Advertisement

Regulation of Gene and Protein Expression in the Lyme Disease Spirochete

  • Brian Stevenson
  • Janakiram Seshu
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 415)

Abstract

The infectious cycle of Borrelia burgdorferi necessitates persistent infection of both vertebrates and ticks, and efficient means of transmission between those two very different types of hosts. The Lyme disease spirochete has evolved mechanisms to sense its location in the infectious cycle, and use that information to control production of the proteins and other factors required for each step. Numerous components of borrelial regulatory pathways have been characterized to date. Their effects are being pieced together, thereby providing glimpses into a complex web of cooperative and antagonistic interactions. In this chapter, we present a broad overview of B. burgdorferi gene and protein regulation during the natural infectious cycle, discussions of culture-based methods for elucidating regulatory mechanisms, and summaries of many of the known regulatory proteins and small molecules. We also highlight areas that are in need of substantially more research.

Notes

Acknowledgments

We are grateful to Catherine Brissette, Will Arnold, and Christina Savage for their comments.

References

  1. Aitken A, Rouviere-Yaniv J (1979) Amino and carboxy terminal sequences of the DNA-binding protein HU from the cyanobacterium Synechocystis PCC 6701 (ATCC 27170). Biochem Biophys Res Commun 91:461–467CrossRefPubMedGoogle Scholar
  2. Akins DR, Bourell KW, Caimano MJ, Norgard MV, Radolf JD (1998) A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest 101:2240–2250PubMedCentralPubMedCrossRefGoogle Scholar
  3. Alverson J, Bundle SF, Sohasky CD, Lybecker MC, Samuels DS (2003) Transcriptional regulation of the ospAB and ospC promoters of Borrelia burgdorferi. Mol Microbiol 48:1665–1677CrossRefPubMedGoogle Scholar
  4. Antonara S, Ristow L, Coburn J (2011) Adhesion mechanisms of Borrelia burgdorferi. Adv Exp Med Biol 715:35–49PubMedCentralPubMedCrossRefGoogle Scholar
  5. Archambault L, Linscott J, Swerdlow N, Boyland K, Riley E, Schlax P (2013) Translational efficiency of rpoS mRNA from Borrelia burgdorferi: effects of the length and sequence of the mRNA leader region. Biochem Biophys Res Commun 433:73–78PubMedCentralPubMedCrossRefGoogle Scholar
  6. Arnold WK, Savage CR, Antonicello AD, Stevenson B (2015) Apparent role for Borrelia burgdorferi LuxS during mammalian infection. Infect Immun 83:1347–1353PubMedCentralPubMedCrossRefGoogle Scholar
  7. Arnold WK, Savage CR, Brissette CA, Janakiram S, Livny J, Stevenson B (2016) RNA-Seq of Borrelia burgdorferi in multiple phases of growth reveals insights into the dynamics of gene expression, transcriptome architecture, and noncoding RNAs. PLoS ONE 11:e0164165PubMedCentralPubMedCrossRefGoogle Scholar
  8. Arnold WK, Lethbridge KG, Savage CR, Smith TC, Brissette CA, Livny J, Seshu J, Stevenson B (2017) Transcriptomic impacts of the virulence-controlling CsrA, BadR, RpoN, and RpoS regulatory networks in the Lyme disease spirochete. SubmittedGoogle Scholar
  9. Babb K, El-Hage N, Miller JC, Carroll JA, Stevenson B (2001) Distinct regulatory pathways control the synthesis of Borrelia burgdorferi infection-associated OspC and Erp surface proteins. Infect Immun 69:4146–4153PubMedCentralPubMedCrossRefGoogle Scholar
  10. Babb K, von Lackum K, Wattier RL, Riley SP, Stevenson B (2005) Synthesis of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 187:3079–3087PubMedCentralPubMedCrossRefGoogle Scholar
  11. Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525PubMedCentralPubMedGoogle Scholar
  12. Bauer WJ, Luthra A, Zhu G, Radolf JD, Malkowski MG, Caimano MJ (2015) Structural characterization and modeling of the Borrelia burgdorferi hybrid histidine kinase Hk1 periplasmic sensor: a system for sensing small molecules associated with tick feeding. J Struct Biol 192:48–58PubMedCentralPubMedCrossRefGoogle Scholar
  13. Blevins JS, Revel AT, Caimano MJ, Yang XF, Richardson JA, Hagman KE, Norgard MV (2004) The luxS gene is not required for Borrelia burgdorferi tick colonization, transmission to a mammalian host, or induction of disease. Infect Immun 72:4862–4867CrossRefGoogle Scholar
  14. Boardman BK, He M, Ouyang Z, Xu H, Pang X, Yang XF (2008) Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect Immun 76:3844–3853PubMedCentralPubMedCrossRefGoogle Scholar
  15. Bontemps-Gallo S, Lawrence K, Gherardini FC (2016) Two different virulence-related regulatory pathways in Borrelia burgdorferi are directly affected by osmotic fluxes in the blood meal of feeding Ixodes ticks. PLoS Pathog 15:e1005791CrossRefGoogle Scholar
  16. Boylan JA, Posey JE, Gherardini FC (2003) Borrelia oxidative stress response regulator, BosR: a distinct Zn-dependent transcriptional activator. Proc Natl Acad Sci USA 100:11684–11689PubMedGoogle Scholar
  17. Brissette CA, Gaultney RA (2014) That’s my story, and I’m sticking to it—an update on Borrelia burgdorferi adhesins. Front Cell Infect Microbiol 4:41, doi: 10.3389/fcimb.2014.00041
  18. Brisson D, Zhou W, Jutras BL, Casjens S, Stevenson B (2013) Distribution of cp32 prophages among Lyme disease-causing spirochetes and natural diversity of their lipoprotein-encoding erp loci. Appl Env Microbiol 79:4115–4128CrossRefGoogle Scholar
  19. Bugrysheva J, Dobrikova EY, Godfrey HP, Sartakova ML, Cabello FC (2002) Modulation of Borrelia burgdorferi stringent response and gene expression during extracellular growth with tick cells. Infect Immun 70:3061–3067PubMedCentralPubMedCrossRefGoogle Scholar
  20. Bugrysheva J, Dobrikova EY, Sartakova ML, Caimano MJ, Daniels TJ, Radolf JD, Godfrey HP, Cabello FC (2003) Characterization of the stringent response and relBbu expression in Borrelia burgdorferi. J Bacteriol 185:957–965PubMedCentralPubMedCrossRefGoogle Scholar
  21. Bugrysheva JV, Bruyskin AV, Godfrey HP, Cabello FC (2005) Borrelia burgdorferi rel is responsible for generation of guanosine-3′-diphosphate-5′-triphosphate and growth control. Infect Immun 73:4972–4981PubMedCentralPubMedCrossRefGoogle Scholar
  22. Bugrysheva JV, Pappas CJ, Terekhova DA, Iyer R, Godfrey HP, Schwartz I, Cabello FC (2015) Characterization of the RelBbu regulon in Borrelia burgdorferi reveals modulation of glycerol metabolism by (p)ppGpp. PLoS ONE 10:e0118063PubMedCentralPubMedCrossRefGoogle Scholar
  23. Burke TP, Portnoy DA (2016) SpoVG is a conserved RNA-binding protein that regulates Listeria monocytogenes lysozyme resistance, virulence, and swarming motility. mBio 7:e00240Google Scholar
  24. Burkot TR, Piesman J, Wirtz RA (1994) Quantitation of the Borrelia burgdorferi outer surface protein A in Ixodes scapularis: fluctuations during the tick life cycle, doubling times and loss while feeding. J Infect Dis 170:883–889CrossRefPubMedGoogle Scholar
  25. Burns LH, Adams CA, Riley SP, Jutras BL, Bowman A, Chenail AM, Cooley AE, Haselhorst LA, Moore AM, Babb K, Fried MG, Stevenson B (2010) BpaB, a novel protein encoded by the Lyme disease spirochete’s cp32 prophages, binds to erp Operator 2 DNA. Nucleic Acids Res 38:5443–5455PubMedCentralPubMedCrossRefGoogle Scholar
  26. Burtnick MN, Downey JS, Brett PJ, Boylan JA, Frye JG, Hoover TR, Gherardini FC (2007) Insights into the complex regulation of rpoS in Borrelia burgdorferi. Mol Microbiol 65:277–293PubMedCentralPubMedCrossRefGoogle Scholar
  27. Bykowski T, Babb K, von Lackum K, Riley SP, Norris SJ, Stevenson B (2006) Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein. J Bacteriol 188:4879–4889PubMedCentralPubMedCrossRefGoogle Scholar
  28. Bykowski T, Woodman ME, Cooley AE, Brissette CA, Brade V, Wallich R, Kraiczy P, Stevenson B (2007) Coordinated expression of Borrelia burgdorferi complement regulator-acquiring surface proteins during the Lyme disease spirochete’s mammal-tick infection cycle. Infect Immun 75:4227–4236PubMedCentralPubMedCrossRefGoogle Scholar
  29. Caimano MJ (2005) Cultivation of Borrelia burgdorferi in dialysis membrane chambers in rat peritonea. In: Coico RT, Kowalik TF, Quarles J, Stevenson B, Taylor R (eds) Current Protocols In Microbiology. Wiley, Hoboken, N.J.Google Scholar
  30. Caimano MJ, Eggers CH, Hazlett KRO, Radolf JD (2004) RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun 72:6433–6445PubMedCentralPubMedCrossRefGoogle Scholar
  31. Caimano MJ, Eggers CH, Gonzalez CA, Radolf JD (2005) Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp45-borne ospA and lp6.6 genes. J Bacteriol 187:7845–7852PubMedCentralPubMedCrossRefGoogle Scholar
  32. Caimano MJ, Iyer R, Eggers CH, Gonzalez C, Morton EA, Gilbert MA, Schwartz I, Radolf JD (2007) Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol 65:1193–1217PubMedCentralPubMedCrossRefGoogle Scholar
  33. Caimano MJ, Kenedy MR, Kairu T, Desrosiers DC, Harman M, Dunham-Ems S, Akins DR, Pal U, Radolf JD (2011) The hybrid histidine kinase Hk1 is part of a two-component system that is essential for survival of Borrelia burgdorferi in feeding Ixodes scapularis ticks. Infect Immun 79:3117–3130PubMedCentralPubMedCrossRefGoogle Scholar
  34. Caimano MJ, Dunham-Ems S, Allard AM, Cassera MB, Kenedy M, Radolf JD (2015) Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission. Infect Immun 83:3043–3060PubMedCentralPubMedCrossRefGoogle Scholar
  35. Carroll JA, Garon CF, Schwan TG (1999) Effects of environmental pH on membrane proteins in Borrelia burgdorferi. Infect Immun 67:3181–3187PubMedCentralPubMedGoogle Scholar
  36. Carroll JA, Cordova RM, Garon CF (2000) Identification of eleven pH-regulated genes in Borrelia burgdorferi localized to linear plasmids. Infect Immun 68:6677–6684PubMedCentralPubMedCrossRefGoogle Scholar
  37. Casjens S, van Vugt R, Tilly K, Rosa PA, Stevenson B (1997) Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes. J Bacteriol 179:217–227PubMedCentralPubMedCrossRefGoogle Scholar
  38. Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser C (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs of an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490–516CrossRefPubMedGoogle Scholar
  39. Cassatt DR, Patel NK, Ulbrandt ND, Hanson MS (1998) DbpA, but not OspA, is expressed by Borrelia burgdorferi during spirochetemia and is a target for protective antibodies. Infect Immun 66:5379–5387PubMedCentralPubMedGoogle Scholar
