Roles of Non-coding RNAs in Respiratory Syncytial Virus (RSV) Infection

  • Ralph A. Tripp
  • Abhijeet A. BakreEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 419)


Analysis of host gene expression profiles following viral infections of target cells/tissues can reveal crucial insights into the host: virus interaction and enables the development of novel therapeutics and prophylactics. Regions of the host genome that do not code for protein, encode structural, and functional non-coding RNAs that are important not only in regulation of host gene expression but also may impact viral replication. This review summarizes the role of host non-coding RNAs during replication of multiple respiratory viruses with a focus on Respiratory Syncytial Virus (RSV), an important pediatric pathogen. This review highlights the current state of knowledge and understanding regarding the function(s) of ncRNAs for respiratory viral infection and host immunity in general.


  1. Agoti CN et al (2015) Successive respiratory syncytial virus epidemics in local populations arise from multiple variant introductions, providing insights into virus persistence. J Virol 89(22):11630–11642PubMedPubMedCentralGoogle Scholar
  2. Ahmed F et al (2013) Tumor necrosis factor receptor associated factor-4: an adapter protein overexpressed in metastatic prostate cancer is regulated by microRNA-29a. Oncol Rep 30(6):2963–2968PubMedGoogle Scholar
  3. Akerlind-Stopner B et al (1993) Antibody responses of children to the C-terminal peptide of the SH protein of respiratory syncytial virus and the immunological characterization of this protein. J Med Virol 40(2):112–120PubMedGoogle Scholar
  4. Alsaleh G et al (2009) Bruton’s tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J Immunol 182(8):5088–5097PubMedGoogle Scholar
  5. Anderson JT (2005) RNA turnover: unexpected consequences of being tailed. Curr Biol 15(16):R635–R638PubMedGoogle Scholar
  6. Androulidaki A et al (2009) The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31(2):220–231PubMedPubMedCentralGoogle Scholar
  7. Asenjo A, Calvo E, Villanueva N (2006) Phosphorylation of human respiratory syncytial virus P protein at threonine 108 controls its interaction with the M2-1 protein in the viral RNA polymerase complex. J Gen Virol 87(Pt 12):3637–3642PubMedGoogle Scholar
  8. Asenjo A, Gonzalez-Armas JC, Villanueva N (2008) Phosphorylation of human respiratory syncytial virus P protein at serine 54 regulates viral uncoating. Virology 380(1):26–33PubMedGoogle Scholar
  9. Babiarz JE et al (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent dicer-dependent small RNAs. Genes Dev 22(20):2773–2785PubMedPubMedCentralGoogle Scholar
  10. Bai Y et al (2012) Integrin CD11b negatively regulates TLR9-triggered dendritic cell cross-priming by upregulating microRNA-146a. J Immunol 188(11):5293–5302PubMedGoogle Scholar
  11. Bakre A et al (2012) Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol 93(Pt 11):2346–2356PubMedPubMedCentralGoogle Scholar
  12. Bakre A et al (2015) Human respiratory syncytial virus non-structural protein NS1 modifies miR-24 expression via transforming growth factor-beta. J Gen Virol 96(11):3179–3191PubMedPubMedCentralGoogle Scholar
  13. Batagov AO, Kurochkin IV (2013) Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol Direct 8:12PubMedPubMedCentralGoogle Scholar
  14. Bazzoni F et al (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 106(13):5282–5287PubMedGoogle Scholar
  15. Berezikov E et al (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336PubMedPubMedCentralGoogle Scholar
  16. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101PubMedGoogle Scholar
  17. Boyoglu-Barnum S et al (2013) A respiratory syncytial virus (RSV) anti-G protein F(ab’)2 monoclonal antibody suppresses mucous production and breathing effort in RSV rA2-line19F-infected BALB/c mice. J Virol 87(20):10955–10967PubMedPubMedCentralGoogle Scholar
  18. Boyoglu-Barnum S et al (2015) An anti-G protein monoclonal antibody treats RSV disease more effectively than an anti-F monoclonal antibody in BALB/c mice. Virology 483:117–125PubMedPubMedCentralGoogle Scholar
  19. Broadbent L et al (2015) Respiratory syncytial virus, an ongoing medical dilemma: an expert commentary on respiratory syncytial virus prophylactic and therapeutic pharmaceuticals currently in clinical trials. Influenza Other Respir Viruses 9(4):169–178PubMedPubMedCentralGoogle Scholar
  20. Bacharier LB et al. (2012) Determinants of asthma after severe respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol 130(1): 91–100 (e3)PubMedGoogle Scholar
  21. Bramley AM et al (1999) Effects of respiratory syncytial virus persistence on airway responsiveness and inflammation in guinea-pigs. Eur Respir J 14(5):1061–1067PubMedGoogle Scholar
  22. Benakanakere MR et al (2009) Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes. J Biol Chem 284(34):23107–23115PubMedPubMedCentralGoogle Scholar
