGoogle Scholar
  32. Briz V, Serramia MJ, Madrid R et al (2012) Validation of a generation 4 phosphorus-containing polycationic dendrimer for gene delivery against HIV-1. Curr Med Chem 19:5044–5051PubMedGoogle Scholar
  33. Buchschacher GL Jr, Freed EO, Panganiban AT (1992) Cells induced to express a human immunodeficiency virus type 1 envelope gene mutant inhibit the spread of wild-type virus. Hum Gene Ther 3:391–397PubMedGoogle Scholar
  34. Buehler DC, Marsden MD, Shen S et al (2014) Bioengineered vaults: self-assembling protein shell-lipophilic core nanoparticles for drug delivery. ACS Nano 8:7723–7732PubMedPubMedCentralGoogle Scholar
  35. Burns JC, Friedmann T, Driever W et al (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90:8033–8037PubMedGoogle Scholar
  36. Capasso C, Garofalo M, Hirvinen M et al (2014) The evolution of adenoviral vectors through genetic and chemical surface modifications. Viruses 6:832–855PubMedPubMedCentralGoogle Scholar
  37. Caruso M, Klatzmann D (1992) Selective killing of CD4+ cells harboring a human immunodeficiency virus-inducible suicide gene prevents viral spread in an infected cell population. Proc Natl Acad Sci U S A 89:182–186PubMedPubMedCentralGoogle Scholar
  38. Chatterjee S, Johnson PR, Wong KK Jr (1992) Dual-target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector. Science 258:1485–1488PubMedGoogle Scholar
  39. Chen SY, Bagley J, Marasco WA (1994) Intracellular antibodies as a new class of therapeutic molecules for gene therapy. Hum Gene Ther 5:595–601PubMedGoogle Scholar
  40. Cheng L, Ma J, Li J et al (2017) Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J Clin Invest 127:269–279PubMedGoogle Scholar
  41. Coburn GA, Cullen BR (2002) Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 76:9225–9231PubMedPubMedCentralGoogle Scholar
  42. Contu L, La Nasa G, Arras M et al (1993) Allogeneic bone marrow transplantation combined with multiple anti-HIV-1 treatment in a case of AIDS. Bone Marrow Transplant 12:669–671PubMedGoogle Scholar
  43. Das AT, Brummelkamp TR, Westerhout EM et al (2004) Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 78:2601–2605PubMedPubMedCentralGoogle Scholar
  44. De Silva Feelixge HS, Stone D, Pietz HL et al (2016) Detection of treatment-resistant infectious HIV after genome-directed antiviral endonuclease therapy. Antiviral Res 126:90–98PubMedGoogle Scholar
  45. Dean M, Carrington M, Winkler C et al (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth And Development Study, multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study [erratum appears in Science 1996 Nov 15;274(5290):1069]. Science 273:1856–1862PubMedPubMedCentralGoogle Scholar
  46. Deeks SG, Wagner B, Anton PA et al (2002) A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther 5:788–797PubMedGoogle Scholar
  47. Deng J, Qu X, Lu P et al (2017) Specific and stable suppression of HIV provirus expression In vitro by chimeric zinc finger DNA methyltransferase 1. Mol Ther Nucleic acids 6:233–242PubMedPubMedCentralGoogle Scholar
  48. Digiusto DL, Krishnan A, Li L et al (2010) RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2:36ra43PubMedPubMedCentralGoogle Scholar
  49. Digiusto DL, Cannon PM, Holmes MC et al (2016) Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol Ther Methods Clin Dev 3:16067PubMedPubMedCentralGoogle Scholar
  50. Dipaolo N, Ni S, Gaggar A et al (2006) Evaluation of adenovirus vectors containing serotype 35 fibers for vaccination. Mol Ther 13:756–765PubMedPubMedCentralGoogle Scholar
  51. Donahue RE, Bunnell BA, Zink MC et al (1998) Reduction in SIV replication in rhesus macaques infused with autologous lymphocytes engineered with antiviral genes. Nat Med 4:181–186PubMedGoogle Scholar
  52. Dorman NM, Lever AM (2001) Investigation of RNA transcripts containing HIV-1 packaging signal sequences as HIV-1 antivirals: generation of cell lines resistant to HIV-1. Gene Ther 8:157–165PubMedGoogle Scholar
  53. Douglas JL, Gustin JK, Viswanathan K et al (2010) The great escape: viral strategies to counter BST-2/tetherin. PLoS Pathog 6:e1000913PubMedPubMedCentralGoogle Scholar
  54. Durand CM, Ghiaur G, Siliciano JD et al (2012) HIV-1 DNA is detected in bone marrow populations containing CD4+ T cells but is not found in purified CD34+ hematopoietic progenitor cells in most patients on antiretroviral therapy. J Infect Dis 205:1014–1018PubMedPubMedCentralGoogle Scholar
  55. Edagwa B, Mcmillan J, Sillman B et al (2017) Long-acting slow effective release antiretroviral therapy. Expert Opin Drug Deliv:1–11Google Scholar
  56. Eisele E, Siliciano RF (2012) Redefining the viral reservoirs that prevent HIV-1 eradication (Review). Immunity 37:377–388PubMedPubMedCentralGoogle Scholar
  57. Eleftheriadou I, Dieringer M, Poh XY et al (2017) Selective transduction of astrocytic and neuronal CNS subpopulations by lentiviral vectors pseudotyped with Chikungunya virus envelope. Biomaterials 123:1–14PubMedGoogle Scholar
  58. Escarpe P, Zayek N, Chin P et al (2003) Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 8:332–341PubMedGoogle Scholar
  59. Follenzi A, Ailles LE, Bakovic S et al (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222PubMedGoogle Scholar
  60. Friedmann T (1992) A brief history of gene therapy. Nat Genet 2:93–98PubMedGoogle Scholar
  61. Fuchs SP, Martinez-Navio JM, Piatak M Jr et al (2015) AAV-delivered antibody mediates significant protective effects against SIVmac239 challenge in the absence of neutralizing activity. PLoS Pathog 11:e1005090PubMedPubMedCentralGoogle Scholar
  62. Gabarre J, Leblond V, Sutton L et al (1996) Autologous bone marrow transplantation in relapsed HIV-related non-Hodgkin’s lymphoma. Bone Marrow Transplant 18:1195–1197PubMedGoogle Scholar
  63. Gaj T, Epstein BE, Schaffer DV (2016) Genome engineering using adeno-associated virus: basic and clinical research applications. Mol Ther 24:458–464PubMedGoogle Scholar
  64. Garcia F, Climent N, Guardo AC et al (2013) A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. Sci Transl Med 5:166ra2PubMedGoogle Scholar
  65. Gardner MR, Kattenhorn LM, Kondur HR et al (2015) AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 519:87–91PubMedPubMedCentralGoogle Scholar
  66. Garg H, Joshi A (2016) Conditional cytotoxic anti-HIV gene therapy for selectable cell modification. Hum Gene Ther 27:400–415PubMedPubMedCentralGoogle Scholar
  67. Gay W, Lauret E, Boson B et al (2004) Low autocrine interferon beta production as a gene therapy approach for AIDS: infusion of interferon beta-engineered lymphocytes in macaques chronically infected with SIVmac251. Retrovirology 1:29PubMedPubMedCentralGoogle Scholar
  68. Geyer MB, Brentjens RJ (2016) Review: current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy 18:1393–1409PubMedPubMedCentralGoogle Scholar
  69. Goldrick BA (2003) Bubonic plague and HIV. The delta 32 connection. Am J Nurs 103:26–27PubMedGoogle Scholar
  70. Green M, Ishino M, Loewenstein PM (1989) Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell 58:215–223PubMedGoogle Scholar
  71. Hacein-Bey-Abina S, Garrigue A, Wang GP et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142PubMedPubMedCentralGoogle Scholar
  72. Haim H, Si Z, Madani N et al (2009) Soluble CD4 and CD4-mimetic compounds inhibit HIV-1 infection by induction of a short-lived activated state. PLoS Pathog 5:e1000360PubMedPubMedCentralGoogle Scholar
  73. Hale M, Lee B, Honaker Y et al (2017a) Homology-directed recombination for enhanced engineering of chimeric antigen receptor T cells. Mol Ther Methods Clin Dev 4:192–203PubMedPubMedCentralGoogle Scholar
  74. Hale M, Mesojednik T, Romano Ibarra GS et al (2017b) Engineering HIV-resistant, anti-HIV chimeric antigen receptor T cells. Mol Ther 25:570–579PubMedPubMedCentralGoogle Scholar
  75. Hamm TE, Rekosh D, Hammarskjold ML (1999) Selection and characterization of human immunodeficiency virus type 1 mutants that are resistant to inhibition by the transdominant negative RevM10 protein. J Virol 73:5741–5747PubMedPubMedCentralGoogle Scholar
  76. Hanley PJ, Cruz CR, Savoldo B et al (2009) Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 114:1958–1967PubMedPubMedCentralGoogle Scholar
  77. Hanley PJ, Melenhorst JJ, Nikiforow S et al (2015) CMV-specific T cells generated from naive T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med 7:285ra63PubMedPubMedCentralGoogle Scholar
  78. Hansen SG, Ford JC, Lewis MS et al (2011) Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473:523–527PubMedPubMedCentralGoogle Scholar
  79. Harrison GS, Long CJ, Maxwell F et al (1992) Inhibition of HIV production in cells containing an integrated, HIV-regulated diphtheria toxin A chain gene. AIDS Res Hum Retroviruses 8:39–45PubMedGoogle Scholar
  80. Hassett JM, Zaroulis CG, Greenberg ML et al (1983) Bone marrow transplantation in AIDS. N Engl J Med 309:665PubMedGoogle Scholar
  81. Hayakawa J, Washington K, Uchida N et al (2009) Long-term vector integration site analysis following retroviral mediated gene transfer to hematopoietic stem cells for the treatment of HIV infection. PLoS ONE 4:e4211PubMedPubMedCentralGoogle Scholar
  82. Henrich TJ, Hu Z, Li JZ et al (2013) Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis 207:1694–1702PubMedPubMedCentralGoogle Scholar
  83. Henrich TJ, Hanhauser E, Marty FM et al (2014) Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann Intern Med 161:319–327PubMedPubMedCentralGoogle Scholar
  84. Henrich TJ, Hanhauser E, Hu Z et al (2015) Viremic control and viral coreceptor usage in two HIV-1-infected persons homozygous for CCR5 Delta32. AIDS 29:867–876PubMedPubMedCentralGoogle Scholar
  85. Herberman RB (1992) Adoptive therapy with purified CD8 cells in HIV infection. Semin Hematol 29:35–40PubMedGoogle Scholar
  86. Hermann FG, Martinius H, Egelhofer M et al (2009) Protein scaffold and expression level determine antiviral activity of membrane-anchored antiviral peptides. Hum Gene Ther 20:325–336PubMedGoogle Scholar
  87. Herrera-Carrillo E, Liu YP, Berkhout B (2014) The impact of unprotected T cells in RNAi-based gene therapy for HIV-AIDS. Mol Ther 22:596–606PubMedPubMedCentralGoogle Scholar
  88. Hildinger M, Dittmar MT, Schult-Dietrich P et al (2001) Membrane-anchored peptide inhibits human immunodeficiency virus entry. J Virol 75:3038–3042PubMedPubMedCentralGoogle Scholar
  89. Hill AL, Rosenbloom DI, Goldstein E et al (2016) Real-time predictions of reservoir size and rebound time during antiretroviral therapy interruption trials for HIV. PLoS Pathog 12:e1005535PubMedPubMedCentralGoogle Scholar
  90. Ho M, Armstrong J, Mcmahon D et al (1993) A phase 1 study of adoptive transfer of autologous CD8+ T lymphocytes in patients with acquired immunodeficiency syndrome (AIDS)-related complex or AIDS. Blood 81:2093–2101PubMedGoogle Scholar
  91. Holland HK, Saral R, Rossi JJ et al (1989) Allogeneic bone marrow transplantation, zidovudine, and human immunodeficiency virus type 1 (HIV-1) infection. Studies in a patient with non-Hodgkin lymphoma. Ann Intern Med 111:973–981PubMedGoogle Scholar
  92. Horn PA, Keyser KA, Peterson LJ et al (2004) Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol. Blood 103:3710–3716PubMedGoogle Scholar
  93. Horster A, Teichmann B, Hormes R et al (1999) Recombinant AAV-2 harboring gfp-antisense/ribozyme fusion sequences monitor transduction, gene expression, and show anti-HIV-1 efficacy. Gene Ther 6:1231–1238PubMedGoogle Scholar
  94. Howe SJ, Mansour MR, Schwarzwaelder K et al (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118:3143–3150PubMedPubMedCentralGoogle Scholar
  95. Huang Y, Paxton WA, Wolinsky SM et al (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2:1240–1243PubMedGoogle Scholar
  96. Hutter G, Ganepola S (2011) Eradication of HIV by transplantation of CCR5-deficient hematopoietic stem cells. Sci World J 11:1068–1076Google Scholar
  97. Hutter G, Nowak D, Mossner M et al (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360:692–698PubMedGoogle Scholar
  98. Iwakuma T, Cui Y, Chang LJ (1999) Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261:120–132PubMedGoogle Scholar
  99. Jacobson SK, Calne RY, Wreghitt TG (1991) Outcome of HIV infection in transplant patient on cyclosporin. Lancet 337:794PubMedGoogle Scholar
  100. Jaspers JE, Brentjens RJ (2017) Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol TherGoogle Scholar
  101. Ji H, Jiang Z, Lu P et al (2016) Specific reactivation of latent HIV-1 by dCas9-SunTag-VP64-mediated Guide RNA targeting the HIV-1 promoter. Mol Ther 24:508–521PubMedPubMedCentralGoogle Scholar
  102. Jin Q, Marsh J, Cornetta K et al (2008) Resistance to human immunodeficiency virus type 1 (HIV-1) generated by lentivirus vector-mediated delivery of the CCR5Δ32 gene despite detectable expression of the HIV-1 co-receptors. J Gen Virol 89:2611–2621PubMedPubMedCentralGoogle Scholar
  103. Johnson PR, Schnepp BC, Zhang J et al (2009) Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med 15:901–906PubMedPubMedCentralGoogle Scholar
  104. Johnston C, Harrington R, Jain R et al (2016) Safety and efficacy of combination antiretroviral therapy in human immunodeficiency virus-infected adults undergoing autologous or allogeneic hematopoietic cell transplantation for hematologic malignancies. Biol Blood Marrow Transpl 22:149–156Google Scholar
  105. Jonnalagadda M, Brown CE, Chang WC et al (2013) Engineering human T cells for resistance to methotrexate and mycophenolate mofetil as an in vivo cell selection strategy. PLoS ONE 8:e65519PubMedPubMedCentralGoogle Scholar
  106. Kaminski R, Bella R, Yin C et al (2016) Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther 23:690–695PubMedPubMedCentralGoogle Scholar
  107. Kang EM, De Witte M, Malech H et al (2002a) Gene therapy-based treatment for HIV-positive patients with malignancies. J Hematother Stem Cell Res 11:809–816PubMedGoogle Scholar
  108. Kang EM, De Witte M, Malech H et al (2002b) Nonmyeloablative conditioning followed by transplantation of genetically modified HLA-matched peripheral blood progenitor cells for hematologic malignancies in patients with acquired immunodeficiency syndrome. Blood 99:698–701PubMedGoogle Scholar
  109. Katuwal M, Wang Y, Schmitt K et al (2014) Cellular HIV-1 inhibition by truncated old world primate APOBEC3A proteins lacking a complete deaminase domain. Virology 468–470:532–544PubMedGoogle Scholar
  110. Kaushal S, La Russa VF, Gartner S et al (1996) Exposure of human CD34+ cells to human immunodeficiency virus type 1 does not influence their expansion and proliferation of hematopoietic progenitors in vitro. Blood 88:130–137PubMedGoogle Scholar
  111. Kearns K, Bahner I, Bauer G et al (1997) Suitability of bone marrow from HIV-1-infected donors for retrovirus-mediated gene transfer. Hum Gene Ther 8:301–311PubMedGoogle Scholar
  112. Kiem HP, Wu RA, Sun G et al (2010) Foamy combinatorial anti-HIV vectors with MGMTP140 K potently inhibit HIV-1 and SHIV replication and mediate selection in vivo. Gene Ther 17:37–49PubMedGoogle Scholar
  113. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160PubMedPubMedCentralGoogle Scholar
  114. Kim SS, Peer D, Kumar P et al (2010) RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther 18:370–376PubMedGoogle Scholar
  115. Kitchen SG, Levin BR, Bristol G et al (2012) In vivo suppression of HIV by antigen specific T cells derived from engineered hematopoietic stem cells. PLoS Pathog 8:e1002649PubMedPubMedCentralGoogle Scholar
  116. Klimas NG (1992) Clinical impact of adoptive therapy with purified CD8 cells in HIV infection. Semin Hematol 29:40–43; Discuss 43–44Google Scholar
  117. Koenig S, Conley AJ, Brewah YA et al (1995) Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat Med 1:330–336PubMedGoogle Scholar
  118. Kohn DB, Bauer G, Rice CR et al (1999) A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 94:368–371PubMedGoogle Scholar
  119. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–140PubMedPubMedCentralGoogle Scholar
  120. Kundu SK, Engleman E, Benike C et al (1998) A pilot clinical trial of HIV antigen-pulsed allogeneic and autologous dendritic cell therapy in HIV-infected patients. AIDS Res Hum Retroviruses 14:551–560PubMedGoogle Scholar
  121. Lam S, Sung J, Cruz C et al (2015) Broadly-specific cytotoxic T cells targeting multiple HIV antigens are expanded from HIV+ patients: implications for immunotherapy. Mol Ther 23:387–395PubMedGoogle Scholar
  122. Lane HC, Masur H, Longo DL et al (1984) Partial immune reconstitution in a patient with the acquired immunodeficiency syndrome. N Engl J Med 311:1099–1103PubMedGoogle Scholar
  123. Lane HC, Zunich KM, Wilson W et al (1990) Syngeneic bone marrow transplantation and adoptive transfer of peripheral blood lymphocytes combined with zidovudine in human immunodeficiency virus (HIV) infection. Ann Intern Med 113:512–519PubMedGoogle Scholar
  124. Lebbink RJ, De Jong DC, Wolters F et al (2017) A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep 7:41968PubMedPubMedCentralGoogle Scholar
  125. Lee TC, Sullenger BA, Gallardo HF et al (1992) Overexpression of RRE-derived sequences inhibits HIV-1 replication in CEM cells. New Biol 4:66–74PubMedGoogle Scholar
  126. Lee SW, Gallardo HF, Gilboa E et al (1994) Inhibition of human immunodeficiency virus type 1 in human T cells by a potent Rev response element decoy consisting of the 13-nucleotide minimal Rev-binding domain. J Virol 68:8254–8264PubMedPubMedCentralGoogle Scholar
  127. Lee NS, Dohjima T, Bauer G et al (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505PubMedGoogle Scholar
  128. Legiewicz M, Badorrek CS, Turner KB et al (2008) Resistance to RevM10 inhibition reflects a conformational switch in the HIV-1 Rev response element. Proc Natl Acad Sci U S A 105:14365–14370PubMedPubMedCentralGoogle Scholar
  129. Leslie GJ, Wang J, Richardson MW et al (2016) Potent and broad inhibition of HIV-1 by a peptide from the gp41 heptad repeat-2 domain conjugated to the CXCR4 amino terminus. PLoS Pathog 12:e1005983PubMedPubMedCentralGoogle Scholar
  130. Levine BL, Mosca JD, Riley JL et al (1996) Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science 272:1939–1943PubMedGoogle Scholar
  131. Li MJ, Bauer G, Michienzi A et al (2003) Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 8:196–206PubMedGoogle Scholar
  132. Lieberman J, Skolnik PR, Parkerson GR 3rd et al (1997) Safety of autologous, ex vivo-expanded human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte infusion in HIV-infected patients. Blood 90:2196–2206PubMedGoogle Scholar
  133. Limsirichai P, Gaj T, Schaffer DV (2016) CRISPR-mediated activation of latent HIV-1 expression. Mol Ther 24:499–507PubMedPubMedCentralGoogle Scholar
  134. Lisziewicz J, Sun D, Smythe J et al (1993) Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS. Proc Natl Acad Sci U S A 90:8000–8004PubMedPubMedCentralGoogle Scholar
  135. Liu Q, Huang W, Zhang H et al (2014) Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors. Gene Ther 21:732–738PubMedGoogle Scholar
  136. Liu L, Patel B, Ghanem MH et al (2015) Novel CD4-based bispecific chimeric antigen receptor designed for enhanced anti-HIV potency and absence of HIV entry receptor activity. J Virol 89:6685–6694PubMedPubMedCentralGoogle Scholar
  137. Liu B, Zou F, Lu L et al (2016) Chimeric antigen receptor T cells guided by the single-chain Fv of a broadly neutralizing antibody specifically and effectively eradicate virus reactivated from latency in CD4+ T lymphocytes isolated from HIV-1-infected individuals receiving suppressive combined antiretroviral therapy. J Virol 90:9712–9724PubMedPubMedCentralGoogle Scholar
  138. Lombardo A, Genovese P, Beausejour CM et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306PubMedGoogle Scholar
  139. Lori F, Lisziewicz J, Smythe J et al (1994) Rapid protection against human immunodeficiency virus type 1 (HIV-1) replication mediated by high efficiency non-retroviral delivery of genes interfering with HIV-1 tat and gag. Gene Ther 1:27–31PubMedGoogle Scholar
  140. Maetzig T, Galla M, Baum C et al (2011) Gammaretroviral vectors: biology, technology and application. Viruses 3:677–713PubMedPubMedCentralGoogle Scholar
  141. Marschall AL, Dubel S, Boldicke T (2015) Specific in vivo knockdown of protein function by intrabodies. MAbs 7:1010–1035PubMedPubMedCentralGoogle Scholar
  142. Martinez-Navio JM, Fuchs SP, Pedreno-Lopez S et al (2016) Host anti-antibody responses following adeno-associated virus-mediated delivery of antibodies against HIV and SIV in rhesus monkeys. Mol Ther 24:76–86PubMedGoogle Scholar
  143. Masiero S, Del Vecchio C, Gavioli R et al (2005) T-cell engineering by a chimeric T-cell receptor with antibody-type specificity for the HIV-1 gp120. Gene Ther 12:299–310PubMedGoogle Scholar
  144. Matsuda Z, Yu X, Yu QC et al (1993) A virion-specific inhibitory molecule with therapeutic potential for human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 90:3544–3548PubMedPubMedCentralGoogle Scholar
  145. Mavigner M, Watkins B, Lawson B et al (2014) Persistence of virus reservoirs in ART-treated SHIV-infected rhesus macaques after autologous hematopoietic stem cell transplant. PLoS Pathog 10:e1004406PubMedPubMedCentralGoogle Scholar
  146. Mcintyre GJ, Groneman JL, Yu YH et al (2009) 96 shRNAs designed for maximal coverage of HIV-1 variants. Retrovirology 6:55PubMedPubMedCentralGoogle Scholar
  147. Mcnamara LA, Onafuwa-Nuga A, Sebastian NT et al (2013) CD133+ hematopoietic progenitor cells harbor HIV genomes in a subset of optimally treated people with long-term viral suppression. J Infect Dis 207:1807–1816PubMedPubMedCentralGoogle Scholar
  148. Meyer J, Nick S, Stamminger T et al (1993) Inhibition of HIV-1 replication by a high-copy-number vector expressing antisense RNA for reverse transcriptase. Gene 129:263–268PubMedGoogle Scholar
  149. Mitsuyasu RT, Anton PA, Deeks SG et al (2000) Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 96:785–793PubMedGoogle Scholar
  150. Mitsuyasu RT, Merigan TC, Carr A et al (2009) Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 15:285–292PubMedPubMedCentralGoogle Scholar
  151. Miyoshi H, Blomer U, Takahashi M et al (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157PubMedPubMedCentralGoogle Scholar
  152. Mock U, Machowicz R, Hauber I et al (2015) mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res 43:5560–5571PubMedPubMedCentralGoogle Scholar
  153. Morton J, Davis MW, Jorgensen EM et al (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci U S A 103:16370–16375PubMedPubMedCentralGoogle Scholar
  154. Nazari R, Joshi S (2008) CCR5 as target for HIV-1 gene therapy. Curr Gene Ther 8:264–272PubMedGoogle Scholar
  155. Neagu MR, Ziegler P, Pertel T et al (2009) Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components. J Clin Invest 119:3035–3047PubMedPubMedCentralGoogle Scholar
  156. Neff CP, Zhou J, Remling L et al (2011) An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Transl Med 3:66ra6PubMedPubMedCentralGoogle Scholar
  157. Nishimura T, Kaneko S, Kawana-Tachikawa A et al (2013) Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12:114–126PubMedGoogle Scholar
  158. Norton TD, Miller EA, Bhardwaj N et al (2015) Vpx-containing dendritic cell vaccine induces CTLs and reactivates latent HIV-1 in vitro. Gene Ther 22:227–236PubMedPubMedCentralGoogle Scholar
  159. Novina CD, Murray MF, Dykxhoorn DM et al (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8:681–686PubMedGoogle Scholar
  160. Olszko ME, Trobridge GD (2013) Foamy virus vectors for HIV gene therapy. Viruses 5:2585–2600PubMedPubMedCentralGoogle Scholar
  161. Onafuwa-Nuga A, Mcnamara LA, Collins KL (2010) Towards a cure for HIV: the identification and characterization of HIV reservoirs in optimally treated people. Cell Res 20:1185–1187PubMedGoogle Scholar
  162. Page KA, Landau NR, Littman DR (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 64:5270–5276PubMedPubMedCentralGoogle Scholar
  163. Park RJ, Wang T, Koundakjian D et al (2017) A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 49:193–203PubMedGoogle Scholar
  164. Parolin C, Dorfman T, Palu G et al (1994) Analysis in human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer into human lymphocytes. J Virol 68:3888–3895PubMedPubMedCentralGoogle Scholar
  165. Patel S, Jones RB, Nixon DF et al (2016a) T-cell therapies for HIV: preclinical successes and current clinical strategies. Cytotherapy 18:931–942PubMedPubMedCentralGoogle Scholar
  166. Patel S, Lam S, Cruz CR et al (2016b) Functionally active HIV-specific T cells that target gag and nef can be expanded from virus-naive donors and target a range of viral epitopes: implications for a cure strategy after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transpl: J Am Soc Blood Marrow Transplant 22:536–541Google Scholar
  167. Perez EE, Riley JL, Carroll RG et al (2005) Suppression of HIV-1 infection in primary CD4 T cells transduced with a self-inactivating lentiviral vector encoding a membrane expressed gp41-derived fusion inhibitor. Clin Immunol 115:26–32PubMedGoogle Scholar
  168. Peterson CW, Haworth KG, Burke BP et al (2016a) Multilineage polyclonal engraftment of Cal-1 gene-modified cells and in vivo selection after SHIV infection in a nonhuman primate model of AIDS. MolTherMethods ClinDev 3:16007Google Scholar
  169. Peterson CW, Wang J, Norman KK et al (2016b) Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates. Blood 127:2416–2426PubMedPubMedCentralGoogle Scholar
  170. Peterson CW, Benne C, Polacino P et al (2017) Loss of immune homeostasis dictates SHIV rebound after stem-cell transplantation. JCI Insight 2:e91230PubMedPubMedCentralGoogle Scholar
  171. Pham QT, Bouchard A, Grutter MG et al (2010) Generation of human TRIM5alpha mutants with high HIV-1 restriction activity. Gene Ther 17:859–871PubMedGoogle Scholar
  172. Pichlmair A, Diebold SS, Gschmeissner S et al (2007) Tubulovesicular structures within vesicular stomatitis virus G protein-pseudotyped lentiviral vector preparations carry DNA and stimulate antiviral responses via Toll-like receptor 9. J Virol 81:539–547PubMedGoogle Scholar
  173. Planelles V, Bachelerie F, Jowett JB et al (1995) Fate of the human immunodeficiency virus type 1 provirus in infected cells: a role for vpr. J Virol 69:5883–5889PubMedPubMedCentralGoogle Scholar
  174. Plavec I, Voytovich A, Moss K et al (1996) Sustained retroviral gene marking and expression in lymphoid and myeloid cells derived from transduced hematopoietic progenitor cells. Gene Ther 3:717–724PubMedGoogle Scholar
  175. Qin XF, An DS, Chen IS et al (2003) Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci 100:183–188PubMedGoogle Scholar
  176. Ranga U, Woffendin C, Verma S et al (1998) Enhanced T cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals. Proc Natl Acad Sci 95:1201–1206PubMedGoogle Scholar
  177. Relander T, Johansson M, Olsson K et al (2005) Gene transfer to repopulating human CD34+ cells using amphotropic-, GALV-, or RD114-pseudotyped HIV-1-based vectors from stable producer cells. Mol Ther 11:452–459PubMedGoogle Scholar
  178. Renneisen K, Leserman L, Matthes E et al (1990) Inhibition of expression of human immunodeficiency virus-1 in vitro by antibody-targeted liposomes containing antisense RNA to the env region. J Biol Chem 265:16337–16342PubMedGoogle Scholar
  179. Richter M, Saydaminova K, Yumul R et al (2016) In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors. Blood 128:2206–2217PubMedPubMedCentralGoogle Scholar
  180. Riddell SR, Greenberg PD, Overell RW et al (1992) Phase I study of cellular adoptive immunotherapy using genetically modified CD8+ HIV-specific T cells for HIV seropositive patients undergoing allogeneic bone marrow transplant. The Fred Hutchinson Cancer Research Center and the University of Washington School of Medicine, Department of Medicine. Div Oncol. Hum Gene Ther 3:319–338Google Scholar
  181. Riddell SR, Elliott M, Lewinsohn DA et al (1996) T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med 2:216–223PubMedGoogle Scholar
  182. Riolobos L, Hirata RK, Turtle CJ et al (2013) HLA engineering of human pluripotent stem cells. Mol Ther 21:1232–1241PubMedPubMedCentralGoogle Scholar
  183. Roberts MR, Qin L, Zhang D et al (1994) Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 84:2878–2889PubMedGoogle Scholar
  184. Rossi JJ (2011) RNA nanoparticles come of age. Acta Biochim Biophys Sin (Shanghai) 43:245–247Google Scholar
  185. Roy U, Rodriguez J, Barber P et al (2015) The potential of HIV-1 nanotherapeutics: from in vitro studies to clinical trials. Nanomedicine (Lond) 10:3597–3609Google Scholar
  186. Rubin RH, Jenkins RL, Shaw BW Jr et al (1987) The acquired immunodeficiency syndrome and transplantation. Transplantation 44:1–4PubMedGoogle Scholar
  187. Rustanti L, Jin H, Lor M et al (2017) A mutant Tat protein inhibits infection of human cells by strains from diverse HIV-1 subtypes. Virol J 14:52PubMedPubMedCentralGoogle Scholar
  188. Saayman SM, Lazar DC, Scott TA et al (2016) Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Mol Ther 24:488–498PubMedPubMedCentralGoogle Scholar
  189. Sanhadji K, Leissner P, Firouzi R et al (1997) Experimental gene therapy: the transfer of Tat-inducible interferon genes protects human cells against HIV-1 challenge in vitro and in vivo in severe combined immunodeficient mice. AIDS 11:977–986PubMedGoogle Scholar
  190. Santoni De Sio FR, Cascio P, Zingale A et al (2006) Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Blood 107:4257–4265PubMedPubMedCentralGoogle Scholar
  191. Sarver N, Cantin EM, Chang PS et al (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247:1222–1225PubMedGoogle Scholar
  192. Sather BD, Romano Ibarra GS, Sommer K et al (2015) Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med 7:307ra156Google Scholar
  193. Sawyer SL, Wu LI, Emerman M et al (2005) Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci 102:2832–2837PubMedGoogle Scholar
  194. Saydaminova K, Ye X, Wang H et al (2015) Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation. Mol Ther Methods Clin Dev 1:14057PubMedPubMedCentralGoogle Scholar
  195. Schaller T, Bauby H, Hue S et al (2014) New insights into an X-traordinary viral protein. Front Microbiol 5:126PubMedPubMedCentralGoogle Scholar
  196. Schleifman EB, Mcneer NA, Jackson A et al (2013) Site-specific genome editing in PBMCs with PLGA nanoparticle-delivered PNAs confers HIV-1 resistance in humanized mice. Mol Ther Nucleic Acids 2:e135PubMedPubMedCentralGoogle Scholar
  197. Schneider E, Lambermont M, Van Vooren JP et al (1997) Autologous stem cell infusion for acute myeloblastic leukemia in an HIV-1 carrier. Bone Marrow Transplant 20:611–612PubMedGoogle Scholar
  198. Scholler J, Brady TL, Binder-Scholl G et al (2012) Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 4:132ra53PubMedPubMedCentralGoogle Scholar
  199. Segura MM, Alba R, Bosch A et al (2008) Advances in helper-dependent adenoviral vector research. Curr Gene Ther 8:222–235PubMedGoogle Scholar
  200. Setiawan LC, Kootstra NA (2015) Adaptation of HIV-1 to rhTrim5alpha-mediated restriction in vitro. Virology 486:239–247PubMedGoogle Scholar
  201. Shen H, Cheng T, Preffer FI et al (1999) Intrinsic human immunodeficiency virus type 1 resistance of hematopoietic stem cells despite coreceptor expression. J Virol 73:728–737PubMedPubMedCentralGoogle Scholar
  202. Sheridan C (2011) Gene therapy finds its niche. Nat Biotechnol 29:121–128PubMedGoogle Scholar
  203. Simonds RJ (1993) HIV transmission by organ and tissue transplantation. AIDS 7(Suppl 2):S35–S38PubMedGoogle Scholar
  204. Singwi S, Joshi S (2000) Potential nuclease-based strategies for HIV gene therapy (Review). Front Biosci 5:D556–D579PubMedGoogle Scholar
  205. Sloan DD, Lam CY, Irrinki A et al (2015) Targeting HIV reservoir in infected CD4 T Cells by dual-affinity re-targeting molecules (DARTs) that bind HIV envelope and recruit cytotoxic T Cells. PLoS Pathog 11:e1005233PubMedPubMedCentralGoogle Scholar
  206. Smith DH, Byrn RA, Marsters SA et al (1987) Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 238:1704–1707PubMedGoogle Scholar
  207. Stein S, Ott MG, Schultze-Strasser S et al (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 16:198–204PubMedGoogle Scholar
  208. Steinberger P, Andris-Widhopf J, Buhler B et al (2000) Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc Natl Acad Sci U S A 97:805–810PubMedPubMedCentralGoogle Scholar
  209. Sullenger BA, Gallardo HF, Ungers GE et al (1990) Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63:601–608PubMedGoogle Scholar
  210. Sullivan N, Sun Y, Binley J et al (1998) Determinants of human immunodeficiency virus type 1 envelope glycoprotein activation by soluble CD4 and monoclonal antibodies. J Virol 72:6332–6338PubMedPubMedCentralGoogle Scholar
  211. Sung JA, Pickeral J, Liu L et al (2015) Dual-affinity re-targeting proteins direct T cell-mediated cytolysis of latently HIV-infected cells. J Clin Invest 125:4077–4090PubMedPubMedCentralGoogle Scholar
  212. Symons J, Vandekerckhove L, Hütter G et al (2014) Dependence on the CCR5 coreceptor for viral replication explains the lack of rebound of CXCR4-predicted HIV variants in the Berlin patient. Clin Infect Dis 59:596–600PubMedPubMedCentralGoogle Scholar
  213. Szewczyk M, Drzewinska J, Dzmitruk V et al (2012) Stability of dendriplexes formed by anti-HIV genetic material and poly(propylene imine) dendrimers in the presence of glucosaminoglycans. J Phys Chem B 116:14525–14532PubMedGoogle Scholar
  214. Tan R, Xu X, Ogg GS et al (1999) Rapid death of adoptively transferred T cells in acquired immunodeficiency syndrome. Blood 93:1506–1510PubMedGoogle Scholar
  215. Taylor JA, Vojtech L, Bahner I et al (2008) Foamy virus vectors expressing anti-HIV transgenes efficiently block HIV-1 replication. Mol Ther 16:46–51PubMedGoogle Scholar
  216. Tebas P, Stein D, Binder-Scholl G et al (2013) Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV.[Erratum appears in Blood. 2014 Jul 24;124(4):663]. Blood 121:1524–1533PubMedPubMedCentralGoogle Scholar
  217. Tebas P, Stein D, Tang WW et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910PubMedPubMedCentralGoogle Scholar
  218. Torlontano G, Di Bartolomeo P, Di Girolamo G et al (1992) AIDS-related complex treated by antiviral drugs and allogeneic bone marrow transplantation following conditioning protocol with busulphan, cyclophosphamide and cyclosporin. Haematologica 77:287–290PubMedGoogle Scholar
  219. Trickett AE, Kelly M, Cameron BA et al (1998) A preliminary study to determine the effect of an infusion of cryopreserved autologous lymphocytes on immunocompetence and viral load in HIV-infected patients. J Acquir Immune Defic Syndr Hum Retrovirol 17:129–136PubMedGoogle Scholar
  220. Trobridge GD, Beard BC, Gooch C et al (2008) Efficient transduction of pigtailed macaque hemtopoietic repopulating cells with HIV-based lentiviral vectors. Blood 111:5537–5543PubMedPubMedCentralGoogle Scholar
  221. Trobridge GD, Wu RA, Beard BC et al (2009) Protection of stem cell-derived lymphocytes in a primate AIDS gene therapy model after in vivo selection. PLoS ONE 4:e7693PubMedPubMedCentralGoogle Scholar
  222. Trobridge GD, Wu RA, Hansen M et al (2010) Cocal-pseudotyped lentiviral vectors resist inactivation by human serum and efficiently transduce primate hematopoietic repopulating cells. Mol Ther 18:725–733PubMedGoogle Scholar
  223. Trono D, Feinberg MB, Baltimore D (1989) HIV-1 gag mutants can dominantly interfere with the replication of the wild-type virus. Cell 59:113–120PubMedGoogle Scholar
  224. Turner ML, Watson HG, Russell L et al (1992) An HIV positive haemophiliac with acute lymphoblastic leukaemia successfully treated with intensive chemotherapy and syngeneic bone marrow transplantation. Bone Marrow Transplant 9:387–389PubMedGoogle Scholar
  225. Urnov FD, Miller JC, Lee YL et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651PubMedGoogle Scholar
  226. Varela-Rohena A, Molloy PE, Dunn SM et al (2008) Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 14:1390–1395PubMedPubMedCentralGoogle Scholar
  227. Venkatesh LK, Arens MQ, Subramanian T et al (1990) Selective induction of toxicity to human cells expressing human immunodeficiency virus type 1 Tat by a conditionally cytotoxic adenovirus vector. Proc Natl Acad Sci U S A 87:8746–8750PubMedPubMedCentralGoogle Scholar
  228. Vercruysse T, Pardon E, Vanstreels E et al (2010) An intrabody based on a llama single-domain antibody targeting the N-terminal alpha-helical multimerization domain of HIV-1 rev prevents viral production. J Biol Chem 285:21768–21780PubMedPubMedCentralGoogle Scholar
  229. Veres G, Escaich S, Baker J et al (1996) Intracellular expression of RNA transcripts complementary to the human immunodeficiency virus type 1 gag gene inhibits viral replication in human CD4+ lymphocytes. J Virol 70:8792–8800PubMedPubMedCentralGoogle Scholar
  230. Walker JE, Chen RX, Mcgee J et al (2012) Generation of an HIV-1-resistant immune system with CD34(+) hematopoietic stem cells transduced with a triple-combination anti-HIV lentiviral vector. J Virol 86:5719–5729PubMedPubMedCentralGoogle Scholar
  231. Wang H, Liu Y, Li Z et al (2008) In vitro and in vivo properties of adenovirus vectors with increased affinity to CD46. J Virol 82:10567–10579PubMedPubMedCentralGoogle Scholar
  232. Wang Z, Tang Z, Zheng Y et al (2010) Development of a nonintegrating Rev-dependent lentiviral vector carrying diphtheria toxin A chain and human TRAF6 to target HIV reservoirs. Gene Ther 17:1063–1076PubMedPubMedCentralGoogle Scholar
  233. Wang CX, Sather BD, Wang X et al (2014) Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells. Blood 124:913–923PubMedPubMedCentralGoogle Scholar
  234. Wang J, Exline CM, Declercq JJ et al (2015) Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33:1256–1263PubMedPubMedCentralGoogle Scholar
  235. Wang Z, Guo Y, Han W (2017) Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. Protein & cell: [Epub ahead of print 2017 May 2]Google Scholar
  236. Weerasinghe M, Liem SE, Asad S et al (1991) Resistance to human immunodeficiency virus type 1 (HIV-1) infection in human CD4+ lymphocyte-derived cell lines conferred by using retroviral vectors expressing an HIV-1 RNA-specific ribozyme. J Virol 65:5531–5534PubMedPubMedCentralGoogle Scholar
  237. Wheeler LA, Trifonova R, Vrbanac V et al (2011) Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest 121:2401–2412PubMedPubMedCentralGoogle Scholar
  238. Whiteside TL, Elder EM, Moody D et al (1993) Generation and characterization of ex vivo propagated autologous CD8+ cells used for adoptive immunotherapy of patients infected with human immunodeficiency virus. Blood 81:2085–2092PubMedGoogle Scholar
  239. Woffendin C, Ranga U, Yang Z et al (1996) Expression of a protective gene-prolongs survival of T cells in human immunodeficiency virus-infected patients. Proc Natl Acad Sci 93:2889–2894PubMedGoogle Scholar
  240. Wu X, Liu H, Xiao H et al (1996) Inhibition of human and simian immunodeficiency virus protease function by targeting Vpx-protease-mutant fusion protein into viral particles. J Virol 70:3378–3384PubMedPubMedCentralGoogle Scholar
  241. Xu H, Svarovskaia ES, Barr R et al (2004) A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc Natl Acad Sci U S A 101:5652–5657PubMedPubMedCentralGoogle Scholar
  242. Yam P, Jensen M, Akkina R et al (2006) Ex vivo selection and expansion of cells based on expression of a mutated inosine monophosphate dehydrogenase 2 after HIV vector transduction: effects on lymphocytes, monocytes, and CD34+ stem cells. Mol Ther 14:236–244PubMedGoogle Scholar
  243. Yanez-Munoz RJ, Balaggan KS, Macneil A et al (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12:348–353PubMedGoogle Scholar
  244. Younan PM, Polacino P, Kowalski JP et al (2013) Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model. Blood 122:179–187PubMedPubMedCentralGoogle Scholar
  245. Younan PM, Peterson CW, Polacino P et al (2015) Lentivirus-mediated gene transfer in hematopoietic stem cells is impaired in SHIV-infected, ART-treated nonhuman primates. Mol Ther 23:943–951PubMedPubMedCentralGoogle Scholar
  246. Yuan J, Wang J, Crain K et al (2012) Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4+ T cell resistance and enrichment. Mol Ther 20:849–859PubMedPubMedCentralGoogle Scholar
  247. Yukl SA, Boritz E, Busch M et al (2013) Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog 9:e1003347PubMedPubMedCentralGoogle Scholar
  248. Zaia JA, Rossi JJ, Murakawa GJ et al (1988) Inhibition of human immunodeficiency virus by using an oligonucleoside methylphosphonate targeted to the tat-3 gene. J Virol 62:3914–3917PubMedPubMedCentralGoogle Scholar
  249. Zennou V, Petit C, Guetard D et al (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185PubMedGoogle Scholar
  250. Zhen A, Kamata M, Rezek V et al (2015) HIV-specific immunity derived from chimeric antigen receptor-engineered stem cells. Mol Ther: J Am Soc Gene Ther 23:1358–1367Google Scholar
  251. Zhen A, Rezek V, Youn C et al (2017) Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest 127:260–268PubMedGoogle Scholar
  252. Zhou J, Rossi J (2014) Cell-type-specific aptamer and aptamer-small interfering RNA conjugates for targeted human immunodeficiency virus type 1 therapy. J Investig Med 62:914–919PubMedPubMedCentralGoogle Scholar
  253. Zhou J, Li H, Li S et al (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16:1481–1489PubMedPubMedCentralGoogle Scholar
  254. Zhou J, Swiderski P, Li H et al (2009) Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 37:3094–3109PubMedPubMedCentralGoogle Scholar
  255. Zhou J, Satheesan S, Li H et al (2015) Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity. Chem Biol 22:379–390PubMedPubMedCentralGoogle Scholar
  256. Zufferey R, Dull T, Mandel RJ et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880PubMedPubMedCentralGoogle Scholar
  257. Zufferey R, Donello JE, Trono D et al (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fred Hutchinson Cancer Research Center, University of Washington School of MedicineSeattleUSA
  2. 2.Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations