Roles of Non-coding RNAs During Herpesvirus Infection

  • Meaghan H. Hancock
  • Rebecca L. SkalskyEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 419)


Non-coding RNAs (ncRNAs) play essential roles in multiple aspects of the life cycles of herpesviruses and contribute to lifelong persistence of herpesviruses within their respective hosts. In this chapter, we discuss the types of ncRNAs produced by the different herpesvirus families during infection, some of the cellular ncRNAs manipulated by these viruses, and the overall contributions of ncRNAs to the viral life cycle, influence on the host environment, and pathogenesis.



Kaposi’s sarcoma associated herpesvirus


Herpesvirus saimiri


Human Cytomegalovirus


Rhesus Cytomegalovirus


Mouse Cytomegalovirus


Rat Cytomegalovirus


Epstein Barr virus




Herpes simplex virus




Small nucleolar RNA


Stable intronic sequence RNA


Non-coding RNA


EBV-encoded RNAs


BamHI A rightward transcripts


BamHI right forward 1


Polyadenylated nuclear RNA


Latency-associated transcript


HVS Sm class U RNAs


Untranslated region


Latent membrane protein


Replication and transcription activator protein


EBV nuclear antigen


Ribonucleic acid


RNA-induced silencing complex


Photoactivatable ribonucleoside enhanced cross-linking and immunoprecipitation


High throughput sequencing of RNA isolated by cross-linking and immunoprecipitation


Chromatin isolation by RNA purification


Capture hybridization analysis of RNA targets


Transcription factor



We thank the past and present members of Jay Nelson’s laboratory at VGTI for discussions, and apologize to the many scientists whose work we could not mention due to space limitations. This work was supported by a Pathway to Independence Award CA175181 from the National Cancer Institute to R.L.S. Support for M.H. comes from NIH grant AI21640.


  1. Abend JR, Ramalingam D, Kieffer-Kwon P, Uldrick TS, Yarchoan R, Ziegelbauer JM (2012) KSHV microRNAs target two components of the TLR/IL-1R signaling cascade, IRAK1 and MYD88, to reduce inflammatory cytokine expression. J Virol. doi: 10.1128/JVI.01147-12CrossRefPubMedPubMedCentralGoogle Scholar
  2. Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Martin L, Moosmann A, Hammerschmidt W (2016) Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8 + T cells. Proc Natl Acad Sci U S A 113(42):E6467–E6475. doi: 10.1073/pnas.1605884113CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi: 10.1038/nature02871CrossRefPubMedGoogle Scholar
  4. Amelio AL, Giordani NV, Kubat NJ, O’Neil JE, Bloom DC (2006) Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant. J Virol 80(4):2063–2068. doi: 10.1128/JVI.01528-10CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amoroso R, Fitzsimmons L, Thomas WA, Kelly GL, Rowe M, Bell AI (2011) Quantitative studies of Epstein-Barr virus-encoded microRNAs provide novel insights into their regulation. J Virol 85(2):996–1010. doi: 10.1128/JVI.01528-10CrossRefPubMedGoogle Scholar
  6. Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, Holdorf M, Weissman JS, Ganem D (2014) KSHV 2.0: a comprehensive annotation of the Kaposi’s sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog 10(1):e1003847. doi: 10.1371/journal.ppat.1003847CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M, Leslie C, Lieberman PM (2012) An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe 12(2):233–245. doi: 10.1016/j.chom.2012.06.008CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 (2):281–297. S0092867404000455CrossRefGoogle Scholar
  9. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136 (2):215–233. S0092-8674(09)00008-7CrossRefGoogle Scholar
  10. Barth S, Pfuhl T, Mamiani A, Ehses C, Roemer K, Kremmer E, Jaker C, Hock J, Meister G, Grasser FA (2008) Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res 36(2):666–675. doi: 10.1093/nar/gkm1080CrossRefPubMedGoogle Scholar
  11. Bellare P, Ganem D (2009) Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe 6(6):570–575. doi: 10.1016/j.chom.2009.11.008CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bogerd HP, Karnowski HW, Cai X, Shin J, Pohlers M, Cullen BR (2010) A Mammalian Herpesvirus Uses Noncanonical Expression and Processing Mechanisms to Generate Viral MicroRNAs. Mol Cell 37:135–142CrossRefGoogle Scholar
  13. Boss IW, Nadeau PE, Abbott JR, Yang Y, Mergia A, Renne R (2011) A Kaposi’s sarcoma-associated herpesvirus-encoded ortholog of microRNA miR-155 induces human splenic B-cell expansion in NOD/LtSz-scid IL2Rgammanull mice. J Virol 85(19):9877–9886. doi: 10.1128/JVI.05558-11CrossRefPubMedPubMedCentralGoogle Scholar
  14. Britt W (2008) Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol 325:417–470PubMedGoogle Scholar
  15. Bruce AG, Ryan JT, Thomas MJ, Peng X, Grundhoff A, Tsai CC, Rose TM (2013) Next-generation sequence analysis of the genome of RFHVMn, the macaque homolog of Kaposi’s sarcoma (KS)-associated herpesvirus, from a KS-like tumor of a pig-tailed macaque. J Virol 87(24):13676–13693. doi: 10.1128/JVI.02331-13CrossRefPubMedPubMedCentralGoogle Scholar
  16. Buck AH, Perot J, Chisholm MA, Kumar DS, Tuddenham L, Cognat V, Marcinowski L, Dolken L, Pfeffer S (2010) Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 16(2):307–315. doi: 10.1261/rna.1819210CrossRefPubMedPubMedCentralGoogle Scholar
  17. Buck AH, Santoyo-Lopez J, Robertson KA, Kumar DS, Reczko M, Ghazal P (2007) Discrete clusters of virus-encoded micrornas are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 81(24):13761–13770. doi: 10.1128/JVI.01290-07CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cai LM, Lyu XM, Luo WR, Cui XF, Ye YF, Yuan CC, Peng QX, Wu DH, Liu TF, Wang E, Marincola FM, Yao KT, Fang WY, Cai HB, Li X (2015) EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene 34(17):2156–2166. doi: 10.1038/onc.2014.341CrossRefPubMedGoogle Scholar
  19. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A 102(15):5570–5575. doi: 10.1073/pnas.0408192102CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N, Cullen BR (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2(3):e23. doi: 10.1371/journal.ppat.0020023CrossRefPubMedPubMedCentralGoogle Scholar
  21. Campbell M, Kung HJ, Izumiya Y (2014) Long non-coding RNA and epigenetic gene regulation of KSHV. Viruses 6(11):4165–4177. doi: 10.3390/v6114165CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cao S, Strong MJ, Wang X, Moss WN, Concha M, Lin Z, O’Grady T, Baddoo M, Fewell C, Renne R, Flemington EK (2015) High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project. J Virol 89(1):713–729. doi: 10.1128/JVI.02570-14CrossRefPubMedGoogle Scholar
  23. Caposio P, Luganini A, Hahn G, Landolfo S, Gribaudo G (2007) Activation of the virus-induced IKK/NF-kappaB signalling axis is critical for the replication of human cytomegalovirus in quiescent cells. Cell Microbiol 9(8):2040–2054. doi: 10.1111/j.1462-5822.2007.00936.xCrossRefPubMedGoogle Scholar
  24. Carr DJ, Halford WP, Veress LA, Noisakran S, Perng GC, Wechsler SL (1998) The persistent elevated cytokine mRNA levels in trigeminal ganglia of mice latently infected with HSV-1 are not due to the presence of latency associated transcript (LAT) RNAs. Virus Res 54(1):1–8CrossRefGoogle Scholar
  25. Cazalla D, Yario T, Steitz JA (2010) Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328(5985):1563–1566. doi: 10.1126/science.1187197CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94. doi: 10.1016/j.cell.2014.03.008CrossRefPubMedGoogle Scholar
  27. Chandriani S, Xu Y, Ganem D (2010) The lytic transcriptome of Kaposi’s sarcoma-associated herpesvirus reveals extensive transcription of noncoding regions, including regions antisense to important genes. J Virol 84(16):7934–7942. doi: 10.1128/JVI.00645-10CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chen SH, Kramer MF, Schaffer PA, Coen DM (1997) A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol 71(8):5878–5884PubMedPubMedCentralGoogle Scholar
  29. Chen SJ, Chen GH, Chen YH, Liu CY, Chang KP, Chang YS, Chen HC (2010) Characterization of Epstein-Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. PLoS ONE 5(9):0001. doi: 10.1371/journal.pone.0012745CrossRefGoogle Scholar
  30. Chinen M, Tani T (2012) Diverse functions of nuclear non-coding RNAs in eukaryotic gene expression. Front Biosci (Landmark Ed) 17:1402–1417CrossRefGoogle Scholar
  31. Cliffe AR, Coen DM, Knipe DM (2013) Kinetics of facultative heterochromatin and polycomb group protein association with the herpes simplex viral genome during establishment of latent infection. MBio 4(1):0001. doi: 10.1128/mBio.00590-12CrossRefGoogle Scholar
  32. Cliffe AR, Garber DA, Knipe DM (2009) Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 83(16):8182–8190. doi: 10.1128/JVI.00712-09CrossRefPubMedPubMedCentralGoogle Scholar
  33. Concha M, Wang X, Cao S, Baddoo M, Fewell C, Lin Z, Hulme W, Hedges D, McBride J, Flemington EK (2012) Identification of new viral genes and transcript isoforms during Epstein-Barr virus reactivation using RNA-Seq. J Virol 86(3):1458–1467. doi: 10.1128/JVI.06537-11CrossRefPubMedPubMedCentralGoogle Scholar
  34. Conrad NK (2016) New insights into the expression and functions of the Kaposi’s sarcoma-associated herpesvirus long noncoding PAN RNA. Virus Res 212:53–63. doi: 10.1016/j.virusres.2015.06.012CrossRefPubMedGoogle Scholar
  35. Conrad NK, Steitz JA (2005) A Kaposi’s sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. EMBO J 24(10):1831–1841. doi: 10.1038/sj.emboj.7600662CrossRefPubMedPubMedCentralGoogle Scholar
  36. Croen KD, Ostrove JM, Dragovic LJ, Smialek JE, Straus SE (1987) Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene “anti-sense” transcript by in situ hybridization. N Engl J Med 317(23):1427–1432. doi: 10.1056/NEJM198712033172302CrossRefPubMedGoogle Scholar
  37. Dahlke C, Maul K, Christalla T, Walz N, Schult P, Stocking C, Grundhoff A (2012) A microRNA encoded by Kaposi sarcoma-associated herpesvirus promotes B-cell expansion in vivo. PLoS ONE 7(11):e49435. doi: 10.1371/journal.pone.0049435CrossRefPubMedPubMedCentralGoogle Scholar
  38. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789. doi: 10.1101/gr.132159.111CrossRefPubMedPubMedCentralGoogle Scholar
  39. Devi-Rao GB, Bloom DC, Stevens JG, Wagner EK (1994) Herpes simplex virus type 1 DNA replication and gene expression during explant-induced reactivation of latently infected murine sensory ganglia. J Virol 68(3):1271–1282PubMedPubMedCentralGoogle Scholar
  40. Diebel KW, Oko LM, Medina EM, Niemeyer BF, Warren CJ, Claypool DJ, Tibbetts SA, Cool CD, Clambey ET, van Dyk LF (2015) Gammaherpesvirus small noncoding RNAs are bifunctional elements that regulate infection and contribute to virulence in vivo. MBio 6(1):e01670–e01614. doi: 10.1128/mBio.01670-14CrossRefPubMedPubMedCentralGoogle Scholar
  41. Diebel KW, Smith AL, van Dyk LF (2010) Mature and functional viral miRNAs transcribed from novel RNA polymerase III promoters. RNA 16(1):170–185. doi: 10.1261/rna.1873910CrossRefPubMedPubMedCentralGoogle Scholar
  42. Dolken L, Krmpotic A, Kothe S, Tuddenham L, Tanguy M, Marcinowski L, Ruzsics Z, Elefant N, Altuvia Y, Margalit H, Koszinowski UH, Jonjic S, Pfeffer S (2010a) Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. PLoS Pathog 6(10):e1001150. doi: 10.1371/journal.ppat.1001150CrossRefPubMedPubMedCentralGoogle Scholar
  43. Dolken L, Malterer G, Erhard F, Kothe S, Friedel CC, Suffert G, Marcinowski L, Motsch N, Barth S, Beitzinger M, Lieber D, Bailer SM, Hoffmann R, Ruzsics Z, Kremmer E, Pfeffer S, Zimmer R, Koszinowski UH, Grasser F, Meister G, Haas J (2010b) Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 7(4):324–334. doi: 10.1016/j.chom.2010.03.008CrossRefPubMedGoogle Scholar
  44. Dolken L, Perot J, Cognat V, Alioua A, John M, Soutschek J, Ruzsics Z, Koszinowski U, Voinnet O, Pfeffer S (2007) Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 81(24):13771–13782. doi: 10.1128/JVI.01313-07CrossRefPubMedPubMedCentralGoogle Scholar
  45. Dunn W, Trang P, Zhong Q, Yang E, van Belle C, Liu F (2005) Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell Microbiol 7(11):1684–1695. doi: 10.1111/j.1462-5822.2005.00598.xCrossRefPubMedGoogle Scholar
  46. Edwards RH, Marquitz AR, Raab-Traub N (2008) Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol 82(18):9094–9106. doi: 10.1128/JVI.00785-08CrossRefPubMedPubMedCentralGoogle Scholar
  47. Estep RD, Hansen SG, Rogers KS, Axthelm MK, Wong SW (2013) Genomic characterization of Japanese macaque rhadinovirus, a novel herpesvirus isolated from a nonhuman primate with a spontaneous inflammatory demyelinating disease. J Virol 87(1):512–523. doi: 10.1128/JVI.02194-12CrossRefPubMedPubMedCentralGoogle Scholar
  48. Feederle R, Haar J, Bernhardt K, Linnstaedt SD, Bannert H, Lips H, Cullen BR, Delecluse HJ (2011a) The members of a viral miRNA cluster co-operate to transform B lymphocytes. J Virol. doi: 10.1128/JVI.05100-11CrossRefPubMedPubMedCentralGoogle Scholar
  49. Feederle R, Linnstaedt SD, Bannert H, Lips H, Bencun M, Cullen BR, Delecluse HJ (2011b) A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog 7(2):e1001294. doi: 10.1371/journal.ppat.1001294CrossRefPubMedPubMedCentralGoogle Scholar
  50. Feldman ER, Kara M, Coleman CB, Grau KR, Oko LM, Krueger BJ, Renne R, van Dyk LF, Tibbetts SA (2014) Virus-encoded microRNAs facilitate gammaherpesvirus latency and pathogenesis in vivo. MBio 5(3):e00981–e00914. doi: 10.1128/mBio.00981-14CrossRefPubMedPubMedCentralGoogle Scholar
  51. Feldman ER, Kara M, Oko LM, Grau KR, Krueger BJ, Zhang J, Feng P, van Dyk LF, Renne R, Tibbetts SA (2016) A Gammaherpesvirus Noncoding RNA Is Essential for Hematogenous Dissemination and Establishment of Peripheral Latency. mSphere 1 (2). doi: 10.1128/mSphere.00105-15
  52. Flores O, Nakayama S, Whisnant AW, Javanbakht H, Cullen BR, Bloom DC (2013) Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J Virol 87(12):6589–6603. doi: 10.1128/JVI.00504-13CrossRefPubMedPubMedCentralGoogle Scholar
  53. Fok V, Mitton-Fry RM, Grech A, Steitz JA (2006) Multiple domains of EBER 1, an Epstein-Barr virus noncoding RNA, recruit human ribosomal protein L22. RNA 12(5):872–882. doi: 10.1261/rna.2339606CrossRefPubMedPubMedCentralGoogle Scholar
  54. Forte E, Luftig MA (2011) The role of microRNAs in Epstein-Barr virus latency and lytic reactivation. Microbes and infection/ Institut Pasteur 13(14–15):1156–1167. doi: 10.1016/j.micinf.2011.07.007CrossRefPubMedCentralGoogle Scholar
  55. Fu M, Gao Y, Zhou Q, Zhang Q, Peng Y, Tian K, Wang J, Zheng X (2014) Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene 536(2):272–278. doi: 10.1016/j.gene.2013.12.012CrossRefPubMedGoogle Scholar
  56. Gallaher AM, Das S, Xiao Z, Andresson T, Kieffer-Kwon P, Happel C, Ziegelbauer J (2013) Proteomic screening of human targets of viral microRNAs reveals functions associated with immune evasion and angiogenesis. PLoS Pathog 9(9):e1003584. doi: 10.1371/journal.ppat.1003584CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gatherer D, Seirafian S, Cunningham C, Holton M, Dargan DJ, Baluchova K, Hector RD, Galbraith J, Herzyk P, Wilkinson GW, Davison AJ (2011) High-resolution human cytomegalovirus transcriptome. Proc Natl Acad Sci U S A 108(49):19755–19760. doi: 10.1073/pnas.1115861108CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gawn JM, Greaves RF (2002) Absence of IE1 p72 protein function during low-multiplicity infection by human cytomegalovirus results in a broad block to viral delayed-early gene expression. J Virol 76(9):4441–4455CrossRefGoogle Scholar
  59. Gottwein E, Cai X, Cullen BR (2006) A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol 80(11):5321–5326. doi: 10.1128/JVI.02734-05CrossRefPubMedPubMedCentralGoogle Scholar
  60. Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M, Nusbaum JD, Shamulailatpam P, Love CL, Dave SS, Tuschl T, Ohler U, Cullen BR (2011) Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10(5):515–526. doi: 10.1016/j.chom.2011.09.012CrossRefPubMedPubMedCentralGoogle Scholar
  61. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT, Braich R, Manoharan M, Soutschek J, Ohler U, Cullen BR (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450(7172):1096–1099. doi: 10.1038/nature05992CrossRefPubMedPubMedCentralGoogle Scholar
  62. Gregorovic G, Boulden EA, Bosshard R, Elgueta Karstegl C, Skalsky R, Cullen BR, Gujer C, Ramer P, Munz C, Farrell PJ (2015) Epstein-Barr Viruses (EBVs) Deficient in EBV-Encoded RNAs Have Higher Levels of Latent Membrane Protein 2 RNA Expression in Lymphoblastoid Cell Lines and Efficiently Establish Persistent Infections in Humanized Mice. J Virol 89(22):11711–11714. doi: 10.1128/JVI.01873-15CrossRefPubMedPubMedCentralGoogle Scholar
  63. Grey F (2015) Role of microRNAs in herpesvirus latency and persistence. J Gen Virol 96(Pt 4):739–751. doi: 10.1099/vir.0.070862-0CrossRefPubMedGoogle Scholar
  64. Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington JC, Nelson J (2005) Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79(18):12095–12099. doi: 10.1128/JVI.79.18.12095-12099.2005CrossRefPubMedPubMedCentralGoogle Scholar
  65. Grey F, Meyers H, White EA, Spector DH, Nelson J (2007) A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3(11):e163. doi: 10.1371/journal.ppat.0030163CrossRefPubMedPubMedCentralGoogle Scholar
  66. Grey F, Tirabassi R, Meyers H, Wu G, McWeeney S, Hook L, Nelson JA (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′ UTRs. PLoS Pathog 6(6):e1000967. doi: 10.1371/journal.ppat.1000967CrossRefPubMedPubMedCentralGoogle Scholar
  67. Grundhoff A, Sullivan CS (2011) Virus-encoded microRNAs. Virology 411(2):325–343. doi: 10.1016/j.virol.2011.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  68. Grundhoff A, Sullivan CS, Ganem D (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12(5):733–750. doi: 10.1261/rna.2326106CrossRefPubMedPubMedCentralGoogle Scholar
  69. Guo YE, Riley KJ, Iwasaki A, Steitz JA (2014) Alternative capture of noncoding RNAs or protein-coding genes by herpesviruses to alter host T cell function. Mol Cell 54(1):67–79. doi: 10.1016/j.molcel.2014.03.025CrossRefPubMedPubMedCentralGoogle Scholar
  70. Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284(35):23204–23216. doi: 10.1074/jbc.M109.031427CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. doi: 10.1038/nrm3838CrossRefPubMedGoogle Scholar
  72. Haecker I, Gay LA, Yang Y, Hu J, Morse AM, McIntyre LM, Renne R (2012) Ago HITS-CLIP Expands Understanding of Kaposi’s Sarcoma-associated Herpesvirus miRNA Function in Primary Effusion Lymphomas. PLoS Pathog 8(8):e1002884. doi: 10.1371/journal.ppat.1002884CrossRefPubMedPubMedCentralGoogle Scholar
  73. Han SJ, Marshall V, Barsov E, Quinones O, Ray A, Labo N, Trivett M, Ott D, Renne R, Whitby D (2013) Kaposi’s sarcoma-associated herpesvirus microRNA single-nucleotide polymorphisms identified in clinical samples can affect microRNA processing, level of expression, and silencing activity. J Virol 87(22):12237–12248. doi: 10.1128/JVI.01202-13CrossRefPubMedPubMedCentralGoogle Scholar
  74. Hancock MH, Tirabassi RS, Nelson JA (2012) Rhesus cytomegalovirus encodes seventeen microRNAs that are differentially expressed in vitro and in vivo. Virology 425(2):133–142. doi: 10.1016/j.virol.2012.01.009CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hansen A, Henderson S, Lagos D, Nikitenko L, Coulter E, Roberts S, Gratrix F, Plaisance K, Renne R, Bower M, Kellam P, Boshoff C (2010a) KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev 24:195–205CrossRefGoogle Scholar
  76. Hansen SG, Powers CJ, Richards R, Ventura AB, Ford JC, Siess D, Axthelm MK, Nelson JA, Jarvis MA, Picker LJ, Fruh K (2010b) Evasion of CD8 + T cells is critical for superinfection by cytomegalovirus. Science 328(5974):102–106. doi: 10.1126/science.1185350CrossRefPubMedPubMedCentralGoogle Scholar
  77. Hill JM, Sedarati F, Javier RT, Wagner EK, Stevens JG (1990) Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174(1):117–125CrossRefGoogle Scholar
  78. Hook LM, Grey F, Grabski R, Tirabassi R, Doyle T, Hancock M, Landais I, Jeng S, McWeeney S, Britt W, Nelson JA (2014) Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe 15(3):363–373. doi: 10.1016/j.chom.2014.02.004CrossRefPubMedPubMedCentralGoogle Scholar
  79. Hutchinson NI, Tocci MJ (1986) Characterization of a major early gene from the human cytomegalovirus long inverted repeat; predicted amino acid sequence of a 30-kDa protein encoded by the 1.2-kb mRNA. Virology 155(1):172–182CrossRefGoogle Scholar
  80. Hutzinger R, Feederle R, Mrazek J, Schiefermeier N, Balwierz PJ, Zavolan M, Polacek N, Delecluse HJ, Huttenhofer A (2009) Expression and processing of a small nucleolar RNA from the Epstein-Barr virus genome. PLoS Pathog 5(8):e1000547. doi: 10.1371/journal.ppat.1000547CrossRefPubMedPubMedCentralGoogle Scholar
  81. Iizasa H, Wulff BE, Alla NR, Maragkakis M, Megraw M, Hatzigeorgiou A, Iwakiri D, Takada K, Wiedmer A, Showe L, Lieberman P, Nishikura K (2010) Editing of EBV-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem. doi: 10.1074/jbc.M110.138362CrossRefPubMedPubMedCentralGoogle Scholar
  82. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208. doi: 10.1038/ng.3192CrossRefPubMedPubMedCentralGoogle Scholar
  83. Javier RT, Stevens JG, Dissette VB, Wagner EK (1988) A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166(1):254–257CrossRefGoogle Scholar
  84. Jiang X, Chentoufi AA, Hsiang C, Carpenter D, Osorio N, BenMohamed L, Fraser NW, Jones C, Wechsler SL (2011) The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J Virol 85(5):2325–2332. doi: 10.1128/JVI.01791-10CrossRefPubMedGoogle Scholar
  85. Jung YJ, Choi H, Kim H, Lee SK (2014) MicroRNA miR-BART20-5p Stabilizes Epstein-Barr Virus Latency by Directly Targeting BZLF1 and BRLF1. J Virol 88(16):9027–9037. doi: 10.1128/JVI.00721-14CrossRefPubMedPubMedCentralGoogle Scholar
  86. Jurak I, Hackenberg M, Kim JY, Pesola JM, Everett RD, Preston CM, Wilson AC, Coen DM (2014) Expression of herpes simplex virus 1 microRNAs in cell culture models of quiescent and latent infection. J Virol 88(4):2337–2339. doi: 10.1128/JVI.03486-13CrossRefPubMedPubMedCentralGoogle Scholar
  87. Juranic Lisnic V, Babic Cac M, Lisnic B, Trsan T, Mefferd A, Das Mukhopadhyay C, Cook CH, Jonjic S, Trgovcich J (2013) Dual analysis of the murine cytomegalovirus and host cell transcriptomes reveal new aspects of the virus-host cell interface. PLoS Pathog 9(9):e1003611. doi: 10.1371/journal.ppat.1003611CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kang D, Skalsky RL, Cullen BR (2015) EBV BART MicroRNAs Target Multiple Pro-apoptotic Cellular Genes to Promote Epithelial Cell Survival. PLoS Pathog 11(6):e1004979. doi: 10.1371/journal.ppat.1004979CrossRefPubMedPubMedCentralGoogle Scholar
  89. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488. doi: 10.1126/science.1138341CrossRefPubMedGoogle Scholar
  90. Kenney SC, Mertz JE (2014) Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol 26:60–68. doi: 10.1016/j.semcancer.2014.01.002CrossRefPubMedGoogle Scholar
  91. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672. doi: 10.1073/pnas.0904715106CrossRefPubMedPubMedCentralGoogle Scholar
  92. Kim S, Seo D, Kim D, Hong Y, Chang H, Baek D, Kim VN, Lee S, Ahn K (2015) Temporal Landscape of MicroRNA-Mediated Host-Virus Crosstalk during Productive Human Cytomegalovirus Infection. Cell Host Microbe 17(6):838–851. doi: 10.1016/j.chom.2015.05.014CrossRefPubMedGoogle Scholar
  93. Kincaid RP, Sullivan CS (2012) Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 8(12):e1003018. doi: 10.1371/journal.ppat.1003018CrossRefPubMedPubMedCentralGoogle Scholar
  94. Krug LT (2013) Complexities of gammaherpesvirus transcription revealed by microarrays and RNAseq. Curr Opin Virol 3(3):276–284. doi: 10.1016/j.coviro.2013.04.006CrossRefPubMedPubMedCentralGoogle Scholar
  95. Kulesza CA, Shenk T (2004) Human cytomegalovirus 5-kilobase immediate-early RNA is a stable intron. J Virol 78(23):13182–13189. doi: 10.1128/JVI.78.23.13182-13189.2004CrossRefPubMedPubMedCentralGoogle Scholar
  96. Kulesza CA, Shenk T (2006) Murine cytomegalovirus encodes a stable intron that facilitates persistent replication in the mouse. Proc Natl Acad Sci U S A 103(48):18302–18307. doi: 10.1073/pnas.0608718103CrossRefPubMedPubMedCentralGoogle Scholar
  97. Kurkewich JL, Bikorimana E, Nguyen T, Klopfenstein N, Zhang H, Hallas WM, Stayback G, McDowell MA, Dahl R (2016) The mirn23a microRNA cluster antagonizes B cell development. J Leukoc Biol 100(4):665–677. doi: 10.1189/jlb.1HI0915-398RRCrossRefPubMedGoogle Scholar
  98. Kwiatkowski DL, Thompson HW, Bloom DC (2009) The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency. J Virol 83(16):8173–8181. doi: 10.1128/JVI.00686-09CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lan K, Kuppers DA, Verma SC, Robertson ES (2004) Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 78(12):6585–6594. doi: 10.1128/JVI.78.12.6585-6594.2004CrossRefPubMedPubMedCentralGoogle Scholar
  100. Lau B, Poole E, Krishna B, Sellart I, Wills MR, Murphy E, Sinclair J (2016) The Expression of Human Cytomegalovirus MicroRNA MiR-UL148D during Latent Infection in Primary Myeloid Cells Inhibits Activin A-triggered Secretion of IL-6. Sci Rep 6:31205. doi: 10.1038/srep31205CrossRefPubMedPubMedCentralGoogle Scholar
  101. Lee N, Moss WN, Yario TA, Steitz JA (2015) EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 160(4):607–618. doi: 10.1016/j.cell.2015.01.015CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lee N, Pimienta G, Steitz JA (2012) AUF1/hnRNP D is a novel protein partner of the EBER1 noncoding RNA of Epstein-Barr virus. RNA 18(11):2073–2082. doi: 10.1261/rna.034900.112CrossRefPubMedPubMedCentralGoogle Scholar
  103. Lee N, Yario TA, Gao JS, Steitz JA (2016) EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression. Proc Natl Acad Sci U S A 113(12):3221–3226. doi: 10.1073/pnas.1601773113CrossRefPubMedPubMedCentralGoogle Scholar
  104. Lee S, Song J, Kim S, Kim J, Hong Y, Kim Y, Kim D, Baek D, Ahn K (2013) Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 13(6):678–690. doi: 10.1016/j.chom.2013.05.007CrossRefPubMedGoogle Scholar
  105. Lei X, Bai Z, Ye F, Huang Y, Gao SJ (2010) Regulation of herpesvirus lifecycle by viral microRNAs. Virulence 1(5):433–435. doi: 10.4161/viru.1.5.12966CrossRefPubMedPubMedCentralGoogle Scholar
  106. Lei X, Zhu Y, Jones T, Bai Z, Huang Y, Gao SJ (2012) A Kaposi’s sarcoma-associated herpesvirus microRNA and its variants target the transforming growth factor beta pathway to promote cell survival. J Virol 86(21):11698–11711. doi: 10.1128/JVI.06855-11CrossRefPubMedPubMedCentralGoogle Scholar
  107. Lerner MR, Andrews NC, Miller G, Steitz JA (1981) Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A 78(2):805–809CrossRefGoogle Scholar
  108. Li CX, Shan GZ, Fan B, Tao PZ, Zhao LX, Jiang JD, Li YH, Li ZR (2011) Synthesis and antiviral activities of geldanamycin analog TC-GM in vitro. Yao Xue Xue Bao 46(6):683–687PubMedGoogle Scholar
  109. Li J, Zhao Y, Lu Y, Ritchie W, Grau G, Vadas MA, Gamble JR (2016) The Poly-cistronic miR-23-27-24 Complexes Target Endothelial Cell Junctions: Differential Functional and Molecular Effects of miR-23a and miR-23b. Molecular therapy Nucleic acids 5(8):e354. doi: 10.1038/mtna.2016.62CrossRefPubMedPubMedCentralGoogle Scholar
  110. Lin Z, Wang X, Strong MJ, Concha M, Baddoo M, Xu G, Baribault C, Fewell C, Hulme W, Hedges D, Taylor CM, Flemington EK (2013) Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol 87(2):1172–1182. doi: 10.1128/JVI.02517-12CrossRefPubMedPubMedCentralGoogle Scholar
  111. Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36(16):5391–5404. doi: 10.1093/nar/gkn522CrossRefPubMedPubMedCentralGoogle Scholar
  112. Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, Hayward SD (2007) Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci U S A 104(41):16164–16169. doi: 10.1073/pnas.0702896104CrossRefPubMedPubMedCentralGoogle Scholar
  113. Lu CC, Li Z, Chu CY, Feng J, Sun R, Rana TM (2010) MicroRNAs encoded by Kaposi’s sarcoma-associated herpesvirus regulate viral life cycle. EMBO Rep 11(10):784–790. doi: 10.1038/embor.2010.132CrossRefPubMedPubMedCentralGoogle Scholar
  114. Lu X, Li X, He Q, Gao J, Gao Y, Liu B, Liu F (2013) miR-142-3p regulates the formation and differentiation of hematopoietic stem cells in vertebrates. Cell Res 23(12):1356–1368. doi: 10.1038/cr.2013.145CrossRefPubMedPubMedCentralGoogle Scholar
  115. Lung RW, Tong JH, Sung YM, Leung PS, Ng DC, Chau SL, Chan AW, Ng EK, Lo KW, To KF (2009) Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia 11(11):1174–1184CrossRefGoogle Scholar
  116. Lung RW, Tong JH, To KF (2013) Emerging roles of small Epstein-Barr virus derived non-coding RNAs in epithelial malignancy. Int J Mol Sci 14(9):17378–17409. doi: 10.3390/ijms140917378CrossRefPubMedPubMedCentralGoogle Scholar
  117. Ma J, Nie K, Redmond D, Liu Y, Elemento O, Knowles DM, Tam W (2016) EBV-miR-BHRF1-2 targets PRDM1/Blimp1: potential role in EBV lymphomagenesis. Leukemia 30(3):594–604. doi: 10.1038/leu.2015.285CrossRefPubMedGoogle Scholar
  118. Mahjoub N, Dhorne-Pollet S, Fuchs W, Endale Ahanda ML, Lange E, Klupp B, Arya A, Loveland JE, Lefevre F, Mettenleiter TC, Giuffra E (2015) A 2.5-kilobase deletion containing a cluster of nine microRNAs in the latency-associated-transcript locus of the pseudorabies virus affects the host response of porcine trigeminal ganglia during established latency. J Virol 89(1):428–442. doi: 10.1128/JVI.02181-14CrossRefPubMedGoogle Scholar
  119. Manzano M, Forte E, Raja AN, Schipma MJ, Gottwein E (2015) Divergent target recognition by coexpressed 5’-isomiRs of miR-142-3p and selective viral mimicry. RNA 21(9):1606–1620. doi: 10.1261/rna.048876.114CrossRefPubMedPubMedCentralGoogle Scholar
  120. Manzano M, Shamulailatpam P, Raja AN, Gottwein E (2013) Kaposi’s sarcoma-associated herpesvirus encodes a mimic of cellular miR-23. J Virol 87(21):11821–11830. doi: 10.1128/JVI.01692-13CrossRefPubMedPubMedCentralGoogle Scholar
  121. Marcinowski L, Tanguy M, Krmpotic A, Radle B, Lisnic VJ, Tuddenham L, Chane-Woon-Ming B, Ruzsics Z, Erhard F, Benkartek C, Babic M, Zimmer R, Trgovcich J, Koszinowski UH, Jonjic S, Pfeffer S, Dolken L (2012) Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog 8(2):e1002510. doi: 10.1371/journal.ppat.1002510CrossRefPubMedPubMedCentralGoogle Scholar
  122. Margolis TP, Elfman FL, Leib D, Pakpour N, Apakupakul K, Imai Y, Voytek C (2007) Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory ganglia. J Virol 81(20):11069–11074. doi: 10.1128/JVI.00243-07CrossRefPubMedPubMedCentralGoogle Scholar
  123. Marquitz AR, Mathur A, Chugh PE, Dittmer DP, Raab-Traub N (2014) Expression profile of microRNAs in Epstein-Barr virus-infected AGS gastric carcinoma cells. J Virol 88(2):1389–1393. doi: 10.1128/JVI.02662-13CrossRefPubMedPubMedCentralGoogle Scholar
  124. Marshall V, Martro E, Labo N, Ray A, Wang D, Mbisa G, Bagni RK, Volfovsky N, Casabona J, Whitby D (2010) Kaposi sarcoma (KS)-associated herpesvirus microRNA sequence analysis and KS risk in a European AIDS-KS case control study. J Infect Dis 202(7):1126–1135. doi: 10.1086/656045CrossRefPubMedPubMedCentralGoogle Scholar
  125. Marshall V, Parks T, Bagni R, Wang CD, Samols MA, Hu J, Wyvil KM, Aleman K, Little RF, Yarchoan R, Renne R, Whitby D (2007) Conservation of virally encoded microRNAs in Kaposi sarcoma–associated herpesvirus in primary effusion lymphoma cell lines and in patients with Kaposi sarcoma or multicentric Castleman disease. J Infect Dis 195(5):645–659. doi: 10.1086/511434CrossRefPubMedGoogle Scholar
  126. Mayr C, Bartel DP (2009) Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138(4):673–684. doi: 10.1016/j.cell.2009.06.016CrossRefPubMedPubMedCentralGoogle Scholar
  127. McCaskill J, Praihirunkit P, Sharp PM, Buck AH (2015) RNA-mediated degradation of microRNAs: A widespread viral strategy? RNA Biol 12(6):579–585. doi: 10.1080/15476286.2015.1034912CrossRefPubMedPubMedCentralGoogle Scholar
  128. McDonough SH, Spector DH (1983) Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology 125(1):31–46CrossRefGoogle Scholar
  129. McDonough SH, Staprans SI, Spector DH (1985) Analysis of the major transcripts encoded by the long repeat of human cytomegalovirus strain AD169. J Virol 53(3):711–718PubMedPubMedCentralGoogle Scholar
  130. McSharry BP, Tomasec P, Neale ML, Wilkinson GW (2003) The most abundantly transcribed human cytomegalovirus gene (β2. 7) is non-essential for growth in vitro. J Gen Virol 84(9):2511–2516. doi: 10.1099/vir.0.19298-0CrossRefPubMedGoogle Scholar
  131. Meshesha MK, Bentwich Z, Solomon SA, Avni YS (2016) In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency. Gene 575(1):101–107. doi: 10.1016/j.gene.2015.08.040CrossRefPubMedGoogle Scholar
  132. Meyer C, Grey F, Kreklywich CN, Andoh TF, Tirabassi RS, Orloff SL, Streblow DN (2011) Cytomegalovirus microRNA expression is tissue specific and is associated with persistence. J Virol 85(1):378–389. doi: 10.1128/JVI.01900-10CrossRefPubMedGoogle Scholar
  133. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20(12):1603–1614. doi: 10.1038/cdd.2013.125CrossRefPubMedPubMedCentralGoogle Scholar
  134. Moss WN, Steitz JA (2013) Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genom 14:543. doi: 10.1186/1471-2164-14-543CrossRefGoogle Scholar
  135. Murphy E, Vanicek J, Robins H, Shenk T, Levine AJ (2008) Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci U S A 105(14):5453–5458. doi: 10.1073/pnas.0711910105CrossRefPubMedPubMedCentralGoogle Scholar
  136. Nachmani D, Lankry D, Wolf DG, Mandelboim O (2010) The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat Immunol 11(9):806–813. doi: 10.1038/ni.1916CrossRefPubMedGoogle Scholar
  137. O’Connor CM, Vanicek J, Murphy EA (2014) Host microRNA regulation of human cytomegalovirus immediate early protein translation promotes viral latency. J Virol 88(10):5524–5532. doi: 10.1128/JVI.00481-14CrossRefPubMedPubMedCentralGoogle Scholar
  138. O’Grady T, Cao S, Strong MJ, Concha M, Wang X, Splinter Bondurant S, Adams M, Baddoo M, Srivastav SK, Lin Z, Fewell C, Yin Q, Flemington EK (2014) Global bidirectional transcription of the Epstein-Barr virus genome during reactivation. J Virol 88(3):1604–1616. doi: 10.1128/JVI.02989-13CrossRefPubMedPubMedCentralGoogle Scholar
  139. Pan D, Flores O, Umbach JL, Pesola JM, Bentley P, Rosato PC, Leib DA, Cullen BR, Coen DM (2014) A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 15(4):446–456. doi: 10.1016/j.chom.2014.03.004CrossRefPubMedPubMedCentralGoogle Scholar
  140. Parnas O, Corcoran DL, Cullen BR (2014) Analysis of the mRNA targetome of microRNAs expressed by Marek’s disease virus. MBio 5(1):e01060–e01013. doi: 10.1128/mBio.01060-13CrossRefPubMedPubMedCentralGoogle Scholar
  141. Perng GC, Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL (1994) An improved method for cloning portions of the repeat regions of herpes simplex virus type 1. J Virol Methods 46(2):111–116CrossRefGoogle Scholar
  142. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2(4):269–276. doi: 10.1038/nmeth746CrossRefPubMedGoogle Scholar
  143. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736. doi: 10.1126/science.1096781304/5671/734CrossRefPubMedGoogle Scholar
  144. Plaisance-Bonstaff K, Choi HS, Beals T, Krueger BJ, Boss IW, Gay LA, Haecker I, Hu J, Renne R (2014) KSHV miRNAs decrease expression of lytic genes in latently infected PEL and endothelial cells by targeting host transcription factors. Viruses 6(10):4005–4023. doi: 10.3390/v6104005CrossRefPubMedPubMedCentralGoogle Scholar
  145. Puig-Barbera J, Burtseva E, Yu H, Cowling BJ, Badur S, Kyncl J, Sominina A (2016) Influenza epidemiology and influenza vaccine effectiveness during the 2014-2015 season: annual report from the Global Influenza Hospital Surveillance Network. BMC Public Health 16(Suppl 1):757. doi: 10.1186/s12889-016-3378-1CrossRefPubMedPubMedCentralGoogle Scholar
  146. Qiu J, Smith P, Leahy L, Thorley-Lawson DA (2015) The Epstein-Barr virus encoded BART miRNAs potentiate tumor growth in vivo. PLoS Pathog 11(1):e1004561. doi: 10.1371/journal.ppat.1004561CrossRefPubMedPubMedCentralGoogle Scholar
  147. Ray A, Marshall V, Uldrick T, Leighty R, Labo N, Wyvill K, Aleman K, Polizzotto MN, Little RF, Yarchoan R, Whitby D (2012) Sequence analysis of Kaposi sarcoma-associated herpesvirus (KSHV) microRNAs in patients with multicentric Castleman disease and KSHV-associated inflammatory cytokine syndrome. J Infect Dis 205(11):1665–1676. doi: 10.1093/infdis/jis249CrossRefPubMedPubMedCentralGoogle Scholar
  148. Reeves MB, Davies AA, McSharry BP, Wilkinson GW, Sinclair JH (2007) Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316(5829):1345–1348. doi: 10.1126/science.1142984CrossRefPubMedGoogle Scholar
  149. Rennekamp AJ, Lieberman PM (2011) Initiation of Epstein-Barr virus lytic replication requires transcription and the formation of a stable RNA-DNA hybrid molecule at OriLyt. J Virol 85(6):2837–2850. doi: 10.1128/JVI.02175-10CrossRefPubMedGoogle Scholar
  150. Reusch JA, Nawandar DM, Wright KL, Kenney SC, Mertz JE (2015) Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J Virol 89(3):1731–1743. doi: 10.1128/JVI.02781-14CrossRefPubMedGoogle Scholar
  151. Riley KJ, Rabinowitz GS, Steitz JA (2010) Comprehensive analysis of Rhesus lymphocryptovirus microRNA expression. J Virol 84(10):5148–5157. doi: 10.1128/JVI.00110-10CrossRefPubMedPubMedCentralGoogle Scholar
  152. Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA (2012) EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 31(9):2207–2221. doi: 10.1038/emboj.2012.63CrossRefPubMedPubMedCentralGoogle Scholar
  153. Rossetto CC, Pari G (2012) KSHV PAN RNA associates with demethylases UTX and JMJD3 to activate lytic replication through a physical interaction with the virus genome. PLoS Pathog 8(5):e1002680. doi: 10.1371/journal.ppat.1002680CrossRefPubMedPubMedCentralGoogle Scholar
  154. Rossetto CC, Tarrant-Elorza M, Pari GS (2013) Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells. PLoS Pathog 9(5):e1003366. doi: 10.1371/journal.ppat.1003366CrossRefPubMedPubMedCentralGoogle Scholar
  155. Samols MA, Hu J, Skalsky RL, Renne R (2005) Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 79(14):9301–9305. doi: 10.1128/JVI.79.14.9301-9305.2005CrossRefPubMedPubMedCentralGoogle Scholar
  156. Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV, Renne R (2007) Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 3(5):e65. doi: 10.1371/journal.ppat.0030065CrossRefPubMedPubMedCentralGoogle Scholar
  157. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3’ untranslated regions and fewer microRNA target sites. Science 320(5883):1643–1647. doi: 10.1126/science.1155390CrossRefPubMedPubMedCentralGoogle Scholar
  158. Santhakumar D, Forster T, Laqtom NN, Fragkoudis R, Dickinson P, Abreu-Goodger C, Manakov SA, Choudhury NR, Griffiths SJ, Vermeulen A, Enright AJ, Dutia B, Kohl A, Ghazal P, Buck AH (2010) Combined agonist-antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proc Natl Acad Sci U S A 107(31):13830–13835. doi: 10.1073/pnas.1008861107CrossRefPubMedPubMedCentralGoogle Scholar
  159. Saxena A, Carninci P (2011) Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. BioEssays 33(11):830–839. doi: 10.1002/bies.201100084CrossRefPubMedPubMedCentralGoogle Scholar
  160. Scarpini CG, May J, Lachmann RH, Preston CM, Dunnett SB, Torres EM, Efstathiou S (2001) Latency associated promoter transgene expression in the central nervous system after stereotaxic delivery of replication-defective HSV-1-based vectors. Gene Ther 8(14):1057–1071. doi: 10.1038/ Scholar
  161. Schafer A, Cai X, Bilello JP, Desrosiers RC, Cullen BR (2007) Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus. Virology 364(1):21–27. doi: 10.1016/j.virol.2007.03.029CrossRefPubMedPubMedCentralGoogle Scholar
  162. Schwarz TM, Volpe LA, Abraham CG, Kulesza CA (2013) Molecular investigation of the 7.2 kb RNA of murine cytomegalovirus. Virol J 10:348. doi: 10.1186/1743-422X-10-348CrossRefPubMedPubMedCentralGoogle Scholar
  163. Seo GJ, Kincaid RP, Phanaksri T, Burke JM, Pare JM, Cox JE, Hsiang TY, Krug RM, Sullivan CS (2013) Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe 14(4):435–445. doi: 10.1016/j.chom.2013.09.002CrossRefPubMedGoogle Scholar
  164. Shen ZZ, Pan X, Miao LF, Ye HQ, Chavanas S, Davrinche C, McVoy M, Luo MH (2014) Comprehensive analysis of human cytomegalovirus microRNA expression during lytic and quiescent infection. PLoS ONE 9(2):e88531. doi: 10.1371/journal.pone.0088531CrossRefPubMedPubMedCentralGoogle Scholar
  165. Skalsky RL, Barr SA, Jeffery AJ, Blair T, Estep R, Wong SW (2016) Japanese Macaque Rhadinovirus Encodes a Viral MicroRNA Mimic of the miR-17 Family. J Virol 90(20):9350–9363. doi: 10.1128/JVI.01123-16CrossRefPubMedPubMedCentralGoogle Scholar
  166. Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M, Nusbaum JD, Feederle R, Delecluse HJ, Luftig MA, Tuschl T, Ohler U, Cullen BR (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8(1):e1002484. doi: 10.1371/journal.ppat.1002484CrossRefPubMedPubMedCentralGoogle Scholar
  167. Skalsky RL, Cullen BR (2015) EBV Noncoding RNAs. Curr Top Microbiol Immunol 391:181–217. doi: 10.1007/978-3-319-22834-1_6CrossRefPubMedPubMedCentralGoogle Scholar
  168. Skalsky RL, Kang D, Linnstaedt SD, Cullen BR (2014) Evolutionary conservation of primate lymphocryptovirus microRNA targets. J Virol 88(3):1617–1635. doi: 10.1128/JVI.02071-13CrossRefPubMedPubMedCentralGoogle Scholar
  169. Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81(23):12836–12845. doi: 10.1128/JVI.01804-07CrossRefPubMedPubMedCentralGoogle Scholar
  170. Stark TJ, Arnold JD, Spector DH, Yeo GW (2012) High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J Virol 86(1):226–235. doi: 10.1128/JVI.05903-11CrossRefPubMedPubMedCentralGoogle Scholar
  171. Stern-Ginossar N, Saleh N, Goldberg MD, Prichard M, Wolf DG, Mandelboim O (2009) Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol 83(20):10684–10693. doi: 10.1128/JVI.01292-09CrossRefPubMedPubMedCentralGoogle Scholar
  172. Stern-Ginossar N, Weisburd B, Michalski A, Le VT, Hein MY, Huang SX, Ma M, Shen B, Qian SB, Hengel H, Mann M, Ingolia NT, Weissman JS (2012) Decoding human cytomegalovirus. Science 338(6110):1088–1093. doi: 10.1126/science.1227919CrossRefPubMedGoogle Scholar
  173. Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235(4792):1056–1059CrossRefGoogle Scholar
  174. Sun Z, Wang L, Eckloff BW, Deng B, Wang Y, Wampfler JA, Jang J, Wieben ED, Jen J, You M, Yang P (2014) Conserved recurrent gene mutations correlate with pathway deregulation and clinical outcomes of lung adenocarcinoma in never-smokers. BMC Med Genomics 7:32. doi: 10.1186/1755-8794-7-32CrossRefPubMedPubMedCentralGoogle Scholar
  175. Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J, Heissmeyer V, Zielinski C, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Hammerschmidt W (2016) Epstein-Barr viral miRNAs inhibit antiviral CD4 + T cell responses targeting IL-12 and peptide processing. J Exp Med 213(10):2065–2080. doi: 10.1084/jem.20160248CrossRefPubMedPubMedCentralGoogle Scholar
  176. Tang S, Bertke AS, Patel A, Margolis TP, Krause PR (2011) Herpes simplex virus 2 microRNA miR-H6 is a novel latency-associated transcript-associated microRNA, but reduction of its expression does not influence the establishment of viral latency or the recurrence phenotype. J Virol 85(9):4501–4509. doi: 10.1128/JVI.01997-10CrossRefPubMedPubMedCentralGoogle Scholar
  177. Tang S, Bertke AS, Patel A, Wang K, Cohen JI, Krause PR (2008) An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci U S A 105(31):10931–10936. doi: 10.1073/pnas.0801845105CrossRefPubMedPubMedCentralGoogle Scholar
  178. Tang S, Patel A, Krause PR (2009) Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J Virol 83(3):1433–1442. doi: 10.1128/JVI.01723-08CrossRefPubMedGoogle Scholar
  179. Thompson RL, Sawtell NM (1997) The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71(7):5432–5440PubMedPubMedCentralGoogle Scholar
  180. Tirabassi R, Hook L, Landais I, Grey F, Meyers H, Hewitt H, Nelson J (2011) Human cytomegalovirus US7 is regulated synergistically by two virally encoded microRNAs and by two distinct mechanisms. J Virol 85(22):11938–11944. doi: 10.1128/JVI.05443-11CrossRefPubMedPubMedCentralGoogle Scholar
  181. Toth Z, Maglinte DT, Lee SH, Lee HR, Wong LY, Brulois KF, Lee S, Buckley JD, Laird PW, Marquez VE, Jung JU (2010) Epigenetic analysis of KSHV latent and lytic genomes. PLoS Pathog 6(7):e1001013. doi: 10.1371/journal.ppat.1001013CrossRefPubMedPubMedCentralGoogle Scholar
  182. Tuddenham L, Jung JS, Chane-Woon-Ming B, Dolken L, Pfeffer S (2012) Small RNA deep sequencing identifies microRNAs and other small noncoding RNAs from human herpesvirus 6B. J Virol 86(3):1638–1649. doi: 10.1128/JVI.05911-11CrossRefPubMedPubMedCentralGoogle Scholar
  183. Tycowski KT, Guo YE, Lee N, Moss WN, Vallery TK, Xie M, Steitz JA (2015) Viral noncoding RNAs: more surprises. Genes Dev 29(6):567–584. doi: 10.1101/gad.259077.115CrossRefPubMedPubMedCentralGoogle Scholar
  184. Tycowski KT, Shu MD, Borah S, Shi M, Steitz JA (2012) Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses. Cell Rep 2(1):26–32. doi: 10.1016/j.celrep.2012.05.020CrossRefPubMedPubMedCentralGoogle Scholar
  185. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454(7205):780–783. doi: 10.1038/nature07103CrossRefPubMedPubMedCentralGoogle Scholar
  186. Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR (2009) Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83(20):10677–10683. doi: 10.1128/JVI.01185-09CrossRefPubMedPubMedCentralGoogle Scholar
  187. Umbach JL, Wang K, Tang S, Krause PR, Mont EK, Cohen JI, Cullen BR (2010) Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2. J Virol 84(2):1189–1192. doi: 10.1128/JVI.01712-09CrossRefPubMedGoogle Scholar
  188. Wahl A, Linnstaedt SD, Esoda C, Krisko JF, Martinez-Torres F, Delecluse HJ, Cullen BR, Garcia JV (2013) A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J Virol 87(10):5437–5446CrossRefGoogle Scholar
  189. Walz N, Christalla T, Tessmer U, Grundhoff A (2010) A global analysis of evolutionary conservation among known and predicted gammaherpesvirus microRNAs. J Virol 84(2):716–728. doi: 10.1128/JVI.01302-09CrossRefPubMedGoogle Scholar
  190. Wang QY, Zhou C, Johnson KE, Colgrove RC, Coen DM, Knipe DM (2005) Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci U S A 102(44):16055–16059. doi: 10.1073/pnas.0505850102CrossRefPubMedPubMedCentralGoogle Scholar
  191. Wang Y, Li H, Tang Q, Maul GG, Yuan Y (2008) Kaposi’s sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: involvement of host cellular factors. J Virol 82(6):2867–2882. doi: 10.1128/JVI.01319-07CrossRefPubMedPubMedCentralGoogle Scholar
  192. Xie M, Zhang W, Shu MD, Xu A, Lenis DA, DiMaio D, Steitz JA (2015) The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3’ ends. Genes Dev 29(14):1552–1564. doi: 10.1101/gad.266973.115CrossRefPubMedPubMedCentralGoogle Scholar
  193. Xing L, Kieff E (2011) cis-Acting effects on RNA processing and Drosha cleavage prevent Epstein-Barr virus latency III BHRF1 expression. J Virol 85(17):8929–8939. doi: 10.1128/JVI.00336-11CrossRefPubMedPubMedCentralGoogle Scholar
  194. Zhao Y, Xu H, Yao Y, Smith LP, Kgosana L, Green J, Petherbridge L, Baigent SJ, Nair V (2011) Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. PLoS Pathog 7(2):e1001305. doi: 10.1371/journal.ppat.1001305CrossRefPubMedPubMedCentralGoogle Scholar
  195. Zhou C, Xie Z, Gao L, Liu C, Ai J, Zhang L, Shen K (2015) Profiling of EBV-Encoded microRNAs in EBV-Associated Hemophagocytic Lymphohistiocytosis. Tohoku J Exp Med 237(2):117–126. doi: 10.1620/tjem.237.117CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Vaccine and Gene Therapy Institute at Oregon Health and Science UniversityBeavertonUSA

Personalised recommendations