  23. Benito-Martin A et al (2013) Osteoprotegerin in exosome-like vesicles from human cultured tubular cells and urine. PLoS One 8(8):e72387PubMedPubMedCentralGoogle Scholar
  24. Benveniste EN, Herman PK, Whitaker JN (1987) Myelin basic protein-specific RNA levels in interleukin-2-stimulated oligodendrocytes. J Neurochem 49(4):1274–1279PubMedGoogle Scholar
  25. Bi S et al (2015) Correlation between serum exosome derived miR-208a and acute coronary syndrome. Int J Clin Exp Med 8(3):4275–4280PubMedPubMedCentralGoogle Scholar
  26. Bronevetsky Y et al (2013) T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. J Exp Med 210(2):417–432PubMedPubMedCentralGoogle Scholar
  27. Cai H et al (2015) Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo. J Virol 89(12):6391–6405PubMedPubMedCentralGoogle Scholar
  28. Caidi H et al (2012) Combination therapy using monoclonal antibodies against respiratory syncytial virus (RSV) G glycoprotein protects from RSV disease in BALB/c mice. PLoS One 7(12):e51485PubMedPubMedCentralGoogle Scholar
  29. Campo-Paysaa F et al (2011) microRNA complements in deuterostomes: origin and evolution of microRNAs. Evol Dev 13(1):15–27PubMedGoogle Scholar
  30. Castellano L, Stebbing J (2013) Deep sequencing of small RNAs identifies canonical and non-canonical miRNA and endogenous siRNAs in mammalian somatic tissues. Nucleic Acids Res 41(5):3339–3351PubMedPubMedCentralGoogle Scholar
  31. Ceppi M et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA 106(8):2735–2740PubMedGoogle Scholar
  32. Chak LL et al (2015) A deeply conserved, noncanonical miRNA hosted by ribosomal DNA. RNA 21(3):375–384PubMedPubMedCentralGoogle Scholar
  33. Chan PP, Lowe TM (2016) GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res 44(D1):D184–D189PubMedGoogle Scholar
  34. Chen SY et al (2008) The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One 3(6):e2360PubMedPubMedCentralGoogle Scholar
  35. Chen Q et al (2012) Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3. PLoS One 7(8):e42971PubMedPubMedCentralGoogle Scholar
  36. Chen CY, Hogan MC, Ward CJ (2013a) Purification of exosome-like vesicles from urine. Methods Enzymol 524:225–241PubMedPubMedCentralGoogle Scholar
  37. Chen Y et al (2013b) HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog 9(4):e1003248PubMedPubMedCentralGoogle Scholar
  38. Chernyakov I et al (2008) Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5′–3′ exonucleases Rat1 and Xrn1. Genes Dev 22(10):1369–1380PubMedPubMedCentralGoogle Scholar
  39. Chirkova T et al (2013) Respiratory syncytial virus G protein CX3C motif impairs human airway epithelial and immune cell responses. J Virol 87(24):13466–13479PubMedPubMedCentralGoogle Scholar
  40. Chirkova T et al (2015) CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells. J Gen Virol 96(9):2543–2556PubMedPubMedCentralGoogle Scholar
  41. Choi EH, Lee HJ, Chanock SJ (2013) Human genetics and respiratory syncytial virus disease: current findings and future approaches. Curr Top Microbiol Immunol 372:121–137PubMedGoogle Scholar
  42. Cobb BS et al (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201(9):1367–1373PubMedPubMedCentralGoogle Scholar
  43. Cole C et al (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15(12):2147–2160PubMedPubMedCentralGoogle Scholar
  44. Collins PL, Mottet G (1993) Membrane orientation and oligomerization of the small hydrophobic protein of human respiratory syncytial virus. J Gen Virol 74(Pt 7):1445–1450PubMedGoogle Scholar
  45. Coll RC, O’Neill LA (2010) New insights into the regulation of signalling by toll-like receptors and nod-like receptors. J Innate Immun 2(5):406–421PubMedGoogle Scholar
  46. Conde-Vancells J et al (2010) Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples. Proteomics Clin Appl 4(4):416–425PubMedPubMedCentralGoogle Scholar
  47. Connors M et al (1991) Respiratory syncytial virus (RSV) F, G, M2 (22 K), and N proteins each induce resistance to RSV challenge, but resistance induced by M2 and N proteins is relatively short-lived. J Virol 65(3):1634–1637PubMedPubMedCentralGoogle Scholar
  48. Cooper DA et al (2015) RNase L targets distinct sites in influenza A virus RNAs. J Virol 89(5):2764–2776PubMedGoogle Scholar
  49. Cremer TJ et al (2009) MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS One 4:8508Google Scholar
  50. Crowe JE Jr et al (1996) Acquisition of the ts phenotype by a chemically mutagenized cold-passaged human respiratory syncytial virus vaccine candidate results from the acquisition of a single mutation in the polymerase (L) gene. Virus Genes 13(3):269–273PubMedGoogle Scholar
  51. Curtale G, Citarella F (2013) Dynamic nature of noncoding RNA regulation of adaptive immune response. Int J Mol Sci 14(9):17347–17377PubMedPubMedCentralGoogle Scholar
  52. Curtale G et al (2013) Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci USA 110(28):11499–11504PubMedGoogle Scholar
  53. Czech A et al (2013) Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet 9(8):e1003767PubMedPubMedCentralGoogle Scholar
  54. Consortium RN (2015) RNAcentral: an international database of ncRNA sequences. Nucleic Acids Res 43(Database issue): D123–9Google Scholar
  55. Dakhama A, Vitalis TZ, Hegele RG (1997) Persistence of respiratory syncytial virus (RSV) infection and development of RSV-specific IgG1 response in a guinea-pig model of acute bronchiolitis. Eur Respir J 10(1):20–26PubMedGoogle Scholar
  56. de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12(12):833–845PubMedGoogle Scholar
  57. Deng J et al (2015) Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism. Mol Ther 23(10):1622–1629PubMedPubMedCentralGoogle Scholar
  58. Dittmar KA, Goodenbour JM, Pan T (2006) Tissue-specific differences in human transfer RNA expression. PLoS Genet 2(12):e221PubMedPubMedCentralGoogle Scholar
  59. Eis PS et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632PubMedGoogle Scholar
  60. Ender C et al (2008) A human snoRNA with microRNA-like functions. Mol Cell 32(4):519–528PubMedGoogle Scholar
  61. Estripeaut D et al (2008) Respiratory syncytial virus persistence in the lungs correlates with airway hyperreactivity in the mouse model. J Infect Dis 198(10):1435–1443PubMedPubMedCentralGoogle Scholar
  62. El Gazzar M, McCall CE (2010) MicroRNAs distinguish translational from transcriptional silencing during endotoxin tolerance. J Biol Chem 285(27):20940–20951PubMedPubMedCentralGoogle Scholar
  63. Feldman SA, Hendry RM, Beeler JA (1999) Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G. J Virol 73(8):6610–6617PubMedPubMedCentralGoogle Scholar
  64. Feldman SA, Audet S, Beeler JA (2000) The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J Virol 74(14):6442–6447PubMedPubMedCentralGoogle Scholar
  65. Feldman AS et al (2015) Toward primary prevention of asthma. Reviewing the evidence for early-life respiratory viral infections as modifiable risk factors to prevent childhood asthma. Am J Respir Crit Care Med 191(1):34–44PubMedPubMedCentralGoogle Scholar
  66. Fix J et al (2011) The insertion of fluorescent proteins in a variable region of respiratory syncytial virus L polymerase results in fluorescent and functional enzymes but with reduced activities. Open Virol J 5:103–108PubMedPubMedCentralGoogle Scholar
  67. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114PubMedGoogle Scholar
  68. Fuentes S et al (2007) Function of the respiratory syncytial virus small hydrophobic protein. J Virol 81(15):8361–8366PubMedPubMedCentralGoogle Scholar
  69. Gaona J et al (2014) Respiratory syncytial virus persistence in macrophages upregulates Fcgamma receptors expression. Viruses 6(2):624–639PubMedPubMedCentralGoogle Scholar
  70. Garg M, Potter JA, Abrahams VM (2013) Identification of microRNAs that regulate TLR2-mediated trophoblast apoptosis and inhibition of IL-6 mRNA. PLoS One 8(10):e77249PubMedPubMedCentralGoogle Scholar
  71. Gebetsberger J, Polacek N (2013) Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 10(12):1798–1806PubMedPubMedCentralGoogle Scholar
  72. Gorman JJ et al (1997) Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci 6(6):1308–1315PubMedPubMedCentralGoogle Scholar
  73. Guo H et al (2013) The regulation of Toll-like receptor 2 by miR-143 suppresses the invasion and migration of a subset of human colorectal carcinoma cells. Mol Cancer 12:77PubMedPubMedCentralGoogle Scholar
  74. Gan SW et al (2012) The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. J Biol Chem 287(29):24671–24689PubMedPubMedCentralGoogle Scholar
  75. Ghildyal R, Ho A, Jans DA (2006) Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol Rev 30(5):692–705PubMedGoogle Scholar
  76. Grimson A et al (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455(7217):1193–1197PubMedGoogle Scholar
  77. Grosfeld H, Hill MG, Collins PL (1995) RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J Virol 69(9):5677–5686PubMedPubMedCentralGoogle Scholar
  78. Hall CB (2012) The burgeoning burden of respiratory syncytial virus among children. Infect Disord Drug Targets 12(2):92–97PubMedGoogle Scholar
  79. Hallak LK, Kwilas SA, Peeples ME (2007) Interaction between respiratory syncytial virus and glycosaminoglycans, including heparan sulfate. Methods Mol Biol 379:15–34PubMedGoogle Scholar
  80. Hamada N et al (2012) MicroRNA expression profiling of NGF-treated PC12 cells revealed a critical role for miR-221 in neuronal differentiation. Neurochem Int 60(8):743–750PubMedGoogle Scholar
  81. Hamilton AJ (2010) MicroRNA in erythrocytes. Biochem Soc Trans 38(Pt 1):229–231PubMedGoogle Scholar
  82. Harcourt JL, Karron RA, Tripp RA (2004) Anti-G protein antibody responses to respiratory syncytial virus infection or vaccination are associated with inhibition of G protein CX3C-CX3CR1 binding and leukocyte chemotaxis. J Infect Dis 190(11):1936–1940PubMedGoogle Scholar
  83. Harcourt J et al (2006) Respiratory syncytial virus G protein and G protein CX3C motif adversely affect CX3CR1 + T cell responses. J Immunol 176(3):1600–1608PubMedGoogle Scholar
  84. Haussecker D et al (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16(4):673–695PubMedPubMedCentralGoogle Scholar
  85. Haynes LM et al (2003) Enhanced disease and pulmonary eosinophilia associated with formalin-inactivated respiratory syncytial virus vaccination are linked to G glycoprotein CX3C-CX3CR1 interaction and expression of substance P. J Virol 77(18):9831–9844PubMedPubMedCentralGoogle Scholar
  86. Haynes LM et al (2009) Therapeutic monoclonal antibody treatment targeting respiratory syncytial virus (RSV) G protein mediates viral clearance and reduces the pathogenesis of RSV infection in BALB/c mice. J Infect Dis 200(3):439–447PubMedGoogle Scholar
  87. Hegele RG et al (1994) Persistence of respiratory syncytial virus genome and protein after acute bronchiolitis in guinea pigs. Chest 105(6):1848–1854PubMedGoogle Scholar
  88. Heminway BR et al (1994) Analysis of respiratory syncytial virus F, G, and SH proteins in cell fusion. Virology 200(2):801–805PubMedGoogle Scholar
  89. Henao-Mejia J et al (2013) The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity 38(5):984–997PubMedPubMedCentralGoogle Scholar
  90. Holt PG (2015) The mechanism or mechanisms driving atopic asthma initiation: the infant respiratory microbiome moves to center stage. J Allergy Clin Immunol 136(1):15–22PubMedGoogle Scholar
  91. Ho DH et al (2014) Increased DJ-1 in urine exosome of Korean males with Parkinson’s disease. Biomed Res Int 2014:704678PubMedPubMedCentralGoogle Scholar
  92. Hopper AK (2013) Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 194(1):43–67PubMedPubMedCentralGoogle Scholar
  93. Hornick NI et al (2015) Serum exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci Rep 5:11295PubMedPubMedCentralGoogle Scholar
  94. Horwood NJ et al (2003) Bruton’s tyrosine kinase is required for lipopolysaccharide-induced tumor necrosis factor alpha production. J Exp Med 197(12):1603–1611PubMedPubMedCentralGoogle Scholar
  95. Hou J et al (2009) MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183(3):2150–2158PubMedGoogle Scholar
  96. Hu G et al (2010) MicroRNA-98 and let-7 regulate expression of suppressor of cytokine signaling 4 in biliary epithelial cells in response to Cryptosporidium parvum infection. J Infect Dis 202(1):125–135PubMedPubMedCentralGoogle Scholar
  97. Huang H et al (2015) Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast. EMBO J 34(2):154–168PubMedGoogle Scholar
  98. Iben JR, Maraia RJ (2014) tRNA gene copy number variation in humans. Gene 536(2):376–384PubMedGoogle Scholar
  99. Inchley CS et al (2015) Nasal mucosal microRNA expression in children with respiratory syncytial virus infection. BMC Infect Dis 15:150PubMedPubMedCentralGoogle Scholar
  100. Jennewein C et al (2010) MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem 285(16):11846–11853PubMedPubMedCentralGoogle Scholar
  101. Jing Q et al (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120(5):623–634PubMedGoogle Scholar
  102. Johnnidis JB et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182):1125–1129PubMedGoogle Scholar
  103. Johnson CH et al (2012) Effect of chemokine receptor CX3CR1 deficiency in a murine model of respiratory syncytial virus infection. Comp Med 62(1):14–20PubMedPubMedCentralGoogle Scholar
  104. Johnson SM et al (2015) Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures. PLoS Pathog 11(12):e1005318PubMedPubMedCentralGoogle Scholar
  105. Konig B et al (1996) IL-8 release from human neutrophils by the respiratory syncytial virus is independent of viral replication. J Leukoc Biol 60(2):253–260PubMedGoogle Scholar
  106. Kadaba S et al (2004) Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18(11):1227–1240PubMedPubMedCentralGoogle Scholar
  107. Kannan M, Atreya C (2010) Differential profiling of human red blood cells during storage for 52 selected microRNAs. Transfusion 50(7):1581–1588PubMedGoogle Scholar
  108. Karron RA et al (1997) Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proc Natl Acad Sci USA 94(25):13961–13966PubMedGoogle Scholar
  109. Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16(2):98–112PubMedGoogle Scholar
  110. Kirigin FF et al (2012) Dynamic microRNA gene transcription and processing during T cell development. J Immunol 188(7):3257–3267PubMedPubMedCentralGoogle Scholar
  111. Kochva U, Leonov H, Arkin IT (2003) Modeling the structure of the respiratory syncytial virus small hydrophobic protein by silent-mutation analysis of global searching molecular dynamics. Protein Sci 12(12):2668–2674PubMedPubMedCentralGoogle Scholar
  112. Kohlhaas S et al (2009) Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 182(5):2578–2582PubMedGoogle Scholar
  113. Kosanovic M, Jankovic M (2014) Isolation of urinary extracellular vesicles from Tamm- Horsfall protein-depleted urine and their application in the development of a lectin-exosome-binding assay. Biotechniques 57(3):143–149PubMedGoogle Scholar
  114. Kulkarni S et al. (2016) Identifying urinary and serum exosome biomarkers for radiation exposure using a data dependent acquisition and SWATH-MS combined workflow. Int J Radiat Oncol Biol Phys 96(3):566–77. doi: 10.1016/j.ijrobp.2016.06.008Google Scholar
  115. LaCava J et al (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121(5):713–724PubMedGoogle Scholar
  116. Lagos D et al (2010) miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat Cell Biol 12(5):513–519PubMedGoogle Scholar
  117. Laganas VA et al (2015) Characterization of novel respiratory syncytial virus inhibitors identified by high throughput screen. Antiviral Res 115:71–74PubMedGoogle Scholar
  118. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedGoogle Scholar
  119. Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060PubMedPubMedCentralGoogle Scholar
  120. Lee YS et al (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23(22):2639–2649PubMedPubMedCentralGoogle Scholar
  121. Li Y, Shi X (2013) MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 10(1):65–71PubMedGoogle Scholar
  122. Li Y et al (2012) MicroRNA-466 l inhibits antiviral innate immune response by targeting interferon-alpha. Cell Mol Immunol 9(6):497–502PubMedPubMedCentralGoogle Scholar
  123. Li S et al (2013) MicroRNA-146a represses mycobacteria-induced inflammatory response and facilitates bacterial replication via targeting IRAK-1 and TRAF-6. PLoS One 8(12):e81438PubMedPubMedCentralGoogle Scholar
  124. Lin L et al (2013) Type I IFN inhibits innate IL-10 production in macrophages through histone deacetylase 11 by downregulating microRNA-145. J Immunol 191(7):3896–3904PubMedGoogle Scholar
  125. Liu G et al (2009) miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA 106(37):15819–15824PubMedGoogle Scholar
  126. Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182(8):4994–5002PubMedPubMedCentralGoogle Scholar
  127. Li XQ et al (2006) Respiratory syncytial virus (RSV) infects neuronal cells and processes that innervate the lung by a process involving RSV G protein. J Virol 80(1):537–540PubMedPubMedCentralGoogle Scholar
  128. Li Y et al (2014) Inhibition of the human respiratory syncytial virus small hydrophobic protein and structural variations in a bicelle environment. J Virol 88(20):11899–11914PubMedPubMedCentralGoogle Scholar
  129. Liuzzi M et al (2005) Inhibitors of respiratory syncytial virus replication target cotranscriptional mRNA guanylylation by viral RNA-dependent RNA polymerase. J Virol 79(20):13105–13115PubMedPubMedCentralGoogle Scholar
  130. Luongo C et al (2009) Codon stabilization analysis of the “248” temperature sensitive mutation for increased phenotypic stability of respiratory syncytial virus vaccine candidates. Vaccine 27(41):5667–5676PubMedPubMedCentralGoogle Scholar
  131. Ma X et al (2011a) MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 3(3):159–166PubMedPubMedCentralGoogle Scholar
  132. Ma F et al (2011b) The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 12(9):861–869PubMedGoogle Scholar
  133. Madhavan B et al (2015) Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer 136(11):2616–2627PubMedGoogle Scholar
  134. Maraia RJ, Lamichhane TN (2011) 3′ processing of eukaryotic precursor tRNAs. Wiley Interdiscip Rev RNA 2(3):362–375PubMedPubMedCentralGoogle Scholar
  135. Martinez NJ, Walhout AJ (2009) The interplay between transcription factors and microRNAs in genome-scale regulatory networks. BioEssays 31(4):435–445PubMedPubMedCentralGoogle Scholar
  136. Martinez I et al (2007) Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells. J Gen Virol 88(Pt 2):570–581PubMedGoogle Scholar
  137. Maute RL et al (2013) tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA 110(4):1404–1409PubMedGoogle Scholar
  138. McKiernan J et al (2016) A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2(7):882–889PubMedGoogle Scholar
  139. Moschos SA et al (2007) Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genom 8:240Google Scholar
  140. Mastrangelo P, Hegele RG (2013) RSV fusion: time for a new model. Viruses 5(3):873–885PubMedPubMedCentralGoogle Scholar
  141. McCurdy LH, Graham BS (2003) Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation. J Virol 77(3):1747–1756PubMedPubMedCentralGoogle Scholar
  142. McDonald TP et al (2004) Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis. Virology 330(1):147–157PubMedGoogle Scholar
  143. Miranda KC et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217PubMedGoogle Scholar
  144. Mitra R et al (2012) The human respiratory syncytial virus matrix protein is required for maturation of viral filaments. J Virol 86(8):4432–4443PubMedPubMedCentralGoogle Scholar
  145. Moore EC, Barber J, Tripp RA (2008) Respiratory syncytial virus (RSV) attachment and nonstructural proteins modify the type I interferon response associated with suppressor of cytokine signaling (SOCS) proteins and IFN-stimulated gene-15 (ISG15). Virol J 5:116PubMedPubMedCentralGoogle Scholar
  146. Mejias A et al (2008) Respiratory syncytial virus persistence: evidence in the mouse model. Pediatr Infect Dis J 27(10 Suppl):S60–S62PubMedGoogle Scholar
  147. Mlinaric-Galinovic G et al (2009) Does the viral subtype influence the biennial cycle of respiratory syncytial virus? Virol J 6(1):1–7Google Scholar
  148. Moore ML, Stokes KL, Hartert TV (2013) The impact of viral genotype on pathogenesis and disease severity: respiratory syncytial virus and human rhinoviruses. Curr Opin Immunol 25(6):761–768PubMedPubMedCentralGoogle Scholar
  149. Muljo SA et al (2005) Aberrant T cell differentiation in the absence of Dicer. J Exp Med 202(2):261–269PubMedPubMedCentralGoogle Scholar
  150. Nair H et al (2010) Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375(9725):1545–1555PubMedPubMedCentralGoogle Scholar
  151. Nahid MA et al (2011a) Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE-/- mice during experimental periodontal disease. Infect Immun 79(4):1597–1605PubMedPubMedCentralGoogle Scholar
  152. Nahid MA, Satoh M, Chan EK (2011b) MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8(5):388–403PubMedPubMedCentralGoogle Scholar
  153. O’Hara SP et al (2010) NFkappaB p50-CCAAT/enhancer-binding protein beta (C/EBPbeta)-mediated transcriptional repression of microRNA let-7i following microbial infection. J Biol Chem 285(1):216–225PubMedGoogle Scholar
  154. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–564PubMedGoogle Scholar
  155. O’Connell RM et al (2010) MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA 107(32):14235–14240PubMedGoogle Scholar
  156. Olivieri F et al (2013) Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing 10(1):11PubMedPubMedCentralGoogle Scholar
  157. O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11(3):163–175PubMedGoogle Scholar
  158. Ooi AG et al (2010) MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci USA 107(50):21505–21510PubMedGoogle Scholar
  159. Oshansky CM et al (2010) Respiratory syncytial virus F and G proteins induce interleukin 1alpha, CC, and CXC chemokine responses by normal human bronchoepithelial cells. J Infect Dis 201(8):1201–1207PubMedPubMedCentralGoogle Scholar
  160. Ostler T et al (2001) Long-term persistence and reactivation of T cell memory in the lung of mice infected with respiratory syncytial virus. Eur J Immunol 31(9):2574–2582PubMedGoogle Scholar
  161. Othumpangat S, Walton C, Piedimonte G (2012) MicroRNA-221 modulates RSV replication in human bronchial epithelium by targeting NGF expression. PLoS One 7(1):e30030PubMedPubMedCentralGoogle Scholar
  162. Philippe L et al (2012) TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J Immunol 188(1):454–461PubMedGoogle Scholar
  163. Pederson T (2010) Regulatory RNAs derived from transfer RNA? RNA 16(10):1865–1869PubMedPubMedCentralGoogle Scholar
  164. Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176(2):1323–1337PubMedPubMedCentralGoogle Scholar
  165. Ponting CP, Belgard TG (2010) Transcribed dark matter: meaning or myth? Hum Mol Genet 19(R2):R162–R168PubMedPubMedCentralGoogle Scholar
  166. Piedimonte G (2013) Respiratory syncytial virus and asthma: speed-dating or long-term relationship? Curr Opin Pediatr 25(3):344–349PubMedPubMedCentralGoogle Scholar
  167. Piedimonte G, Perez MK (2014) Alternative mechanisms for respiratory syncytial virus (RSV) infection and persistence: could RSV be transmitted through the placenta and persist into developing fetal lungs? Curr Opin Pharmacol 16:82–88PubMedGoogle Scholar
  168. Qi J et al (2012) microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kappaB1 in murine macrophages. FEBS Lett 586(8):1201–1207PubMedGoogle Scholar
  169. Quinn EM et al (2013) MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One 8(4):e62232PubMedPubMedCentralGoogle Scholar
  170. Quinn SR et al (2014) The role of Ets2 transcription factor in the induction of microRNA-155 (miR-155) by lipopolysaccharide and its targeting by interleukin-10. J Biol Chem 289(7):4316–4325PubMedGoogle Scholar
  171. Rani S (2014) MicroRNA profiling of exosomes isolated from biofluids and conditioned media. Methods Mol Biol 1182:131–144PubMedGoogle Scholar
  172. Rixon HW et al (2004) The small hydrophobic (SH) protein accumulates within lipid-raft structures of the Golgi complex during respiratory syncytial virus infection. J Gen Virol 85(Pt 5):1153–1165PubMedGoogle Scholar
  173. Rixon HW et al (2005) The respiratory syncytial virus small hydrophobic protein is phosphorylated via a mitogen-activated protein kinase p38-dependent tyrosine kinase activity during virus infection. J Gen Virol 86(Pt 2):375–384PubMedGoogle Scholar
  174. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86PubMedPubMedCentralGoogle Scholar
  175. Russell RF et al (2015) Partial attenuation of respiratory syncytial virus with a deletion of a small hydrophobic gene is associated with elevated Interleukin-1beta responses. J Virol 89(17):8974–8981PubMedPubMedCentralGoogle Scholar
  176. Rodriguez A et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316(5824):608–611PubMedPubMedCentralGoogle Scholar
  177. Rossato M et al (2012) IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci USA 109(45):E3101–E3110PubMedGoogle Scholar
  178. Rossi RL et al (2011) Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4 + T cells by the microRNA miR-125b. Nat Immunol 12(8):796–803PubMedGoogle Scholar
  179. Ramet M, Korppi M, Hallman M (2011) Pattern recognition receptors and genetic risk for rsv infection: value for clinical decision-making? Pediatr Pulmonol 46(2):101–110PubMedGoogle Scholar
  180. Rivera-Toledo E, Torres-Gonzalez L, Gomez B (2015) Respiratory syncytial virus persistence in murine macrophages impairs IFN-beta response but not synthesis. Viruses 7(10):5361–5374PubMedPubMedCentralGoogle Scholar
  181. Saikia M et al (2012) Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 287(51):42708–42725PubMedPubMedCentralGoogle Scholar
  182. Sharma A et al (2009) Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc Natl Acad Sci USA 106(14):5761–5766PubMedGoogle Scholar
  183. Skowronek E et al (2014) tRNA 3′ processing in yeast involves tRNase Z, Rex1, and Rrp6. RNA 20(1):115–130PubMedPubMedCentralGoogle Scholar
  184. Sobala A, Hutvagner G (2013) Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells. RNA Biol 10(4):553–563PubMedPubMedCentralGoogle Scholar
  185. Starczynowski DT et al (2010) Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 16(1):49–58PubMedGoogle Scholar
  186. Sun Y et al (2011) Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood 117(23):6172–6183PubMedPubMedCentralGoogle Scholar
  187. Surdziel E et al (2011) Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood 117(16):4338–4348PubMedGoogle Scholar
  188. Sangokoya C, LaMonte G, Chi JT (2010) Isolation and characterization of microRNAs of human mature erythrocytes. Methods Mol Biol 667:193–203PubMedPubMedCentralGoogle Scholar
  189. Shields B et al (2003) Multiple heparin binding domains of respiratory syncytial virus G mediate binding to mammalian cells. Arch Virol 148(10):1987–2003PubMedGoogle Scholar
  190. Sigurs N et al (1995) Asthma and immunoglobulin E antibodies after respiratory syncytial virus bronchiolitis: a prospective cohort study with matched controls. Pediatrics 95(4):500–505PubMedGoogle Scholar
  191. Sigurs N et al (2000) Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am J Respir Crit Care Med 161(5):1501–1507PubMedGoogle Scholar
  192. Sigurs N et al (2010) Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life. Thorax 65(12):1045–1052PubMedGoogle Scholar
  193. Sourimant J et al (2015) Fine mapping and characterization of the L-polymerase-binding domain of the respiratory syncytial virus phosphoprotein. J Virol 89(8):4421–4433PubMedPubMedCentralGoogle Scholar
  194. Stec DS, Hill MG 3rd, Collins PL (1991) Sequence analysis of the polymerase L gene of human respiratory syncytial virus and predicted phylogeny of nonsegmented negative-strand viruses. Virology 183(1):273–287PubMedGoogle Scholar
  195. Schwarze J et al (2004) Latency and persistence of respiratory syncytial virus despite T cell immunity. Am J Respir Crit Care Med 169(7):801–805PubMedGoogle Scholar
  196. Sikkel MB et al (2008) Respiratory syncytial virus persistence in chronic obstructive pulmonary disease. Pediatr Infect Dis J 27(10 Suppl):S63–S70PubMedGoogle Scholar
  197. Taganov KD et al (2006a) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486PubMedGoogle Scholar
  198. Taganov KD et al (2006b) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103(33):12481–12486PubMedGoogle Scholar
  199. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16(1):3–9PubMedGoogle Scholar
  200. Tang B et al (2010) Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett 584(8):1481–1486PubMedGoogle Scholar
  201. Terasawa K et al (2009) Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS J 276(12):3269–3276PubMedGoogle Scholar
  202. Thompson DM, Parker R (2009) Stressing out over tRNA cleavage. Cell 138(2):215–219PubMedGoogle Scholar
  203. Tili E et al (2007a) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089PubMedGoogle Scholar
  204. Tili E et al (2007b) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179(8):5082–5089PubMedGoogle Scholar
  205. Tserel L et al (2011) MicroRNA expression profiles of human blood monocyte-derived dendritic cells and macrophages reveal miR-511 as putative positive regulator of Toll-like receptor 4. J Biol Chem 286(30):26487–26495PubMedPubMedCentralGoogle Scholar
  206. Tang RS et al (2002) Clustered charge-to-alanine mutagenesis of human respiratory syncytial virus L polymerase generates temperature-sensitive viruses. Virology 302(1):207–216PubMedGoogle Scholar
  207. Taylor G et al (2014) Recombinant bovine respiratory syncytial virus with deletion of the SH gene induces increased apoptosis and pro-inflammatory cytokines in vitro, and is attenuated and induces protective immunity in calves. J Gen Virol 95(Pt 6):1244–1254PubMedPubMedCentralGoogle Scholar
  208. Techaarpornkul S, Barretto N, Peeples ME (2001) Functional analysis of recombinant respiratory syncytial virus deletion mutants lacking the small hydrophobic and/or attachment glycoprotein gene. J Virol 75(15):6825–6834PubMedPubMedCentralGoogle Scholar
  209. Thornburg NJ, Hayward SL, Crowe JE Jr (2012) Respiratory syncytial virus regulates human microRNAs by using mechanisms involving beta interferon and NF-kB. MBio 3(6) pii: e00220-12. doi:  10.1128/mBio.00220-12
  210. Triantafilou K et al (2013) Human respiratory syncytial virus viroporin SH: a viral recognition pathway used by the host to signal inflammasome activation. Thorax 68(1):66–75PubMedGoogle Scholar
  211. Tripp RA et al (2001) CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat Immunol 2(8):732–738PubMedGoogle Scholar
  212. Tripp RA et al (2003) The G glycoprotein of respiratory syncytial virus depresses respiratory rates through the CX3C motif and substance P. J Virol 77(11):6580–6584PubMedPubMedCentralGoogle Scholar
  213. Thorburn K et al (2006) High incidence of pulmonary bacterial co-infection in children with severe respiratory syncytial virus (RSV) bronchiolitis. Thorax 61(7):611–615PubMedPubMedCentralGoogle Scholar
  214. Valdovinos MR, Gomez B (2003) Establishment of respiratory syncytial virus persistence in cell lines: association with defective interfering particles. Intervirology 46(3):190–198PubMedGoogle Scholar
  215. Vlachos IS et al (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466PubMedPubMedCentralGoogle Scholar
  216. Wang X et al (2008) Degradation of hypomodified tRNA(iMet) in vivo involves RNA-dependent ATPase activity of the DExH helicase Mtr4p. RNA 14(1):107–116PubMedPubMedCentralGoogle Scholar
  217. Wang P et al (2010) Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 185(10):6226–6233PubMedGoogle Scholar
  218. Wang Q et al (2013) Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther 21(2):368–379PubMedGoogle Scholar
  219. Watanabe K et al (2013) Degradation of initiator tRNAMet by Xrn1/2 via its accumulation in the nucleus of heat-treated HeLa cells. Nucleic Acids Res 41(8):4671–4685PubMedPubMedCentralGoogle Scholar
  220. Wei J et al (2013) MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264.7 cells. Mol Immunol 55(3–4):303–309PubMedGoogle Scholar
  221. Wendlandt EB et al (2012) The role of microRNAs miR-200b and miR-200c in TLR4 signaling and NF-kappaB activation. Innate Immun 18(6):846–855PubMedPubMedCentralGoogle Scholar
  222. Whitney ML et al (2007) Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability. Mol Biol Cell 18(7):2678–2686PubMedPubMedCentralGoogle Scholar
  223. Witwer KW et al (2010) MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J Immunol 184(5):2369–2376PubMedPubMedCentralGoogle Scholar
  224. Wolfe CL, Hopper AK, Martin NC (1996) Mechanisms leading to and the consequences of altering the normal distribution of ATP(CTP):tRNA nucleotidyltransferase in yeast. J Biol Chem 271(9):4679–4686PubMedGoogle Scholar
  225. Worm J et al (2009) Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res 37(17):5784–5792PubMedPubMedCentralGoogle Scholar
  226. Xu Z et al (2011) miR-365, a novel negative regulator of interleukin-6 gene expression, is cooperatively regulated by Sp1 and NF-kappaB. J Biol Chem 286(24):21401–21412PubMedPubMedCentralGoogle Scholar
  227. Xu G et al (2014) MicroRNA-149 negatively regulates TLR-triggered inflammatory response in macrophages by targeting MyD88. J Cell Biochem 115(5):919–927PubMedGoogle Scholar
  228. Yamasaki S et al (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185(1):35–42PubMedPubMedCentralGoogle Scholar
  229. Yoshikawa M, Fujii YR (2016) Human ribosomal RNA-derived resident microRNAs as the transmitter of information upon the cytoplasmic cancer stress. Biomed Res Int 2016:7562085PubMedPubMedCentralGoogle Scholar
  230. Zeng R et al (2011) The role of cytokines and chemokines in severe respiratory syncytial virus infection and subsequent asthma. Cytokine 53(1):1–7PubMedGoogle Scholar
  231. Zheng J et al (2015) A respiratory syncytial virus persistent-infected cell line system reveals the involvement of SOCS1 in the innate antiviral response. Virol Sin 30(3):190–199PubMedGoogle Scholar
  232. Zhang W et al (2010a) Vaccination to induce antibodies blocking the CX3C-CX3CR1 interaction of respiratory syncytial virus G protein reduces pulmonary inflammation and virus replication in mice. J Virol 84(2):1148–1157PubMedGoogle Scholar
  233. Zhang C et al (2010b) PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol 37(6):1621–1626PubMedGoogle Scholar
  234. Zhang M et al (2011) Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J Immunol 186(8):4716–4724PubMedGoogle Scholar
  235. Zhou R, O‘Hara SP, Chen XM (2011) MicroRNA regulation of innate immune responses in epithelial cells. Cell Mol Immunol 8(5):371–379PubMedPubMedCentralGoogle Scholar
  236. Zardo G et al (2012) Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 119(17):4034–4046PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Infectious DiseasesUniversity of GeorgiaAthensUSA

Personalised recommendations