  40. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549CrossRefGoogle Scholar
  41. Chenail AM, Jutras BL, Adams CA, Burns LH, Bowman A, Verma A, Stevenson B (2012) Borrelia burgdorferi cp32 BpaB modulates expression of the prophage NucP nuclease and SsbP single-stranded DNA-binding protein. J Bacteriol 194:4570–4578PubMedCentralPubMedCrossRefGoogle Scholar
  42. Codolo G, Papinutto E, Polenghi A, D’Elios MM, Zanotti G, de Bernard M (2010) Structure and immunomodulatory property relationship in NapA of Borrelia burgdorferi. Biochim Biophys Acta 1804:2191–2197CrossRefPubMedGoogle Scholar
  43. Concepcion MB, Nelson DR (2003) Expression of spoT in Borrelia burgdorferi during serum starvation. J Bacteriol 185:444–452PubMedCentralPubMedCrossRefGoogle Scholar
  44. Cooley AE, Riley SP, Kral K, Miller MC, DeMoll E, Fried MG, Stevenson B (2009) DNA-binding by Haemophilus influenzae and Escherichia coli YbaB, members of a widely-distributed bacterial protein family. BMC Microbiol 9:137PubMedCentralPubMedCrossRefGoogle Scholar
  45. de Silva AM, Fikrig E (1995) Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg 53:397–404PubMedCrossRefGoogle Scholar
  46. Drecktrah D, Lybecker M, Popitsch N, Rescheneder P, Hall LS, Samuels DS (2015) The Borrelia burgdorferi RelA/SpoT homolog and stringent response regulate survival in the tick vector and global gene expression during starvation. PLoS Pathog 11:e1005160PubMedCentralPubMedCrossRefGoogle Scholar
  47. Dulebohn DP, Hayes BM, Rosa PA (2014) Global repression of host-associated genes of the Lyme disease spirochete through post-transcriptional modulation of the alternative sigma factor RpoS. PLoS ONE 9:e93141PubMedCentralPubMedCrossRefGoogle Scholar
  48. Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, Radolf JD (2009) Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Inv 119:3652–3665CrossRefGoogle Scholar
  49. Dunham-Ems SM, Caimano MJ, Eggers CH, Radolf JD (2012) Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-mammal transmission. PLoS Pathog 8:e1002532PubMedCentralPubMedCrossRefGoogle Scholar
  50. Eggers CH, Caimano MJ, Clawson ML, Miller WG, Samuels DS, Radolf JD (2002) Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the Lyme disease spirochaete. Mol Microbiol 43:281–295PubMedGoogle Scholar
  51. Eggers CH, Caimano MJ, Radolf JD (2004) Analysis of promoter elements involved in the transcription initiation of RpoS-dependent Borrelia burgdorferi genes. J Bacteriol 186:7390–7402PubMedCentralPubMedGoogle Scholar
  52. Elias AF, Bono JL, Carroll JA, Stewart P, Tilly K, Rosa P (2000) Altered stationary-phase response in a Borrelia burgdorferi rpoS mutant. J Bacteriol 182:2909–2918PubMedCentralPubMedCrossRefGoogle Scholar
  53. Esteve-Gassent MD, Smith TC, Small CM, Thomas DP, Seshu J (2015) Absence of sodA increases the levels of oxidation of key metabolic determinants of Borrelia burgdorferi. PLoS ONE 10:e0136707PubMedCentralPubMedCrossRefGoogle Scholar
  54. Fisher MA, Grimm D, Henion AK, Elias AF, Stewart PE, Rosa PA, Gherardini FC (2005) Borrelia burgdorferi σ54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci USA 102:5162–5167CrossRefPubMedGoogle Scholar
  55. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb J-F, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidmann J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586CrossRefPubMedGoogle Scholar
  56. Freedman JC, Rogers EA, Kostick JL, Zhang H, Iyer R, Schwartz I, Marconi RT (2010) Identification and molecular characterization of a cyclic-di-GMP effector protein, PlzA (BB0733): additional evidence for the existence of a functional cyclic-di-GMP regulatory network in the Lyme disease spirochete, Borrelia burgdorferi. FEMS Immunol Med Microbiol 58:285–294PubMedCrossRefGoogle Scholar
  57. Graebsch A, Roche S, Kostrewa D, Söding J, Niessing D (2010) Of bits and bugs—on the use of bioinformatics and a bacterial crystal structure to solve a eukaryotic repeat-protein structure. PLoS ONE 5:e13402PubMedCentralPubMedCrossRefGoogle Scholar
  58. Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM, Schwan TG, Policastro PF, Elias AF, Rosa PA (2004) Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci USA 101:3142–3147CrossRefPubMedGoogle Scholar
  59. Groshong AM, Gibbons NE, Yang XF, Blevins JS (2012) Rrp2, a prokaryotic enhancer-like binding protein, is essential for viability of Borrelia burgdorferi. J Bacteriol 194:3336–3342PubMedCentralPubMedCrossRefGoogle Scholar
  60. Hayes BM, Dulebohn DP, Sarkar A, Tilly K, Bestor A, Ambroggio X, Rosa PA (2014) Regulatory protein BBD18 of the Lyme disease spirochete: essential role during tick acquisition? MBio 5:e01017–01014PubMedCentralPubMedGoogle Scholar
  61. He M, Ouyang Z, Troxell B, Xu H, Moh A, Piesman J, Norgard MV, Gomelsky M, Yang XF (2011) Cyclic di-GMP is essential for the survival of the Lyme disease spirochete in ticks. PLoS Pathog 7:e1002133PubMedCentralPubMedCrossRefGoogle Scholar
  62. He M, Zhang J, Ye M, Lou Y, Yang XF (2013) The cyclic dimeric-GMP receptor PlzA controls virulence gene expression through RpoS in Borrelia burgdorferi. Infect Immun 82:445–452CrossRefPubMedGoogle Scholar
  63. Hefty PS, Jolliff SE, Caimano MJ, Wikel SK, Radolf JD, Akins DR (2001) Regulation of OspE-related, OspF-related, and Elp lipoproteins of Borrelia burgdorferi strain 297 by mammalian host-specific signals. Infect Immun 69:3618–3627PubMedCentralPubMedCrossRefGoogle Scholar
  64. Hübner A, Yang X, Nolen DM, Popova TG, Cabello PC, Norgard MV (2001) Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci USA 98:12724–12729CrossRefPubMedGoogle Scholar
  65. Hübner A, Revel AT, Nolen DM, Hagman KE, Norgard MV (2003) Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect Immun 71:2892–2896PubMedCentralPubMedCrossRefGoogle Scholar
  66. Hyde JA, Seshu J, Skare JT (2006) Transcriptional profiling of Borrelia burgdorferi containing a unique bosR allele identifies a putative stress regulon. Microbiology 152:2599–2609CrossRefPubMedGoogle Scholar
  67. Hyde JA, Trzeciakowski JP, Skare JT (2007) Borrelia burgdorferi alters its gene expression and antigenic profile in response to CO2 levels. J Bacteriol 189:4370445CrossRefGoogle Scholar
  68. Hyde JA, Shaw DK, Smith R, Trzeciakowski JP, Skare JT (2009) The BosR regulatory protein of Borrelia burgdorferi interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirochete. Mol Microbiol 74:1344–1355PubMedCentralPubMedCrossRefGoogle Scholar
  69. Hyde JA, Shaw DK, Smith R, Trzeciakowski JP, Skare JT (2010) Characterization of a conditional bosR mutant in Borrelia burgdorferi. Infect Immun 78:265–274CrossRefPubMedGoogle Scholar
  70. Imlay JA (2015) Transcription factors that defend bacteria against reactive oxygen species. Annu Rev Microbiol 69:93–108PubMedCentralPubMedCrossRefGoogle Scholar
  71. Indest KJ, Ramamoorthy R, Sole M, Gilmore RD, Johnson BJB, Philipp MT (1997) Cell-density-dependent expression of Borrelia burgdorferi lipoproteins in vitro. Infect Immun 65:1165–1171PubMedCentralPubMedGoogle Scholar
  72. Iyer R, Caimano MJ, Luthra A, Axline D, Corona A, Iacobas DA, Radolf JD, Schwartz I (2015) Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host-adaptation. Mol Microbiol 95:509–538CrossRefPubMedGoogle Scholar
  73. Jutras BL, Bowman A, Brissette CA, Adams CA, Verma A, Chenail AM, Stevenson B (2012a) EbfC (YbaB) is a new type of bacterial nucleoid-associated protein, and a global regulator of gene expression in the Lyme disease spirochete. J Bacteriol 194:3395–3406PubMedCentralPubMedCrossRefGoogle Scholar
  74. Jutras BL, Verma A, Adams CA, Brissette CA, Burns LH, Whetstine CR, Bowman A, Chenail AM, Zückert WR, Stevenson B (2012b) BpaB and EbfC DNA-binding proteins regulate production of the Lyme disease spirochete’s infection-associated Erp surface proteins. J Bacteriol 194:778–786PubMedCentralPubMedCrossRefGoogle Scholar
  75. Jutras BL, Chenail AM, Carroll DW, Miller MC, Zhu H, Bowman A, Stevenson B (2013a) Bpur, the Lyme disease spirochete’s PUR-domain protein: identification as a transcriptional modulator and characterization of nucleic acid interactions. J Biol Chem 288:26220–26234PubMedCentralPubMedCrossRefGoogle Scholar
  76. Jutras BL, Chenail AM, Rowland CL, Carroll D, Miller MC, Bykowski T, Stevenson B (2013b) Eubacterial SpoVG homologs constitute a new family of site-specific DNA-binding proteins. PLoS ONE 8:e66683PubMedCentralPubMedCrossRefGoogle Scholar
  77. Jutras BL, Chenail AM, Stevenson B (2013c) Changes in bacterial growth rate govern expression of the Borrelia burgdorferi OspC and Erp infection-associated surface proteins. J Bacteriol 195:757–764PubMedCentralPubMedCrossRefGoogle Scholar
  78. Jutras BL, Jones G, Verma A, Brown NA, Antonicello AD, Chenail AM, Stevenson B (2013d) Post-transcriptional autoregulation of the Lyme disease bacterium’s BpuR DNA/RNA-binding protein. J Bacteriol 195:4915–4923PubMedCentralPubMedCrossRefGoogle Scholar
  79. Karna SL, Prabhu RG, Lin YH, Miller CL, Seshu J (2013) Contributions of environmental signals and conserved residues to the functions of carbon storage regulator A of Borrelia burgdorferi. Infect Immun 81:2972–2985PubMedCentralPubMedCrossRefGoogle Scholar
  80. Karna SLR, Sanjuan E, Esteve-Gassent MD, Miller CL, Maruskova M, Seshu J (2011) CsrA modulates levels of lipoproteins and key regulators of gene expression critical for pathogenic mechanisms of Borrelia burgdorferi. Infect Immun 79:732–744CrossRefPubMedGoogle Scholar
  81. Katona LI, Tokarz R, Kuhlow CJ, Benach J, Benach JL (2004) The Fur homologue in Borrelia burgdorferi. J Bacteriol 186:6443–6456PubMedCentralPubMedCrossRefGoogle Scholar
  82. Katona LI (2015) The Fur homologue BosR requires Arg39 to activate rpoS transcription in Borrelia burgdorferi and thereby direct spirochaete infection in mice. Microbiology 161:2243–2255PubMedCentralPubMedCrossRefGoogle Scholar
  83. Kelly R (1971) Cultivation of Borrelia hermsi. Science 173:443–444CrossRefPubMedGoogle Scholar
  84. Khajanchi BK, Odeh E, Gao L, Jacobs MB, Philipp MT, Lin T, Norris SJ (2015) Phosphoenolpyruvate phosphotransferase system components modulate gene transcription and virulence of Borrelia burgdorferi. Infect Immun 84:754–764CrossRefPubMedGoogle Scholar
  85. Knight SW, Samuels DS (1999) Natural synthesis of a DNA-binding protein from the C-terminal domain of DNA gyrase A in Borrelia burgdorferi. EMBO J 18:4875–4881PubMedCentralPubMedCrossRefGoogle Scholar
  86. Knight SW, Kimmel BJ, Eggers CH, Samuels DS (2000) Disruption of the Borrelia burgdorferi gac gene, encoding the naturally synthesized GyrA C-terminal domain. J Bacteriol 182:2048–2051PubMedCentralPubMedCrossRefGoogle Scholar
  87. Kobryn K, Naigamwalla DZ, Chaconas G (2000) Site-specific DNA binding and bending by the Borrelia burgdorferi Hbb protein. Mol Microbiol 37:145–155CrossRefPubMedGoogle Scholar
  88. Kostick JL, Szkotnicki LT, Rogers EA, Bocci P, Raffaelli N, Marconi RT (2011) The diguanylate cyclase, Rrp1, regulates critical steps in the enzootic cycle of the Lyme disease spirochetes. Mol Microbiol 81:219–231PubMedCentralPubMedCrossRefGoogle Scholar
  89. Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers DC, Eggers CH, Anderson JF, Radolf JD, Fikrig E (2007) The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63:694–710PubMedGoogle Scholar
  90. Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M, Fikrig E (2004) Borrelia burgdorferi changes its surface antigenic expression in response to host immune reponses. Infect Immun 72:5759–5767PubMedCentralPubMedCrossRefGoogle Scholar
  91. Lim K, Tempczyk A, Parsons JF, Bonander N, Toedt J, Kelman Z, Howard A, Eisenstein E, Herzberg O (2003) Crystal structure of YbaB from Haemophilus influenzae (HI0442), a protein of unknown function coexpressed with the recombinational DNA repair protein RecR. Proteins 50:375–379CrossRefPubMedGoogle Scholar
  92. Lin YH, Romo JA, Smith TC, Reyes AN, Karna SL, Miller CL, Van Laar TA, Yendapally R, Chambers JP, Seshu J (2017) Spermine and spermidine alter gene expression and antigenic profile of Borrelia burgdorferi. Infect Immun 85: in pressGoogle Scholar
  93. Livermore BP, Bey RF, Johnson RC (1978) Lipid metabolism of Borrelia hermsi. Infect Immun 20:215–220PubMedCentralPubMedGoogle Scholar
  94. Lybecker MC, Samuels DS (2007) Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol Microbiol 64:1075–1089CrossRefPubMedGoogle Scholar
  95. Lybecker MC, Abel CA, Feig AL, Samuels DS (2010) Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 78:622–635PubMedCentralPubMedCrossRefGoogle Scholar
  96. McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR (2017) Riboswitch diversity and distribution. RNA 23:995–1011PubMedCentralPubMedCrossRefGoogle Scholar
  97. Medrano MS, Ding Y, Wang XG, Lu P, Coburn J, Hu LT (2007) Regulators of expression of the oligopeptide permease A proteins of Borrelia burgdorferi. J Bacteriol 189:2653–2659PubMedCentralPubMedCrossRefGoogle Scholar
  98. Medrano MS, Policastro PF, Schwan TG, Coburn J (2010) Interaction of Borrelia burgdorferi Hbb with the p66 promoter. Nucleic Acids Res 38:414–427CrossRefPubMedGoogle Scholar
  99. Miller CL, Karna SL, Seshu J (2013) Borrelia host adaptation regulator (BadR) regulates rpoS to modulate host adaptation and virulence factors in Borrelia burgdorferi. Mol Microbiol 88:105–124PubMedCentralPubMedCrossRefGoogle Scholar
  100. Miller JC, von Lackum K, Babb K, McAlister JD, Stevenson B (2003) Temporal analysis of Borrelia burgdorferi Erp protein expression throughout the mammal-tick infectious cycle. Infect Immun 71:6943–6952PubMedCentralPubMedCrossRefGoogle Scholar
  101. Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM (2004) Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 15:677–687CrossRefPubMedGoogle Scholar
  102. Mouw KW, Rice PA (2007) Shaping the Borrelia burgdorferi genome: crystal structure and binding properties of the DNA-bending protein Hbb. Mol Microbiol 63:1319–1330CrossRefPubMedGoogle Scholar
  103. Mukherjee S, Yakhnin H, Kysela D, Sokoloski J, Babitzke P, Kearns DB (2011) CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Mol Microbiol 82:447–461PubMedCentralPubMedCrossRefGoogle Scholar
  104. Mukherjee S, Oshiro RT, Yakhnin H, Babitzke P, Kearns DB (2016) FliW antagonizes CsrA RNA binding by a noncompetitive allosteric mechanism. Proc Natl Acad Sci 113:9870–9875CrossRefPubMedGoogle Scholar
  105. Neelakanta G, Li X, Pal U, Liu X, Beck DS, DePonte K, Fish D, Kantor FS, Fikrig E (2007) Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog 3:e33PubMedCentralPubMedCrossRefGoogle Scholar
  106. Ouyang Z, Blevins JS, Norgard MV (2008) Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi. Microbiology 154:2641–2658CrossRefPubMedGoogle Scholar
  107. Ouyang Z, Kumar M, Kariu T, Haq S, Goldberg M, Pal U, Norgard MV (2009) BosR (BB0647) governs virulence expression in Borrelia burgdorferi. Mol Microbiol 74:1331–1343PubMedCentralPubMedCrossRefGoogle Scholar
  108. Ouyang Z, Deka RK, Norgard MV (2011) BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanism. PLoS Pathog 7:e1001272PubMedCentralPubMedCrossRefGoogle Scholar
  109. Ouyang Z, Zhou J (2015) BadR (BB0693) controls growth phase-dependent induction of rpoS and bosR in Borrelia burgdorferi via recognizing TAAAATAT motifs. Mol Microbiol 98:1147–1167CrossRefPubMedGoogle Scholar
  110. Ouyang Z, Zhou J (2017) The putative Walker A and Walker B motifs of Rrp2 are required for the growth of Borrelia burgdorferi. Mol Microbiol 103:86–98CrossRefPubMedGoogle Scholar
  111. Ouyang Z, Zhou J, Brautigam CA, Deka RK, Norgard MV (2014a) Identification of a core sequence for the binding of BosR to the rpoS promoter region in Borrelia burgdorferi. Microbiology 160:851–862PubMedCentralPubMedCrossRefGoogle Scholar
  112. Ouyang Z, Zhou J, Norgard MV (2014b) Synthesis of RpoS is dependent on a putative enhancer binding protein Rrp2 in Borrelia burgdorferi. PLoS ONE 9:e96917PubMedCentralPubMedCrossRefGoogle Scholar
  113. Ouyang Z, Zhou J, Norgard MV (2014c) CsrA (BB0184) Is not involved in activation of the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. Microbiology 82:1511–1522Google Scholar
  114. Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, deSilva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E (2004) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–468CrossRefPubMedGoogle Scholar
  115. Pappas CJ, Iyer R, Petzke MM, Caimano MJ, Radolf JD, Schwartz I (2011) Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cycle. PLoS Pathog 7:e1002102PubMedCentralPubMedCrossRefGoogle Scholar
  116. Pereira CS, Santos AJ, Bejerano-Sagie M, Correia PB, Marques JC, Xavier KB (2012) Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2. Mol Microbiol 84:93–104CrossRefPubMedGoogle Scholar
  117. Piesman J, Schneider BS (2002) Dynamic changes in Lyme disease spirochetes during transmission by nymphal ticks. Exp Appl Acarol 28:141–145CrossRefPubMedGoogle Scholar
  118. Piesman J, Oliver JR, Sinsky RJ (1990) Growth kinetics of the Lyme disease spirochete (Borrelia burgdorferi) in vector ticks (Ixodes dammini). Am J Trop Med Hyg 42:352–357CrossRefPubMedGoogle Scholar
  119. Piesman J, Schneider BS, Zeidner NS (2001) Use of quantitative PCR to measure density of Borrelia burgdorferi in the midgut and salivary glands of feeding tick vectors. J Clin Microbiol 39:4145–4148PubMedCentralPubMedCrossRefGoogle Scholar
  120. Popitsch N, Bilusic I, Rescheneder P, Schroeder R, Lybecker M (2017) Temperature-dependent sRNA transcriptome of the Lyme disease spirochete. BMC Genom 18:28CrossRefGoogle Scholar
  121. Posey JE, Gherardini FC (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–1653CrossRefPubMedGoogle Scholar
  122. Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice, and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nature Rev Microbiol 10:87–98CrossRefGoogle Scholar
  123. Ramamoorthy R, Philipp MT (1998) Differential expression of Borrelia burgdorferi proteins during growth in vitro. Infect Immun 66:5119–5124PubMedCentralPubMedGoogle Scholar
  124. Ramamoorthy R, Scholl-Meeker D (2001) Borrelia burgdorferi proteins whose expression is similarly affected by culture temperature and pH. Infect Immun 69:2739–2742PubMedCentralPubMedCrossRefGoogle Scholar
  125. Richards CL, Lawrence KA, Su H, Yang Y, Yang XF, Dulebohn DP, Gherardini FC (2015) Acetyl-phosphate is not a global regulatory bridge between virulence and central metabolism in Borrelia burgdorferi. PLoS ONE 10:e0144472PubMedCentralPubMedCrossRefGoogle Scholar
  126. Riley SP, Bykowski T, Cooley AE, Burns LH, Babb K, Brissette CA, Bowman A, Rotondi M, Miller MC, DeMoll E, Lim K, Fried MG, Stevenson B (2009) Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins. Nucleic Acids Res 37:1973–1983PubMedCentralPubMedCrossRefGoogle Scholar
  127. Rogers EA, Terekhova D, Zhang HM, Hovis KM, Schwartz I, Marconi RT (2009) Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol Microbiol 71:1551–1573PubMedCentralPubMedCrossRefGoogle Scholar
  128. Rosenbluh A, Banner CD, Losick R, Fitz-James PC (1981) Identification of a new developmental locus in Bacillus subtilis by construction of a deletion mutation in a cloned gene under sporulation control. J Bacteriol 148:341–351PubMedCentralPubMedGoogle Scholar
  129. Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187:1792–1798PubMedCentralPubMedCrossRefGoogle Scholar
  130. Salman-Dilgimen A, Hardy PO, Dresser AR, Chaconas G (2011) HrpA, a DEAH-box RNA helicase, is involved in global gene regulation in the Lyme disease spirochete. PLoS ONE 6:e22168PubMedCentralPubMedCrossRefGoogle Scholar
  131. Sanjuan E, Esteve-Gassent MD, Maruskova M, Seshu J (2009) Overexpression of CsrA (BB0184) alters the morphology and antigen profiles of Borrelia burgdorferi. Infect Immun 77:5149–5162PubMedCentralPubMedCrossRefGoogle Scholar
  132. Sarkar A, Hayes BM, Dulebohn DP, Rosa PA (2011) Regulation of the virulence determinant OspC by bbd18 on linear plasmid lp17 of Borrelia burgdorferi. J Bacteriol 193:5365–5373PubMedCentralPubMedCrossRefGoogle Scholar
  133. Savage CR, Arnold WK, Gjevre-Nail A, Koestler BJ, Bruger EL, Barker JR, Waters CM, Stevenson B (2015) Intracellular concentrations of Borrelia burgdorferi cyclic di-AMP are not changed by altered expression of the CdaA synthase. PLoS ONE 10:e0125440PubMedCentralPubMedCrossRefGoogle Scholar
  134. Schauder S, Shokat S, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476CrossRefPubMedGoogle Scholar
  135. Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA (1995) Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci USA 92:2909–2913CrossRefPubMedGoogle Scholar
  136. Schwan TG, Piesman J (2000) Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol 38:382–388PubMedCentralPubMedGoogle Scholar
  137. Seshu J, Boylan JA, Gherardini FC, Skare JT (2004a) Dissolved oxygen levels alter gene expression and antigen profiles in Borrelia burgdorferi. Infect Immun 72:1580–1586PubMedCentralPubMedCrossRefGoogle Scholar
  138. Seshu J, Boylan JA, Hyde JA, Swingle KL, Gherardini FC, Skare JT (2004b) A conservative amino acid change alters the function of BosR, the redox regulator of Borrelia burgdorferi. Mol Microbiol 54:1352–1363CrossRefPubMedGoogle Scholar
  139. Shi Y, Dadhwal P, Li X, Liang FT (2014) BosR functions as a repressor of the ospAB operon in Borrelia burgdorferi. PLoS ONE 9:e109307PubMedCentralPubMedCrossRefGoogle Scholar
  140. Skare JT, Shaw DK, Trzeciakowski JP, Hyde JA (2016) In vivo imaging demonstrates that Borrelia burgdorferi ospC is uniquely expressed temporally and spatially throughout experimental infection. PLoS ONE 11:e0162501PubMedCentralPubMedCrossRefGoogle Scholar
  141. Smith AH, Blevins JS, Bachlani GN, Yang XF, Norgard MV (2007) Evidence that RpoS (σS) in Borrelia burgdorferi is controlled directly by RpoN (σ54N). J Bacteriol 189:2139–2144PubMedCrossRefGoogle Scholar
  142. Stevenson B, Babb K (2002) LuxS-mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 70:4099–4105PubMedCentralPubMedCrossRefGoogle Scholar
  143. Stevenson B, Schwan TG, Rosa PA (1995) Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63:4535–4539PubMedCentralPubMedGoogle Scholar
  144. Stevenson B, Bono JL, Schwan TG, Rosa P (1998) Borrelia burgdorferi Erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria. Infect Immun 66:2648–2654PubMedCentralPubMedGoogle Scholar
  145. Stevenson B, von Lackum K, Wattier RL, McAlister JD, Miller JC, Babb K (2003) Quorum sensing by the Lyme disease spirochete. Microbes Infect 5:991–997CrossRefPubMedGoogle Scholar
  146. Stevenson B, von Lackum K, Riley SP, Cooley AE, Woodman ME, Bykowski T (2006) Evolving models of Lyme disease spirochete gene regulation. Wien Klin Wochenschr 118:643–652CrossRefPubMedGoogle Scholar
  147. Stewart PE, Wang X, Bueschel DM, Clifton DR, Grimm D, Tilly K, Carroll JA, Weis JJ, Rosa PA (2006) Delineating the requirement for the Borrelia burgdorferi virulence factor OspC in the mammalian host. Infect Immun 74:3547–3553PubMedCentralPubMedCrossRefGoogle Scholar
  148. Surette MG, Miller MB, Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA 96:1639–1644CrossRefPubMedGoogle Scholar
  149. Sze CW, Li C (2011) Inactivation of bb0184, which encodes carbon storage regulator A, represses the infectivity of Borrelia burgdorferi. Infect Immun 79:1270–1279CrossRefPubMedGoogle Scholar
  150. Sze CW, Morado DR, Liu J, Charon NW, Xu H, Li C (2011) Carbon storage regulator A (CsrA(Bb)) is a repressor of Borrelia burgdorferi flagellin protein FlaB. Mol Microbiol 82:851–864PubMedCentralPubMedCrossRefGoogle Scholar
  151. Taga ME, Miller ST, Bassler BL (2003) Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol Microbiol 50:1411–1427CrossRefPubMedGoogle Scholar
  152. Tilly K, Fuhrman J, Campbell J, Samuels DS (1996) Isolation of Borrelia burgdorferi genes encoding homologues of DNA-binding protein HU and ribosomal protein S20. Microbiology 142:2471–2479CrossRefPubMedGoogle Scholar
  153. Tilly K, Grimm D, Bueschel DM, Krum JG, Rosa P (2004) Infectious cycle analysis of a Borrelia burgdorferi mutant defective in transport of chitobiose, a tick cuticle component. Vector-borne Zoonotic Dis 4:159–168CrossRefPubMedGoogle Scholar
  154. Tilly K, Krum JG, Bestor A, Jewett MW, Grimm D, Bueschel D, Byram R, Dorward D, Vanraden MJ, Stewart P, Rosa P (2006) Borrelia burgdorferi OspC protein is required exclusively in a crucial early stage of mammalian infection. Infect Immun 74:3554–3564PubMedCentralPubMedCrossRefGoogle Scholar
  155. Tilly K, Bestor A, Jewett MW, Rosa P (2007) Rapid clearance of Lyme disease spirochetes lacking OspC from skin. Infect Immun 75:1517–1519PubMedCrossRefGoogle Scholar
  156. Tilly K, Bestor A, Dulebohn DP, Rosa PA (2009) OspC-independent infection and dissemination by host-adapted Borrelia burgdorferi. Infect Immun 77:2672–2682PubMedCentralPubMedCrossRefGoogle Scholar
  157. Tilly K, Bestor A, Rosa PA (2013) Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol Microbiol 89:216–227PubMedCentralPubMedCrossRefGoogle Scholar
  158. Tokarz R, Anderton JM, Katona LI, Benach JL (2004) Combined effects of blood and temperature shift on Borrelia burgdorferi gene expression as determined by whole genome array. Infect Immun 72:5419–5432PubMedCentralPubMedCrossRefGoogle Scholar
  159. Troxell B, Xu H, Yang XF (2012) Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin. J Biol Chem 287:19284–19293PubMedCentralPubMedCrossRefGoogle Scholar
  160. Troxell B, Ye M, Yang Y, Carrasco SE, Lou Y, Yang XF (2013) Manganese and zinc regulate virulence determinants in Borrelia burgdorferi. Infect Immun 81:2743–2752PubMedCentralPubMedCrossRefGoogle Scholar
  161. Troy EB, Lin T, Gao L, Lazinski DW, Lundt M, Camilli A, Norris SJ, Hu LT (2016) Global Tn-seq analysis of carbohydrate utilization and vertebrate infectivity of Borrelia burgdorferi. Mol Microbiol 101:1003–1023PubMedCentralPubMedCrossRefGoogle Scholar
  162. Vakulskas CA, Potts AH, Babitzke P, Ahmer BM, Romeo T (2015) Regulation of bacterial virulence by Csr (Rsm) systems. Micribiol Mol Biol Rev 79:193–224CrossRefGoogle Scholar
  163. Van Laar TA, Lin YH, Miller CL, Karna SLR, Chambers JP, Seshu J (2012) Effects of levels of acetate on the mevalonate pathway of Borrelia burgdorferi. PLoS ONE 5:e38171CrossRefGoogle Scholar
  164. von Lackum K, Stevenson B (2005) Carbohydrate utilization by the Lyme borreliosis spirochete, Borrelia burgdorferi. FEMS Microbiol Lett 243:173–179CrossRefGoogle Scholar
  165. von Lackum K, Miller JC, Bykowski T, Riley SP, Woodman ME, Brade V, Kraiczy P, Stevenson B, Wallich R (2005) Borrelia burgdorferi regulates expression of complement regulator-acquiring surface protein 1 during the mammal-tick infection cycle. Infect Immun 73:7398–7405CrossRefGoogle Scholar
  166. von Lackum K, Babb K, Riley SP, Wattier RL, Bykowski T, Stevenson B (2006) Functionality of Borrelia burgdorferi LuxS: the Lyme disease spirochete produces and responds to the pheromone autoinducer-2, and lacks a complete activated-methyl cycle. Int J Med Microbiol 296(S1):92–102CrossRefGoogle Scholar
  167. Wang H, Wang F, Hua X, Ma T, Chen J, Xu X, Wang L, Tian B, Hua Y (2012a) Genetic and biochemical characteristics of the histone-like protein DR0199 in Deinococcus radiodurans. Microbiology 158:936–943CrossRefPubMedGoogle Scholar
  168. Wang P, Lutton A, Olesik J, Vali H, Li X (2012b) A novel iron- and copper-binding protein in the Lyme disease spirochaete. Mol Microbiol 86:1441–1451CrossRefPubMedGoogle Scholar
  169. Wang P, Dadhwal P, Cheng Z, Zianni MR, Rikihisa Y, Liang FT, Li X (2013) Borrelia burgdorferi oxidative stress regulator BosR directly represses lipoproteins primarily expressed in the tick during mammalian infection. Mol Microbiol 89:1140–1153PubMedCentralPubMedCrossRefGoogle Scholar
  170. Wang P, Yu Z, Santangelo TJ, Olesik J, Wang Y, Heldwein E, Li X (2017) BosR is a novel Fur family member responsive to copper and regulating copper homeostasis in Borrelia burgdorferi. J BacteriolGoogle Scholar
  171. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197CrossRefPubMedGoogle Scholar
  172. Xavier KB, Miller ST, Lu W, Kim JH, Rabinowitz J, Pelczer I, Semmelhack MF, Bassler BL (2007) Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem Biol 2:128–136CrossRefPubMedGoogle Scholar
  173. Xu H, Caimano MJ, Lin T, He M, Radolf JD, Norris SJ, Gherardini F, Wolfe AJ, Yang XF (2010) Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi. PLoS Pathog 6:e1001104PubMedCentralPubMedCrossRefGoogle Scholar
  174. Xu Q, Shi Y, Dadhwal P, Liang FT (2012) RpoS regulates essential virulence factors remaining to be identified in Borrelia burgdorferi. PLoS ONE 7:e53212PubMedCentralPubMedCrossRefGoogle Scholar
  175. Yang X, Goldberg MS, Popova TG, Schoeler GB, Wikel SK, Hagman KE, Norgard MV (2000) Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol Microbiol 37:1470–1479CrossRefPubMedGoogle Scholar
  176. Yang X, Popova TG, Goldberg MS, Norgard MV (2001) Influence of cultivation media on genetic regulatory patterns in Borrelia burgdorferi. Infect Immun 69:4159–4163PubMedCentralPubMedCrossRefGoogle Scholar
  177. Yang XF, Alani SM, Norgard MV (2003a) The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci USA 100:11001–11006CrossRefPubMedGoogle Scholar
  178. Yang XF, Hübner A, Popova TG, Hagman KE, Norgard MV (2003b) Regulation of expression of the paralogous Mlp family in Borrelia burgdorferi. Infect Immun 71:5012–5020PubMedCentralPubMedCrossRefGoogle Scholar
  179. Ye M, Zhang JJ, Fang X, Lawlis GB, Troxell B, Zhou Y, Gomelsky M, Lou Y, Yang XF (2014) DhhP, a cyclic di-AMP phosphodiesterase of Borrelia burgdorferi, is essential for cell growth and virulence. Infect Immun 82:1840–1849PubMedCentralPubMedCrossRefGoogle Scholar
  180. Yin Y, Yang Y, Xiang X, Wang Q, Yang ZN, Blevins J, Lou Y, Yang XF (2016) Insight into the dual functions of bacterial enhancer-binding protein Rrp2 of Borrelia burgdorferi. J Bacteriol 198:1543–1552PubMedCentralPubMedCrossRefGoogle Scholar
  181. Zhang J-R, Norris SJ (1998a) Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun 66:3698–3704PubMedCentralPubMedGoogle Scholar
  182. Zhang J-R, Norris SJ (1998b) Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect Immun 66:3689–3697PubMedCentralPubMedGoogle Scholar
  183. Zhang J-R, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:1–20CrossRefGoogle Scholar
  184. Zückert WR, Meyer J (1996) Circular and linear plasmids of Lyme disease spirochetes have extensive homology: characterization of a repeated DNA element. J Bacteriol 178:2287–2298PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Microbiology, Immunology, and Molecular Genetics, MS 421 Chandler Medical CenterUniversity of Kentucky College of MedicineLexingtonUSA
  2. 2.Department of BiologyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations