Skip to main content

Adapting Secretory Proteostasis and Function Through the Unfolded Protein Response

  • Chapter
  • First Online:
Coordinating Organismal Physiology Through the Unfolded Protein Response

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 414))

Abstract

Cells address challenges to protein folding in the secretory pathway by engaging endoplasmic reticulum (ER)-localized protective mechanisms that are collectively termed the unfolded protein response (UPR). By the action of the transmembrane signal transducers IRE1, PERK, and ATF6, the UPR induces networks of genes whose products alleviate the burden of protein misfolding. The UPR also plays instructive roles in cell differentiation and development, aids in the response to pathogens, and coordinates the output of professional secretory cells. These functions add to and move beyond the UPR’s classical role in addressing proteotoxic stress. Thus, the UPR is not just a reaction to protein misfolding, but also a fundamental driving force in physiology and pathology. Recent efforts have yielded a suite of chemical genetic methods and small molecule modulators that now provide researchers with both stress-dependent and -independent control of UPR activity. Such tools provide new opportunities to perturb the UPR and thereby study mechanisms for maintaining proteostasis in the secretory pathway. Numerous observations now hint at the therapeutic potential of UPR modulation for diseases related to the misfolding and aggregation of ER client proteins. Growing evidence also indicates the promise of targeting ER proteostasis nodes downstream of the UPR. Here, we review selected advances in these areas, providing a resource to inform ongoing studies of secretory proteostasis and function as they relate to the UPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abeliovich A, Gitler AD (2016) Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 539:207–216

    Article  PubMed  Google Scholar 

  • Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K (2008) ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 33:75–89

    Article  CAS  PubMed  Google Scholar 

  • Adamson B et al (2016) A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167:1867–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adolph TE et al (2013) Paneth cells as a site of origin for intestinal inflammation. Nature 503:272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aebi M (2013) N-Linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437

    Article  CAS  PubMed  Google Scholar 

  • Back SH, Lee K, Vink E, Kaufman RJ (2006) Cytoplasmic IRE1α-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J Biol Chem 281:18691–18706

    Article  CAS  PubMed  Google Scholar 

  • Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AGL, Wandless TJ (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126:995–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S et al (2016) 2.3 Ã… resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351:871–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:2311–2324

    Article  CAS  Google Scholar 

  • Boyce M et al (2005) A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  CAS  PubMed  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  CAS  PubMed  Google Scholar 

  • Carrara M, Prischi F, Nowak PR, Kopp MC, Ali MM (2015) Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling. eLife 4:e03522

    Google Scholar 

  • Chen B, Piel WH, Gui LM, Bruford E, Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Genereux JC, Qu S, Hulleman JD, Shoulders MD, Wiseman RL (2014a) ATF6 activation reduces the secretion and extracellular aggregation of destabilized variants of an amyloidogenic protein. Chem Biol 21:1564–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X et al (2014b) XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508:103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang WC, Hiramatsu N, Messah C, Kroeger H, Lin JH (2012) Selective activation of ATF6 and PERK endoplasmic reticulum stress signaling pathways prevent mutant rhodopsin accumulation. Invest Ophthalmol Vis Sci 53:7159–7166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JA et al (2013) The unfolded protein response element IRE1α senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling. Cell Host Microbe 13:558–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou TF et al (2011) Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc Natl Acad Sci USA 108:4834–4839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson JC et al (2012) Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol 14:93–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coelho DS, Cairrão F, Zeng X, Pires E, Coelho AV, Ron D, Ryoo HD, Domingos PM (2013) XBP1-independent IRE1 signaling is required for photoreceptor differentiation and rhabdomere morphogenesis in Drosophila. Cell Rep 5:791–801

    Article  CAS  PubMed  Google Scholar 

  • Cooley CB, Ryno LM, Plate L, Morgan GJ, Hulleman JD, Kelly JW, Wiseman RL (2014) Unfolded protein response activation reduces secretion and extracellular aggregation of amyloidogenic immunoglobulin light chain. Proc Natl Acad Sci USA 111:13046–13051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Crespillo-Casado A, Chambers JE, Fischer PM, Marciniak SJ, Ron D (2017) PPP1R15A-mediated dephosphorylation of eIF2α is unaffected by Sephin1 or Guanabenz. eLife e26109

    Google Scholar 

  • Cross BCS et al (2012) The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci USA 109:E869–E878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley VM et al (2016) Development of glucose regulated protein 94-selective inhibitors based on the BnIm and radamide scaffold. J Med Chem 59:3471–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton RP, Lyons DB, Lomvardas S (2013) Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 155:321–332

    Article  CAS  PubMed  Google Scholar 

  • Das I, Krzyzosiak A, Schneider K, Wrabetz L, D’Antonio M, Barry N, Sigurdardottir A, Bertolotti A (2015) Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348:239–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denzel MS et al (2014) Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Dewal MB, DiChiara AS, Antonopoulos A, Taylor RJ, Harmon CJ, Haslam SM, Dell A, Shoulders MD (2015) XBP1s links the unfolded protein response to the molecular architecture of mature N-glycans. Chem Biol 22:1301–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di XJ, Wang YJ, Han DY, Fu YL, Duerfeldt AS, Blagg BS, Mu TW (2016) Grp94 protein delivers γ-aminobutyric acid type A (GABAA) receptors to Hrd1 protein-mediated endoplasmic reticulum-associated degradation. J Biol Chem 291:9526–9539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiChiara AS, Taylor RJ, Wong MY, Doan ND, Rosario AM, Shoulders MD (2016) Mapping and exploring the collagen-I proteostasis network. ACS Chem Biol 11:1408–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit A et al (2016) Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:1853–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duerfeldt AS et al (2012) Development of a Grp94 inhibitor. J Am Chem Soc 134:9796–9804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiebiger E, Hirsch C, Vyas JM, Gordon E, Ploegh HL, Tortorella D (2004) Dissection of the dislocation pathway for type I membrane proteins with a new small molecule inhibitor, eeyarestatin. Mol Biol Cell 15:1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald J, Lamande SR, Bateman JF (1999) Proteasomal degradation of unassembled mutant type I collagen pro-α1(I) chains. J Biol Chem 274:27392–27398

    Article  CAS  PubMed  Google Scholar 

  • Forlino A, Marini JC (2016) Osteogenesis imperfecta. Lancet 387:1657–1671

    Article  CAS  PubMed  Google Scholar 

  • Fu S et al (2011) Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473:528–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fumagalli F et al (2016) Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol 18:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Gallagher CM, Walter P (2016) Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress. eLife 5:e11880

    Google Scholar 

  • Gass JN, Gifford NM, Brewer JW (2002) Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J Biol Chem 277:49047–49054

    Article  CAS  PubMed  Google Scholar 

  • Genereux JC et al (2015) Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J 34:4–19

    Article  CAS  PubMed  Google Scholar 

  • Gershenson A, Gierasch LM, Pastore A, Radford SE (2014) Energy landscapes of functional proteins are inherently risky. Nat Chem Biol 10:884–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh R et al (2014) Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158:534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammarstrom P, Schneider F, Kelly JW (2001) Trans-suppression of misfolding in an amyloid disease. Science 293:2459–2462

    Article  CAS  PubMed  Google Scholar 

  • Hammarstrom P, Wiseman RL, Powers ET, Kelly JW (2003) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299:713–716

    Article  PubMed  CAS  Google Scholar 

  • Han D et al (2009) IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138:562–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han DY, Di XJ, Fu YL, Mu TW (2015) Combining valosin-containing protein (VCP) inhibition and suberanilohydroxamic acid (SAHA) treatment additively enhances the folding, trafficking, and function of epilepsy-associated γ-aminobutyric acid, type A GABAA receptors. J Biol Chem 290:325–337

    Article  CAS  PubMed  Google Scholar 

  • Han D, Upton JP, Hagen A, Callahan J, Oakes SA, Papa FR (2008) A kinase inhibitor activates the IRE1α RNase to confer cytoprotection against ER stress. Biochem Biophys Res Commun 365:777–783

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  PubMed  Google Scholar 

  • Hassan IH, Zhang MS, Powers LS, Shao JQ, Baltrusaitis J, Rutkowski DT, Legge K, Monick MM (2012) Influenza A viral replication is blocked by inhibition of the inositol-requiring enzyme 1 (IRE1) stress pathway. J Biol Chem 287:4679–4689

    Article  CAS  PubMed  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempstead AD, Isberg RR (2015) Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response. Proc Natl Acad Sci USA 112:E6790–E6797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186:323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamoto M, Björklund T, Lundberg C, Kirik D, Wandless TJ (2010) A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17:981–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamora C, Dennert G, Lee AS (1996) Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA 93:7690–7694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW (2012) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol 421:185–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga HH et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  • Khaminets A et al (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:354–358

    Article  CAS  PubMed  Google Scholar 

  • Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19:99–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono N, Amin-Wetzel N, Ron D (2017) Generic membrane spanning features endow IRE1α with responsiveness to membrane aberrancy. Mol Biol Cell 28:2318–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laguesse S et al (2015) A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev Cell 35:553–567

    Article  CAS  PubMed  Google Scholar 

  • Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2013) Analogues of the allosteric heat shock protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents. ACS Med Chem Lett 4:1042–1047

    Article  CAS  PubMed Central  Google Scholar 

  • Li X et al (2015) Validation of the Hsp70-Bag3 protein-protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther 14:642–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JH, Li H, Zhang YH, Ron D, Walter P (2009) Divergent effects of PERK and IRE1 signaling on cell viability. PLoS ONE 4:e0004170

    Google Scholar 

  • Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385–392

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Street TO (2016) 5′-N-ethylcarboxamidoadenosine is not a paralog-specific Hsp90 inhibitor. Protein Sci 25:2209–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu PD et al (2004) Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J 23:169–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnaghi P et al (2013) Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol 9:548–556

    Article  CAS  PubMed  Google Scholar 

  • Maji B, Moore CL, Zetsche B, Volz SE, Zhang F, Shoulders MD, Choudhary A (2017) Multidimensional chemical control of CRISPR-Cas9. Nat Chem Biol 13:9–11

    Article  CAS  PubMed  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antiox Redox Signal 9:2277–2293

    Article  CAS  Google Scholar 

  • Margariti A et al (2013) XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem 288:859–872

    Article  CAS  PubMed  Google Scholar 

  • Martinon F, Chen X, Lee AH, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11:411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCleese JK et al (2009) The novel HSP90 inhibitor STA1474 exhibits biologic activity against osteosarcoma cell lines. Int J Cancer 125:2792–2801

    Article  CAS  PubMed  Google Scholar 

  • Mendez AS et al (2015) Endoplasmic reticulum stress-independent activation of unfolded protein response kinases by a small molecule ATP-mimic. eLife 4:e05434

    Google Scholar 

  • Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14:117–123

    Article  CAS  PubMed  Google Scholar 

  • Mimura N et al (2012) Blockade of XBP1 splicing by inhibition of IRE1 α is a promising therapeutic option in multiple myeloma. Blood 119:5772–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirigian LS, Makareeva E, Mertz EL, Omari S, Roberts-Pilgrim AM, Oestreich AK, Phillips CL, Leikin S (2016) Osteoblast malfunction caused by cell stress response to procollagen misfolding in α2(I)-G610C mouse model of osteogenesis imperfecta. J Bone Miner Res 31:1608–1616

    Article  CAS  PubMed  Google Scholar 

  • Moore CL, Dewal MB, Nekongo EE, Santiago S, Lu NB, Levine SS, Shoulders MD (2016) Transportable, chemical genetic methodology for the small molecule-mediated inhibition of heat shock factor 1. ACS Chem Biol 11:200–210

    Article  CAS  PubMed  Google Scholar 

  • Moore K, Hollien J (2015) IRE1-mediated decay in mammalian cells relies on mRNA sequence, structure, and translational status. Mol Biol Cell 26:2873–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu TW, Fowler DM, Kelly JW (2008a) Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis. PLoS Biol 6:e26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mu TW, Ong DS, Wang YJ, Balch WE, Yates JR III, Segatori L, Kelly JW (2008b) Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107:4907–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada T, Yoshida H, Akazawa R, Negishi M, Mori K (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366:585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong DS, Mu TW, Palmer AE, Kelly JW (2010) Endoplasmic reticulum Ca2+ increases enhance mutant glucocerebrosidase proteostasis. Nat Chem Biol 6:424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong DS, Wang YJ, Tan YL, Yates JR III, Mu TW, Kelly JW (2013) FKBP10 depletion enhances glucocerebrosidase proteostasis in Gaucher disease fibroblasts. Chem Biol 20:403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa FR, Zhang C, Shokat K, Walter P (2003) Bypassing a kinase activity with an ATP-competitive drug. Science 302:1533–1537

    Article  CAS  PubMed  Google Scholar 

  • Patel PD et al (2013) Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat Chem Biol 9:677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pincus D, Chevalier MW, Aragon T, van Anken E, Vidal SE, El-Samad H, Walter P (2010) BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol 8:e1000415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plate L et al (2016) Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife 5:e15550

    Google Scholar 

  • Preissler S, Rato C, Perera LA, Saudek V, Ron D (2016) FICD acts bi-functionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. Nat Struct Mol Biol 24:23–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina K, Noblin DJ, Serebrenik YV, Adams A, Zhao C, Crews CM (2014) Targeted protein destabilization reveals an estrogen-mediated ER stress response. Nat Chem Biol 10:957–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimold AM et al (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–307

    Article  CAS  PubMed  Google Scholar 

  • Richardson CE, Kooistra T, Kim DH (2010) An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 463:1092–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron I, Horowitz M (2005) ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 14:2387–2398

    Article  CAS  PubMed  Google Scholar 

  • Roy CR, Salcedo SP, Gorvel JP (2006) Pathogen-endoplasmic-reticulum interactions: in through the out door. Nat Rev Immunol 6:136–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Canada C, Kelleher DJ, Gilmore R (2009) Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136:272–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkowski DT et al (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4:e374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryoo HD, Domingos PM, Kang MJ, Steller H (2007) Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J 26:242–252

    Article  CAS  PubMed  Google Scholar 

  • Schuck S, Prinz WA, Thorn KS, Voss C, Walter P (2009) Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 187:525–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmocal 42:273–279

    Article  CAS  Google Scholar 

  • Shaffer AL et al (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21:81–93

    Article  CAS  PubMed  Google Scholar 

  • Shen X et al (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107:893–903

    Article  CAS  PubMed  Google Scholar 

  • Shi J et al (2012) EC144 is a potent inhibitor of the heat shock protein 90. J Med Chem 55:7786–7795

    Article  CAS  PubMed  Google Scholar 

  • Shoulders MD, Ryno LM, Cooley CB, Kelly JW, Wiseman RL (2013a) Broadly applicable methodology for the rapid and dosable small molecule-mediated regulation of transcription factors in human cells. J Am Chem Soc 135:8129–8132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoulders MD et al (2013b) Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep 3:1279–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidrauski C, McGeachy AM, Ingolia NT, Walter P (2015) The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. eLife 4:e05033

    Google Scholar 

  • Smith MH, Ploegh HL, Weissman JS (2011a) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Granell S, Salcedo-Sicilia L, Baldini G, Egea G, Teckman JH, Baldini G (2011b) Activating transcription factor 6 limits intracellular accumulation of mutant α1-antitrypsin Z and mitochondrial damage in hepatoma cells. J Biol Chem 286:41563–41577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldano KL, Jivan A, Nicchitta CV, Gewirth DT (2003) Structure of the N-terminal domain of GRP94—basis for ligand specificity and regulation. J Biol Chem 279:48330–48338

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Ruggiano A, Carvalho P, Rapoport TA (2014) Key steps in ERAD of luminal ER proteins reconstituted with purified components. Cell 158:1375–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan YL, Genereux JC, Pankow S, Aerts JM, Yates JR 3rd, Kelly JW (2014) ERdj3 is an endoplasmic reticulum degradation factor for mutant glucocerebrosidase variants linked to Gaucher’s disease. Chem Biol 21:967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RC, Dillin A (2013) XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153:1435–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timms RT et al (2016) Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens. Nat Commun 7:11786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirasophon W, Welihinda AA, Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12:1812–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treacy-Abarca S, Mukherjee S (2015) Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat Commun 6:7887

    Article  CAS  PubMed  Google Scholar 

  • Tsaytler P, Harding HP, Ron D, Bertolotti A (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332:91–94

    Article  CAS  PubMed  Google Scholar 

  • Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164:341–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101:11269–11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkmann K et al (2011) Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J Biol Chem 286:12743–12755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volmer R, Ron D (2015) Lipid-dependent regulation of the unfolded protein response. Curr Opin Cell Biol 33:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Song WS, Brancati G, Segatori L (2011) Inhibition of endoplasmic reticulum-associated degradation rescues native folding in loss of function protein misfolding diseases. J Biol Chem 286:43454–43464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2012) Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors. Nat Chem Biol 8:982–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QY, Li LY, Ye YH (2008) Inhibition of p97-dependent protein degradation by eeyarestatin I. J Biol Chem 283:7445–7454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZV et al (2014) Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156:1179–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J et al (2007) ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13:351–364

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Su C, Jiang Z, Zheng C (2017) Herpes simplex virus 1 UL41 protein suppresses the IRE1/XBP1 signal pathway of the unfolded protein response via its RNase activity. J Virol 91:e02056

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Shoulders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wong, M.Y., DiChiara, A.S., Suen, P.H., Chen, K., Doan, ND., Shoulders, M.D. (2017). Adapting Secretory Proteostasis and Function Through the Unfolded Protein Response. In: Wiseman, R., Haynes, C. (eds) Coordinating Organismal Physiology Through the Unfolded Protein Response. Current Topics in Microbiology and Immunology, vol 414. Springer, Cham. https://doi.org/10.1007/82_2017_56

Download citation

Publish with us

Policies and ethics