Role of Host Genes in Influenza Virus Replication

  • Megan L. Shaw
  • Silke StertzEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 419)


At every step of their replication cycle influenza viruses depend heavily on their host cells. The multifaceted interactions that occur between the virus and its host cell determine the outcome of the infection, including efficiency of progeny virus production, tropism, and pathogenicity. In order to understand viral disease and develop therapies for influenza it is therefore pertinent to study the intricate interplay between influenza viruses and their required host factors. Here, we review the current knowledge on host cell factors required by influenza virus at the different stages of the viral replication cycle. We also discuss the roles of host factors in zoonotic transmission of influenza viruses and their potential for developing novel antivirals.


  1. Abdul Razak AR, Mau-Soerensen M, Gabrail NY, Gerecitano JF, Shields AF, Unger TJ, Saint-Martin JR, Carlson R, Landesman Y, McCauley D, Rashal T, Lassen U, Kim R, Stayner LA, Mirza MR, Kauffman M, Shacham S, Mahipal A (2016) First-in-class, First-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J Clin Oncol 34(34):4142–4150 PubMedPubMedCentralGoogle Scholar
  2. Alamares-Sapuay JG, Martinez-Gil L, Stertz S, Miller MS, Shaw ML, Palese P (2013) Serum- and glucocorticoid-regulated kinase 1 is required for nuclear export of the ribonucleoprotein of influenza A virus. J Virol 87(10):6020–6026PubMedPubMedCentralGoogle Scholar
  3. Amorim MJ, Bruce EA, Read EK, Foeglein A, Mahen R, Stuart AD, Digard P (2011) A Rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral RNA. J Virol 85(9):4143–4156PubMedPubMedCentralGoogle Scholar
  4. Ando T, Yamayoshi S, Tomita Y, Watanabe S, Watanabe T, Kawaoka Y (2016) The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes. Nat Microbiol 1(8):16062PubMedGoogle Scholar
  5. Asaka MN, Kawaguchi A, Sakai Y, Mori K, Nagata K (2016) Polycomb repressive complex 2 facilitates the nuclear export of the influenza viral genome through the interaction with M1. Sci Rep 6:33608PubMedPubMedCentralGoogle Scholar
  6. Avilov SV, Moisy D, Naffakh N, Cusack S (2012) Influenza A virus progeny vRNP trafficking in live infected cells studied with the virus-encoded fluorescently tagged PB2 protein. Vaccine 30(51):7411–7417PubMedGoogle Scholar
  7. Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P, Kopf M, Matthias P, Helenius A, Yamauchi Y (2014) Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346(6208):473–477PubMedGoogle Scholar
  8. Batra J, Tripathi S, Kumar A, Katz JM, Cox NJ, Lal RB, Sambhara S, Lal SK (2016) Human heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins. Sci Rep 6:19063PubMedPubMedCentralGoogle Scholar
  9. Baudin F, Petit I, Weissenhorn W, Ruigrok RW (2001) In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein. Virology 281(1):102–108PubMedGoogle Scholar
  10. Benitez AA, Panis M, Xue J, Varble A, Shim JV, Frick AL, Lopez CB, Sachs D, tenOever BR (2015) In Vivo RNAi screening identifies MDA5 as a significant contributor to the cellular defense against Influenza A Virus. Cell Rep 11(11):1714–1726PubMedPubMedCentralGoogle Scholar
  11. Black BE, Holaska JM, Levesque L, Ossareh-Nazari B, Gwizdek C, Dargemont C, Paschal BM (2001) NXT1 is necessary for the terminal step of Crm1-mediated nuclear export. J Cell Biol 152(1):141–155PubMedPubMedCentralGoogle Scholar
  12. Boon AC, deBeauchamp J, Hollmann A, Luke J, Kotb M, Rowe S, Finkelstein D, Neale G, Lu L, Williams RW, Webby RJ (2009) Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. J Virol 83(20):10417–10426PubMedPubMedCentralGoogle Scholar
  13. Bosch FX, Garten W, Klenk HD, Rott R (1981) Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses. Virology 113(2):725–735PubMedGoogle Scholar
  14. Bottcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M (2006) Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80(19):9896–9898PubMedPubMedCentralGoogle Scholar
  15. Bradel-Tretheway BG, Mattiacio JL, Krasnoselsky A, Stevenson C, Purdy D, Dewhurst S, Katze MG (2011) Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors. J Virol 85(17):8569–8581PubMedPubMedCentralGoogle Scholar
  16. Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139(7):1243–1254PubMedPubMedCentralGoogle Scholar
  17. Bruce EA, Digard P, Stuart AD (2010) The Rab11 pathway is required for influenza A virus budding and filament formation. J Virol 84(12):5848–5859PubMedPubMedCentralGoogle Scholar
  18. Brunotte L, Flies J, Bolte H, Reuther P, Vreede F, Schwemmle M (2014) The nuclear export protein of H5N1 influenza A viruses recruits Matrix 1 (M1) protein to the viral ribonucleoprotein to mediate nuclear export. J Biol Chem 289(29):20067–20077PubMedPubMedCentralGoogle Scholar
  19. Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70(5):715–728PubMedGoogle Scholar
  20. Bullock AN, Das S, Debreczeni JE, Rellos P, Fedorov O, Niesen FH, Guo K, Papagrigoriou E, Amos AL, Cho S, Turk BE, Ghosh G, Knapp S (2009) Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation. Structure 17(3):352–362PubMedPubMedCentralGoogle Scholar
  21. Cao M, Wei C, Zhao L, Wang J, Jia Q, Wang X, Jin Q, Deng T (2014) DnaJA1/Hsp40 is co-opted by influenza A virus to enhance its viral RNA polymerase activity. J Virol 88(24):14078–14089PubMedPubMedCentralGoogle Scholar
  22. Carette JE, Guimaraes CP, Varadarajan M, Park AS, Wuethrich I, Godarova A, Kotecki M, Cochran BH, Spooner E, Ploegh HL, Brummelkamp TR (2009) Haploid genetic screens in human cells identify host factors used by pathogens. Science 326(5957):1231–1235PubMedGoogle Scholar
  23. Carette JE, Guimaraes CP, Wuethrich I, Blomen VA, Varadarajan M, Sun C, Bell G, Yuan B, Muellner MK, Nijman SM, Ploegh HL, Brummelkamp TR (2011) Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat Biotechnol 29(6):542–546PubMedPubMedCentralGoogle Scholar
  24. Carroll SM, Paulson JC (1985) Differential infection of receptor-modified host cells by receptor-specific influenza viruses. Virus Res 3(2):165–179PubMedGoogle Scholar
  25. Cauldwell AV, Long JS, Moncorge O, Barclay WS (2014) Viral determinants of influenza A host range. J Gen Virol 95(6):1193–1210Google Scholar
  26. Chase GP, Rameix-Welti MA, Zvirbliene A, Zvirblis G, Gotz V, Wolff T, Naffakh N, Schwemmle M (2011) Influenza virus ribonucleoprotein complexes gain preferential access to cellular export machinery through chromatin targeting. PLoS Pathog 7(9):e1002187PubMedPubMedCentralGoogle Scholar
  27. Chasman D, Walters KB, Lopes TJ, Eisfeld AJ, Kawaoka Y, Roy S (2016) Integrating transcriptomic and proteomic data using predictive regulatory network models of host response to pathogens. PLoS Comput Biol 12(7):e1005013PubMedPubMedCentralGoogle Scholar
  28. Chen C, Zhuang X (2008) Epsin 1 is a cargo-specific adaptor for the clathrin-mediated endocytosis of the influenza virus. Proc Natl Acad Sci USA 105(33):11790–11795PubMedGoogle Scholar
  29. Chizhmakov IV, Geraghty FM, Ogden DC, Hayhurst A, Antoniou M, Hay AJ (1996) Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukaemia cells. J Physiol 494(Pt 2):329–336PubMedPubMedCentralGoogle Scholar
  30. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1(4):249–252PubMedGoogle Scholar
  31. Chutiwitoonchai N, Aida Y (2016) NXT1, a novel influenza A NP binding protein, promotes the nuclear export of NP via a CRM1-dependent pathway. Viruses 8(8) pii: E209Google Scholar
  32. Cohen M, Zhang XQ, Senaati HP, Chen HW, Varki NM, Schooley RT, Gagneux P (2013) Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J 10:321PubMedPubMedCentralGoogle Scholar
  33. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299PubMedGoogle Scholar
  34. Cros JF, Palese P (2003) Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses. Virus Res 95(1–2):3–12PubMedGoogle Scholar
  35. Dapat C, Saito R, Suzuki H, Horigome T (2014) Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection. Virus Res 179:53–63PubMedGoogle Scholar
  36. de Chassey B, Meyniel-Schicklin L, Aublin-Gex A, Andre P, Lotteau V (2012) Genetic screens for the control of influenza virus replication: from meta-analysis to drug discovery. Mol BioSyst 8(4):1297–1303PubMedGoogle Scholar
  37. de Chassey B, Aublin-Gex A, Ruggieri A, Meyniel-Schicklin L, Pradezynski F, Davoust N, Chantier T, Tafforeau L, Mangeot PE, Ciancia C, Perrin-Cocon L, Bartenschlager R, Andre P, Lotteau V (2013a) The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication. PLoS Pathog 9(7):e1003440PubMedPubMedCentralGoogle Scholar
  38. de Chassey B, Meyniel-Schicklin L, Aublin-Gex A, Navratil V, Chantier T, Andre P, Lotteau V (2013b) Structure homology and interaction redundancy for discovering virus-host protein interactions. EMBO Rep 14(10):938–944PubMedPubMedCentralGoogle Scholar
  39. de Graaf M, Fouchier RA (2014) Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J 33(8):823–841PubMedPubMedCentralGoogle Scholar
  40. de Vries E, Tscherne DM, Wienholts MJ, Cobos-Jimenez V, Scholte F, Garcia-Sastre A, Rottier PJ, de Haan CA (2011) Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog 7(3):e1001329PubMedPubMedCentralGoogle Scholar
  41. Demirov D, Gabriel G, Schneider C, Hohenberg H, Ludwig S (2012) Interaction of influenza A virus matrix protein with RACK1 is required for virus release. Cell Microbiol 14(5):774–789PubMedGoogle Scholar
  42. Diot C, Fournier G, Dos Santos M, Magnus J, Komarova A, van der Werf S, Munier S, Naffakh N (2016) Influenza A Virus polymerase recruits the RNA helicase DDX19 to promote the nuclear export of viral mRNAs. Sci Rep 6:33763PubMedPubMedCentralGoogle Scholar
  43. Domingues P, Golebiowski F, Tatham MH, Lopes AM, Taggart A, Hay RT, Hale BG (2015) Global reprogramming of host SUMOylation during Influenza Virus Infection. Cell Rep 13(7):1467–1480PubMedPubMedCentralGoogle Scholar
  44. Droebner K, Pleschka S, Ludwig S, Planz O (2011) Antiviral activity of the MEK-inhibitor U0126 against pandemic H1N1v and highly pathogenic avian influenza virus in vitro and in vivo. Antiviral Res 92(2):195–203PubMedGoogle Scholar
  45. Edinger TO, Pohl MO, Stertz S (2014) Entry of influenza A virus: host factors and antiviral targets. J Gen Virol 95(Pt 2):263–277PubMedGoogle Scholar
  46. Edinger TO, Pohl MO, Yanguez E, Stertz S (2015) Cathepsin W Is required for escape of influenza A virus from late endosomes. MBio 6(3):e00297Google Scholar
  47. Eierhoff T, Hrincius ER, Rescher U, Ludwig S, Ehrhardt C (2010) The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells. PLoS Pathog 6(9):e1001099PubMedPubMedCentralGoogle Scholar
  48. Eisfeld AJ, Kawakami E, Watanabe T, Neumann G, Kawaoka Y (2011a) RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J Virol 85(13):6117–6126PubMedPubMedCentralGoogle Scholar
  49. Eisfeld AJ, Neumann G, Kawaoka Y (2011b) Human immunodeficiency virus rev-binding protein is essential for influenza a virus replication and promotes genome trafficking in late-stage infection. J Virol 85(18):9588–9598PubMedPubMedCentralGoogle Scholar
  50. Elbahesh H, Cline T, Baranovich T, Govorkova EA, Schultz-Cherry S, Russell CJ (2014) Novel roles of focal adhesion kinase in cytoplasmic entry and replication of influenza A viruses. J Virol 88(12):6714–6728PubMedPubMedCentralGoogle Scholar
  51. Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R, McCauley J, Digard P (2001) Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol 75(1):408–419PubMedPubMedCentralGoogle Scholar
  52. Engelhardt OG, Smith M, Fodor E (2005) Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J Virol 79(9):5812–5818PubMedPubMedCentralGoogle Scholar
  53. Ferris MT, Aylor DL, Bottomly D, Whitmore AC, Aicher LD, Bell TA, Bradel-Tretheway B, Bryan JT, Buus RJ, Gralinski LE, Haagmans BL, McMillan L, Miller DR, Rosenzweig E, Valdar W, Wang J, Churchill GA, Threadgill DW, McWeeney SK, Katze MG, Pardo-Manuel de Villena F, Baric RS, Heise MT (2013) Modeling host genetic regulation of influenza pathogenesis in the collaborative cross. PLoS Pathog 9(2):e1003196PubMedPubMedCentralGoogle Scholar
  54. Fournier G, Chiang C, Munier S, Tomoiu A, Demeret C, Vidalain PO, Jacob Y, Naffakh N (2014) Recruitment of RED-SMU1 complex by influenza A virus RNA polymerase to control viral mRNA splicing. PLoS Pathog 10(6):e1004164PubMedPubMedCentralGoogle Scholar
  55. Fujioka Y, Tsuda M, Nanbo A, Hattori T, Sasaki J, Sasaki T, Miyazaki T, Ohba Y (2013) A Ca(2+)-dependent signalling circuit regulates influenza A virus internalization and infection. Nat Commun 4:2763PubMedGoogle Scholar
  56. Galloway SE, Reed ML, Russell CJ, Steinhauer DA (2013) Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation. PLoS Pathog 9(2):e1003151PubMedPubMedCentralGoogle Scholar
  57. Gambaryan AS, Tuzikov AB, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Bovin NV, Matrosovich MN (1997) Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6’-sialyl(N-acetyllactosamine). Virology 232(2):345–350PubMedGoogle Scholar
  58. Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS, Elliot A, Wiley DC, Skehel JJ (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303(5665):1838–1842PubMedGoogle Scholar
  59. Gao S, Wu J, Liu RY, Li J, Song L, Teng Y, Sheng C, Liu D, Yao C, Chen H, Jiang W, Chen S, Huang W (2015) Interaction of NS2 with AIMP2 facilitates the switch from ubiquitination to SUMOylation of M1 in influenza A virus-infected cells. J Virol 89(1):300–311PubMedGoogle Scholar
  60. Garten W, Bosch FX, Linder D, Rott R, Klenk HD (1981) Proteolytic activation of the influenza virus hemagglutinin: the structure of the cleavage site and the enzymes involved in cleavage. Virology 115(2):361–374PubMedGoogle Scholar
  61. Glaser L, Stevens J, Zamarin D, Wilson IA, Garcia-Sastre A, Tumpey TM, Basler CF, Taubenberger JK, Palese P (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 79(17):11533–11536PubMedPubMedCentralGoogle Scholar
  62. Gorai T, Goto H, Noda T, Watanabe T, Kozuka-Hata H, Oyama M, Takano R, Neumann G, Watanabe S, Kawaoka Y (2012) F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding. Proc Natl Acad Sci USA 109(12):4615–4620PubMedGoogle Scholar
  63. Gschweitl M, Ulbricht A, Barnes CA, Enchev RI, Stoffel-Studer I, Meyer-Schaller N, Huotari J, Yamauchi Y, Greber UF, Helenius A, Peter M (2016) A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. eLife 5:e13841Google Scholar
  64. Gu W, Gallagher GR, Dai W, Liu P, Li R, Trombly MI, Gammon DB, Mello CC, Wang JP, Finberg RW (2015) Influenza A virus preferentially snatches noncoding RNA caps. RNA 21(12):2067–2075PubMedPubMedCentralGoogle Scholar
  65. Guinea R, Carrasco L (1995) Requirement for vacuolar proton-ATPase activity during entry of influenza virus into cells. J Virol 69(4):2306–2312PubMedPubMedCentralGoogle Scholar
  66. Haasbach E, Hartmayer C, Planz O (2013) Combination of MEK inhibitors and oseltamivir leads to synergistic antiviral effects after influenza A virus infection in vitro. Antiviral Res 98(2):319–324PubMedGoogle Scholar
  67. Hale BG (2014) Conformational plasticity of the influenza A virus NS1 protein. J Gen Virol 95(Pt 10):2099–2105PubMedGoogle Scholar
  68. Hale BG, Jackson D, Chen YH, Lamb RA, Randall RE (2006) Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling. Proc Natl Acad Sci USA 103(38):14194–14199PubMedGoogle Scholar
  69. He J, Sun E, Bujny MV, Kim D, Davidson MW, Zhuang X (2013) Dual function of CD81 in influenza virus uncoating and budding. PLoS Pathog 9(10):e1003701PubMedPubMedCentralGoogle Scholar
  70. Heaton NS, Moshkina N, Fenouil R, Gardner TJ, Aguirre S, Shah PS, Zhao N, Manganaro L, Hultquist JF, Noel J, Sachs D, Hamilton J, Leon PE, Chawdury A, Tripathi S, Melegari C, Campisi L, Hai R, Metreveli G, Gamarnik AV, Garcia-Sastre A, Greenbaum B, Simon V, Fernandez-Sesma A, Krogan NJ, Mulder LC, van Bakel H, Tortorella D, Taunton J, Palese P, Marazzi I (2016) Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection. Immunity 44(1):46–58PubMedPubMedCentralGoogle Scholar
  71. Hebert DN, Zhang JX, Chen W, Foellmer B, Helenius A (1997) The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol 139(3):613–623PubMedPubMedCentralGoogle Scholar
  72. Holsinger LJ, Lamb RA (1991) Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology 183(1):32–43PubMedGoogle Scholar
  73. Hsu WB, Shih JL, Shih JR, Du JL, Teng SC, Huang LM, Wang WB (2013) Cellular protein HAX1 interacts with the influenza A virus PA polymerase subunit and impedes its nuclear translocation. J Virol 87(1):110–123PubMedPubMedCentralGoogle Scholar
  74. Hu Y, Liu X, Zhang A, Zhou H, Liu Z, Chen H, Jin M (2015) CHD3 facilitates vRNP nuclear export by interacting with NES1 of influenza A virus NS2. Cell Mol Life Sci CMLS 72(5):971–982PubMedGoogle Scholar
  75. Huang RT, Rott R, Klenk HD (1981) Influenza viruses cause hemolysis and fusion of cells. Virology 110(1):243–247PubMedGoogle Scholar
  76. Huang S, Chen J, Chen Q, Wang H, Yao Y, Chen J, Chen Z (2013) A second CRM1-dependent nuclear export signal in the influenza A virus NS2 protein contributes to the nuclear export of viral ribonucleoproteins. J Virol 87(2):767–778PubMedPubMedCentralGoogle Scholar
  77. Huarte M, Sanz-Ezquerro JJ, Roncal F, Ortin J, Nieto A (2001) PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J Virol 75(18):8597–8604PubMedPubMedCentralGoogle Scholar
  78. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500PubMedPubMedCentralGoogle Scholar
  79. Huotari J, Meyer-Schaller N, Hubner M, Stauffer S, Katheder N, Horvath P, Mancini R, Helenius A, Peter M (2012) Cullin-3 regulates late endosome maturation. Proc Natl Acad Sci USA 109(3):823–828PubMedGoogle Scholar
  80. Hutchinson EC, Fodor E (2013) Transport of the influenza virus genome from nucleus to nucleus. Viruses 5(10):2424–2446PubMedPubMedCentralGoogle Scholar
  81. Hutchinson EC, Charles PD, Hester SS, Thomas B, Trudgian D, Martinez-Alonso M, Fodor E (2014) Conserved and host-specific features of influenza virion architecture. Nat Commun 5:4816PubMedPubMedCentralGoogle Scholar
  82. Jorba N, Juarez S, Torreira E, Gastaminza P, Zamarreno N, Albar JP, Ortin J (2008) Analysis of the interaction of influenza virus polymerase complex with human cell factors. Proteomics 8(10):2077–2088PubMedGoogle Scholar
  83. Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie LA, Hess S, Maurer AP, Muller E, Wolff T, Rudel T, Meyer TF (2010) Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463(7282):818–822PubMedGoogle Scholar
  84. Kawaguchi A, Matsumoto K, Nagata K (2012) YB-1 functions as a porter to lead influenza virus ribonucleoprotein complexes to microtubules. J Virol 86(20):11086–11095PubMedPubMedCentralGoogle Scholar
  85. Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza A viruses by trypsin treatment. Virology 68(2):426–439PubMedGoogle Scholar
  86. Klenk HD, Garten W, Rott R (1984) Inhibition of proteolytic cleavage of the hemagglutinin of influenza virus by the calcium-specific ionophore A23187. EMBO J 3(12):2911–2915PubMedPubMedCentralGoogle Scholar
  87. Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG, Tscherne DM, Ortigoza MB, Liang Y, Gao Q, Andrews SE, Bandyopadhyay S, De Jesus P, Tu BP, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, Garcia-Sastre A, Young JA, Palese P, Shaw ML, Chanda SK (2010) Human host factors required for influenza virus replication. Nature 463(7282):813–817PubMedPubMedCentralGoogle Scholar
  88. Koppstein D, Ashour J, Bartel DP (2015) Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Res 43(10):5052–5064PubMedPubMedCentralGoogle Scholar
  89. Kuo RL, Li ZH, Li LH, Lee KM, Tam EH, Liu HM, Liu HP, Shih SR, Wu CC (2016) Interactome analysis of the NS1 protein encoded by influenza A H1N1 virus reveals a positive regulatory role of host protein PRP19 in viral replication. J Proteome Res 15(5):1639–1648PubMedGoogle Scholar
  90. Lakadamyali M, Rust MJ, Babcock HP, Zhuang X (2003) Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA 100(16):9280–9285PubMedGoogle Scholar
  91. Landeras-Bueno S, Jorba N, Perez-Cidoncha M, Ortin J (2011) The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. PLoS Pathog 7(11):e1002397PubMedPubMedCentralGoogle Scholar
  92. Li S, Min JY, Krug RM, Sen GC (2006) Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 349(1):13–21PubMedGoogle Scholar
  93. Li X, Foley EA, Molloy KR, Li Y, Chait BT, Kapoor TM (2012) Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions. J Am Chem Soc 134(4):1982–1985PubMedPubMedCentralGoogle Scholar
  94. Li S, Yen L, Pastor WA, Johnston JB, Du J, Shew CJ, Liu W, Ho J, Stender B, Clark AT, Burlingame AL, Daxinger L, Patel DJ, Jacobsen SE (2016) Mouse MORC3 is a GHKL ATPase that localizes to H3K4me3 marked chromatin. Proc Natl Acad Sci USA 113(35):E5108–5116PubMedGoogle Scholar
  95. Liu J, Stevens DJ, Haire LF, Walker PA, Coombs PJ, Russell RJ, Gamblin SJ, Skehel JJ (2009) Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proc Natl Acad Sci USA 106(40):17175–17180PubMedGoogle Scholar
  96. Liu G, Xiang Y, Guo C, Pei Y, Wang Y, Kitazato K (2014) Cofilin-1 is involved in regulation of actin reorganization during influenza A virus assembly and budding. Biochem Biophys Res Commun 453(4):821–825PubMedGoogle Scholar
  97. Long JS, Giotis ES, Moncorge O, Frise R, Mistry B, James J, Morisson M, Iqbal M, Vignal A, Skinner MA, Barclay WS (2016) Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature 529(7584):101–104PubMedPubMedCentralGoogle Scholar
  98. Luzio JP, Bright NA, Pryor PR (2007) The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans 35(Pt 5):1088–1091PubMedGoogle Scholar
  99. Ma H, Kien F, Maniere M, Zhang Y, Lagarde N, Tse KS, Poon LL, Nal B (2012) Human annexin A6 interacts with influenza a virus protein M2 and negatively modulates infection. J Virol 86(3):1789–1801PubMedPubMedCentralGoogle Scholar
  100. Marcos-Villar L, Pazo A, Nieto A (2016) Influenza virus and chromatin: role of the CHD1 chromatin remodeler in the virus life cycle. J Virol 90(7):3694–3707PubMedPubMedCentralGoogle Scholar
  101. Martin K, Helenius A (1991) Transport of incoming influenza virus nucleocapsids into the nucleus. J Virol 65:232–244PubMedPubMedCentralGoogle Scholar
  102. Martinez-Alonso M, Hengrung N, Fodor E (2016) RNA-free and ribonucleoprotein-associated influenza virus polymerases directly bind the serine-5-phosphorylated carboxyl-terminal domain of host RNA polymerase II. J Virol 90(13):6014–6021PubMedPubMedCentralGoogle Scholar
  103. Matlin KS, Reggio H, Helenius A, Simons K (1981) Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol 91(3 Pt 1):601–613PubMedGoogle Scholar
  104. Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74(18):8502–8512PubMedPubMedCentralGoogle Scholar
  105. Mayer D, Molawi K, Martinez-Sobrido L, Ghanem A, Thomas S, Baginsky S, Grossmann J, Garcia-Sastre A, Schwemmle M (2007) Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res 6(2):672–682PubMedPubMedCentralGoogle Scholar
  106. Mehle A, Doudna JA (2009) Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci USA 106(50):21312–21316PubMedGoogle Scholar
  107. Melen K, Fagerlund R, Franke J, Kohler M, Kinnunen L, Julkunen I (2003) Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J Biol Chem 278(30):28193–28200PubMedGoogle Scholar
  108. Mibayashi M, Martinez-Sobrido L, Loo YM, Cardenas WB, Gale M Jr, Garcia-Sastre A (2007) Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol 81(2):514–524PubMedGoogle Scholar
  109. Momose F, Basler CF, O’Neill RE, Iwamatsu A, Palese P, Nagata K (2001) Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol 75(4):1899–1908PubMedPubMedCentralGoogle Scholar
  110. Momose F, Kikuchi Y, Komase K, Morikawa Y (2007) Visualization of microtubule-mediated transport of influenza viral progeny ribonucleoprotein. Microbes Infect 9(12–13):1422–1433PubMedGoogle Scholar
  111. Momose F, Sekimoto T, Ohkura T, Jo S, Kawaguchi A, Nagata K, Morikawa Y (2011) Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome. PLoS One 6(6):e21123PubMedPubMedCentralGoogle Scholar
  112. Moncorge O, Mura M, Barclay WS (2010) Evidence for avian and human host cell factors that affect the activity of influenza virus polymerase. J Virol 84(19):9978–9986PubMedPubMedCentralGoogle Scholar
  113. Mor A, White A, Zhang K, Thompson M, Esparza M, Munoz-Moreno R, Koide K, Lynch KW, Garcia-Sastre A, Fontoura BM (2016) Influenza virus mRNA trafficking through host nuclear speckles. Nat Microbiol 1(7):16069PubMedGoogle Scholar
  114. Mu FT, Callaghan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL, McCluskey J, Yeo JP, Tock EP, Toh BH (1995) EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J Biol Chem 270(22):13503–13511PubMedGoogle Scholar
  115. Muhlbauer D, Dzieciolowski J, Hardt M, Hocke A, Schierhorn KL, Mostafa A, Muller C, Wisskirchen C, Herold S, Wolff T, Ziebuhr J, Pleschka S (2015) Influenza virus-induced caspase-dependent enlargement of nuclear pores promotes nuclear export of viral ribonucleoprotein complexes. J Virol 89(11):6009–6021PubMedPubMedCentralGoogle Scholar
  116. Munier S, Rolland T, Diot C, Jacob Y, Naffakh N (2013) Exploration of binary virus-host interactions using an infectious protein complementation assay. Mol Cell Proteomics MCP 12(10):2845–2855PubMedGoogle Scholar
  117. Nayak DP, Balogun RA, Yamada H, Zhou ZH, Barman S (2009) Influenza virus morphogenesis and budding. Virus Res 143(2):147–161PubMedPubMedCentralGoogle Scholar
  118. Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM (1998) Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3’end formation of cellular pre-mRNAs. Mol Cell 1(7):991–1000PubMedGoogle Scholar
  119. Neumann G, Hughes MT, Kawaoka Y (2000) Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J 19(24):6751–6758PubMedPubMedCentralGoogle Scholar
  120. Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics MCP 12(12):3444–3452PubMedGoogle Scholar
  121. O’Neill R, Jaskunas R, Blobel G, Palese P, Moroianu J (1995) Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors requiered for protein import. J Biol Chem 270:22701–22704PubMedGoogle Scholar
  122. O’Neill RE, Talon J, Palese P (1998) The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J 17(1):288–296PubMedPubMedCentralGoogle Scholar
  123. Perreira JM, Aker AM, Savidis G, Chin CR, McDougall WM, Portmann JM, Meraner P, Smith MC, Rahman M, Baker RE, Gauthier A, Franti M, Brass AL (2015) RNASEK Is a V-ATPase-associated factor required for endocytosis and the replication of rhinovirus, influenza A virus, and dengue virus. Cell Rep 12(5):850–863PubMedGoogle Scholar
  124. Perreira JM, Meraner P, Brass AL (2016) Functional genomic strategies for elucidating human-virus interactions: will CRISPR Knockout RNAi and haploid cells? Adv Virus Res 94:1–51PubMedGoogle Scholar
  125. Perwitasari O, Johnson S, Yan X, Howerth E, Shacham S, Landesman Y, Baloglu E, McCauley D, Tamir S, Tompkins SM, Tripp RA (2014) Verdinexor, a novel selective inhibitor of nuclear export, reduces influenza a virus replication in vitro and in vivo. J Virol 88(17):10228–10243PubMedPubMedCentralGoogle Scholar
  126. Pinto LH, Holsinger LJ, Lamb RA (1992) Influenza virus M2 protein has ion channel activity. Cell 69:517–528PubMedGoogle Scholar
  127. Pleschka S, Wolff T, Ehrhardt C, Hobom G, Planz O, Rapp UR, Ludwig S (2001) Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol 3(3):301–305PubMedGoogle Scholar
  128. Pohl MO, Edinger TO, Stertz S (2014) Prolidase is required for early trafficking events during influenza A virus entry. J Virol 88(19):11271–11283PubMedPubMedCentralGoogle Scholar
  129. Pohl MO, Lanz C, Stertz S (2016) Late stages of the influenza A virus replication cycle-a tight interplay between virus and host. J Gen Virol 97(9):2058–2072PubMedGoogle Scholar
  130. Predicala R, Zhou Y (2013) The role of Ran-binding protein 3 during influenza A virus replication. J Gen Virol 94(Pt 5):977–984PubMedGoogle Scholar
  131. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24(3):218–229PubMedGoogle Scholar
  132. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17(10):1030–1032PubMedGoogle Scholar
  133. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749PubMedGoogle Scholar
  134. Rodriguez A, Perez-Gonzalez A, Nieto A (2007) Influenza virus infection causes specific degradation of the largest subunit of cellular RNA polymerase II. J Virol 81(10):5315–5324PubMedPubMedCentralGoogle Scholar
  135. Rodriguez A, Perez-Gonzalez A, Nieto A (2011) Cellular human CLE/C14orf166 protein interacts with influenza virus polymerase and is required for viral replication. J Virol 85(22):12062–12066PubMedPubMedCentralGoogle Scholar
  136. Rodriguez-Frandsen A, de Lucas S, Perez-Gonzalez A, Perez-Cidoncha M, Roldan-Gomendio A, Pazo A, Marcos-Villar L, Landeras-Bueno S, Ortin J, Nieto A (2016) hCLE/C14orf166, a cellular protein required for viral replication, is incorporated into influenza virus particles. Sci Rep 6:20744PubMedPubMedCentralGoogle Scholar
  137. Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127(2):361–373PubMedGoogle Scholar
  138. Rossman JS, Leser GP, Lamb RA (2012) Filamentous influenza virus enters cells via macropinocytosis. J Virol 86(20):10950–10960PubMedPubMedCentralGoogle Scholar
  139. Roy AM, Parker JS, Parrish CR, Whittaker GR (2000) Early stages of influenza virus entry into Mv-1 lung cells: involvement of dynamin. Virology 267(1):17–28PubMedGoogle Scholar
  140. Russell CJ (2014) Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology. Curr Top Microbiol Immunol 385:93–116PubMedGoogle Scholar
  141. Rust MJ, Lakadamyali M, Zhang F, Zhuang X (2004) Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol 11(6):567–573PubMedPubMedCentralGoogle Scholar
  142. Sakai K, Ami Y, Tahara M, Kubota T, Anraku M, Abe M, Nakajima N, Sekizuka T, Shirato K, Suzaki Y, Ainai A, Nakatsu Y, Kanou K, Nakamura K, Suzuki T, Komase K, Nobusawa E, Maenaka K, Kuroda M, Hasegawa H, Kawaoka Y, Tashiro M, Takeda M (2014) The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. J Virol 88(10):5608–5616PubMedPubMedCentralGoogle Scholar
  143. Sauter NK, Bednarski MD, Wurzburg BA, Hanson JE, Whitesides GM, Skehel JJ, Wiley DC (1989) Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. Biochemistry 28(21):8388–8396PubMedGoogle Scholar
  144. Scheiffele P, Roth MG, Simons K (1997) Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 16(18):5501–5508PubMedPubMedCentralGoogle Scholar
  145. Schrauwen EJ, Fouchier RA (2014) Host adaptation and transmission of influenza A viruses in mammals. Emerg Microbes Infect 3(2):e9PubMedPubMedCentralGoogle Scholar
  146. Seo YJ, Pritzl CJ, Vijayan M, Bomb K, McClain ME, Alexander S, Hahm B (2013) Sphingosine kinase 1 serves as a pro-viral factor by regulating viral RNA synthesis and nuclear export of viral ribonucleoprotein complex upon influenza virus infection. PLoS One 8(8):e75005PubMedPubMedCentralGoogle Scholar
  147. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87PubMedGoogle Scholar
  148. Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, Wu L, Gupta PB, Hao T, Silver SJ, Root DE, Hill DE, Regev A, Hacohen N (2009) A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139(7):1255–1267PubMedPubMedCentralGoogle Scholar
  149. Shaw ML (2011) The host interactome of influenza virus presents new potential targets for antiviral drugs. Rev Med Virol 21(6):358–369PubMedPubMedCentralGoogle Scholar
  150. Shaw ML, Palese P (2013) Orthomyxoviridae. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1151–1185Google Scholar
  151. Shaw ML, Stone KL, Colangelo CM, Gulcicek EE, Palese P (2008) Cellular proteins in influenza virus particles. PLoS Pathog 4(6):e1000085PubMedPubMedCentralGoogle Scholar
  152. Shih SR, Krug RM (1996) Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J 15(19):5415–5427PubMedPubMedCentralGoogle Scholar
  153. Shimizu T, Takizawa N, Watanabe K, Nagata K, Kobayashi N (2011) Crucial role of the influenza virus NS2 (NEP) C-terminal domain in M1 binding and nuclear export of vRNP. FEBS Lett 585(1):41–46PubMedGoogle Scholar
  154. Sieczkarski SB, Whittaker GR (2002) Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol 76(20):10455–10464PubMedPubMedCentralGoogle Scholar
  155. Sieczkarski SB, Whittaker GR (2003) Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses. Traffic 4(5):333–343PubMedGoogle Scholar
  156. Sieczkarski SB, Brown HA, Whittaker GR (2003) Role of protein kinase C betaII in influenza virus entry via late endosomes. J Virol 77(1):460–469PubMedPubMedCentralGoogle Scholar
  157. Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394(6692):494–498PubMedGoogle Scholar
  158. Simpson-Holley M, Ellis D, Fisher D, Elton D, McCauley J, Digard P (2002) A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301(2):212–225PubMedGoogle Scholar
  159. Soderholm S, Kainov DE, Ohman T, Denisova OV, Schepens B, Kulesskiy E, Imanishi SY, Corthals G, Hintsanen P, Aittokallio T, Saelens X, Matikainen S, Nyman TA (2016) Phosphoproteomics to characterize host response during influenza A virus infection of human macrophages. Mol Cell Proteomics MCP 15(10):3203–3219PubMedGoogle Scholar
  160. Stauffer S, Feng Y, Nebioglu F, Heilig R, Picotti P, Helenius A (2014) Stepwise priming by acidic pH and a high K+ concentration is required for efficient uncoating of influenza A virus cores after penetration. J Virol 88(22):13029–13046PubMedPubMedCentralGoogle Scholar
  161. Steel J, Lowen AC, Mubareka S, Palese P (2009) Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627 K or 627E/701N. PLoS Pathog 5(1):e1000252PubMedPubMedCentralGoogle Scholar
  162. Steinhauer DA (1999) Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258(1):1–20PubMedGoogle Scholar
  163. Stertz S, Shaw ML (2011) Uncovering the global host cell requirements for influenza virus replication via RNAi screening. Microbes Infect 13(5):516–525PubMedPubMedCentralGoogle Scholar
  164. Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC, Wilson IA (2006a) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 355(5):1143–1155PubMedGoogle Scholar
  165. Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006b) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312(5772):404–410PubMedGoogle Scholar
  166. Su WC, Chen YC, Tseng CH, Hsu PW, Tung KF, Jeng KS, Lai MM (2013) Pooled RNAi screen identifies ubiquitin ligase Itch as crucial for influenza A virus release from the endosome during virus entry. Proc Natl Acad Sci USA 110(43):17516–17521PubMedGoogle Scholar
  167. Su WC, Hsu SF, Lee YY, Jeng KS, Lai MM (2015) A nucleolar protein, ribosomal RNA processing 1 Homolog B (RRP1B), enhances the recruitment of cellular mRNA in influenza virus transcription. J Virol 89(22):11245–11255PubMedPubMedCentralGoogle Scholar
  168. Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2-Gene of Influenza-A virus is a determinant of host range. J Virol 67:1761–1764PubMedPubMedCentralGoogle Scholar
  169. Sugiyama K, Kawaguchi A, Okuwaki M, Nagata K (2015) pp 32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA. eLife 4Google Scholar
  170. Sugrue RJ, Hay AJ (1991) Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel. Virology 180:617–624PubMedGoogle Scholar
  171. Sun E, He J, Zhuang X (2013) Dissecting the role of COPI complexes in influenza virus infection. J Virol 87(5):2673–2685PubMedPubMedCentralGoogle Scholar
  172. Tafesse FG, Sanyal S, Ashour J, Guimaraes CP, Hermansson M, Somerharju P, Ploegh HL (2013) Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci USA 110(16):6406–6411PubMedGoogle Scholar
  173. Tafforeau L, Chantier T, Pradezynski F, Pellet J, Mangeot PE, Vidalain PO, Andre P, Rabourdin-Combe C, Lotteau V (2011) Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network. J Virol 85(24):13010–13018PubMedPubMedCentralGoogle Scholar
  174. Tarnow C, Engels G, Arendt A, Schwalm F, Sediri H, Preuss A, Nelson PS, Garten W, Klenk HD, Gabriel G, Bottcher-Friebertshauser E (2014) TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol 88(9):4744–4751PubMedPubMedCentralGoogle Scholar
  175. Tawaratsumida K, Phan V, Hrincius ER, High AA, Webby R, Redecke V, Hacker H (2014) Quantitative proteomic analysis of the influenza A virus nonstructural proteins NS1 and NS2 during natural cell infection identifies PACT as an NS1 target protein and antiviral host factor. J Virol 88(16):9038–9048PubMedPubMedCentralGoogle Scholar
  176. Terrier O, Carron C, De Chassey B, Dubois J, Traversier A, Julien T, Cartet G, Proust A, Hacot S, Ressnikoff D, Lotteau V, Lina B, Diaz JJ, Moules V, Rosa-Calatrava M (2016) Nucleolin interacts with influenza A nucleoprotein and contributes to viral ribonucleoprotein complexes nuclear trafficking and efficient influenza viral replication. Sci Rep 6:29006PubMedPubMedCentralGoogle Scholar
  177. Thierry E, Guilligay D, Kosinski J, Bock T, Gaudon S, Round A, Pflug A, Hengrung N, El Omari K, Baudin F, Hart DJ, Beck M, Cusack S (2016) Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol Cell 61(1):125–137PubMedPubMedCentralGoogle Scholar
  178. Tijsterman M, Plasterk RH (2004) Dicers at RISC; the mechanism of RNAi. Cell 117(1):1–3PubMedGoogle Scholar
  179. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, Lindblade KA, Cox NJ, Anderson LJ, Rupprecht CE, Donis RO (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci USA 109(11):4269–4274PubMedGoogle Scholar
  180. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO (2013) New world bats harbor diverse influenza a viruses. PLoS Pathog 9(10):e1003657PubMedPubMedCentralGoogle Scholar
  181. Tran AT, Rahim MN, Ranadheera C, Kroeker A, Cortens JP, Opanubi KJ, Wilkins JA, Coombs KM (2013) Knockdown of specific host factors protects against influenza virus-induced cell death. Cell Death Dis 4:e769PubMedPubMedCentralGoogle Scholar
  182. Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC, Yanguez E, Andenmatten D, Pache L, Manicassamy B, Albrecht RA, Gonzalez MG, Nguyen Q, Brass A, Elledge S, White M, Shapira S, Hacohen N, Karlas A, Meyer TF, Shales M, Gatorano A, Johnson JR, Jang G, Johnson T, Verschueren E, Sanders D, Krogan N, Shaw M, Konig R, Stertz S, Garcia-Sastre A, Chanda SK (2015) Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18(6):723–735PubMedPubMedCentralGoogle Scholar
  183. Tsai PL, Chiou NT, Kuss S, Garcia-Sastre A, Lynch KW, Fontoura BM (2013) Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing. PLoS Pathog 9(6):e1003460PubMedPubMedCentralGoogle Scholar
  184. Van Hoeven N, Pappas C, Belser JA, Maines TR, Zeng H, Garcia-Sastre A, Sasisekharan R, Katz JM, Tumpey TM (2009) Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc Natl Acad Sci USA 106(9):3366–3371PubMedGoogle Scholar
  185. van Riel D, den Bakker MA, Leijten LM, Chutinimitkul S, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2010) Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses. Am J Pathol 176(4):1614–1618PubMedPubMedCentralGoogle Scholar
  186. Varble A, Benitez AA, Schmid S, Sachs D, Shim JV, Rodriguez-Barrueco R, Panis M, Crumiller M, Silva JM, Sachidanandam R, tenOever BR (2013) An in vivo RNAi screening approach to identify host determinants of virus replication. Cell Host Microbe 14(3):346–356PubMedGoogle Scholar
  187. Ver LS, Marcos-Villar L, Landeras-Bueno S, Nieto A, Ortin J (2015) The cellular factor NXP2/MORC3 is a positive regulator of influenza virus multiplication. J Virol 89(19):10023–10030PubMedPubMedCentralGoogle Scholar
  188. Vreede FT, Chan AY, Sharps J, Fodor E (2010) Mechanisms and functional implications of the degradation of host RNA polymerase II in influenza virus infected cells. Virology 396(1):125–134PubMedPubMedCentralGoogle Scholar
  189. Wang P, Palese P, O’Neill RE (1997) The NPI-1/NPI-3 (Karyopherin alpha) binding site on the influenza A virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol 71:1850–1856PubMedPubMedCentralGoogle Scholar
  190. Wang S, Li H, Chen Y, Wei H, Gao GF, Liu H, Huang S, Chen JL (2012) Transport of influenza virus neuraminidase (NA) to host cell surface is regulated by ARHGAP21 and Cdc42 proteins. J Biol Chem 287(13):9804–9816PubMedPubMedCentralGoogle Scholar
  191. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84PubMedGoogle Scholar
  192. Ward SE, Kim HS, Komurov K, Mendiratta S, Tsai PL, Schmolke M, Satterly N, Manicassamy B, Forst CV, Roth MG, Garcia-Sastre A, Blazewska KM, McKenna CE, Fontoura BM, White MA (2012) Host modulators of H1N1 cytopathogenicity. PLoS One 7(8):e39284PubMedPubMedCentralGoogle Scholar
  193. Watanabe T, Kawaoka Y (2015) Influenza virus-host interactomes as a basis for antiviral drug development. Curr Opin Virol 14:71–78PubMedPubMedCentralGoogle Scholar
  194. Watanabe K, Fuse T, Asano I, Tsukahara F, Maru Y, Nagata K, Kitazato K, Kobayashi N (2006) Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS Lett 580(24):5785–5790PubMedGoogle Scholar
  195. Watanabe K, Takizawa N, Noda S, Tsukahara F, Maru Y, Kobayashi N (2008) Hsc70 regulates the nuclear export but not the import of influenza viral RNP: a possible target for the development of anti-influenza virus drugs. Drug Discoveries Ther 2(2):77–84Google Scholar
  196. Watanabe K, Shimizu T, Noda S, Tsukahara F, Maru Y, Kobayashi N (2014a) Nuclear export of the influenza virus ribonucleoprotein complex: Interaction of Hsc70 with viral proteins M1 and NS2. FEBS open bio 4:683–688PubMedPubMedCentralGoogle Scholar
  197. Watanabe T, Kawakami E, Shoemaker JE, Lopes TJ, Matsuoka Y, Tomita Y, Kozuka-Hata H, Gorai T, Kuwahara T, Takeda E, Nagata A, Takano R, Kiso M, Yamashita M, Sakai-Tagawa Y, Katsura H, Nonaka N, Fujii H, Fujii K, Sugita Y, Noda T, Goto H, Fukuyama S, Watanabe S, Neumann G, Oyama M, Kitano H, Kawaoka Y (2014b) Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 16(6):795–805PubMedPubMedCentralGoogle Scholar
  198. Webster RG, Yakhno M, Hinshaw VS, Bean WJ, Murti KG (1978) Intestinal influenza: replication and characterization of influenza viruses in ducks. Virology 84:268–278PubMedGoogle Scholar
  199. Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC (1988) Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333(6172):426–431PubMedGoogle Scholar
  200. Wharton SA, Belshe RB, Skehel JJ, Hay AJ (1994) Role of virion M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. J Gen Virol 75(Pt 4):945–948PubMedGoogle Scholar
  201. Wright PF, Neumann G, Kawaoka Y (2013) Orthomyxoviruses. In: Knipe DM, Howley PM (eds) Fields virology, vol 1. Lippincott Williams & Wilkins, Philadelphia, pp 1186–1243Google Scholar
  202. Wu CY, Jeng KS, Lai MM (2011) The SUMOylation of matrix protein M1 modulates the assembly and morphogenesis of influenza A virus. J Virol 85(13):6618–6628PubMedPubMedCentralGoogle Scholar
  203. Wurzer WJ, Planz O, Ehrhardt C, Giner M, Silberzahn T, Pleschka S, Ludwig S (2003) Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J 22(11):2717–2728PubMedPubMedCentralGoogle Scholar
  204. Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA, Sakai-Tagawa Y, Muramoto Y, Ito M, Kiso M, Horimoto T, Shinya K, Sawada T, Usui T, Murata T, Lin Y, Hay A, Haire LF, Stevens DJ, Russell RJ, Gamblin SJ, Skehel JJ, Kawaoka Y (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444(7117):378–382PubMedGoogle Scholar
  205. Yamauchi Y, Boukari H, Banerjee I, Sbalzarini IF, Horvath P, Helenius A (2011) Histone deacetylase 8 is required for centrosome cohesion and influenza A virus entry. PLoS Pathog 7(10):e1002316PubMedPubMedCentralGoogle Scholar
  206. Yang X, Steukers L, Forier K, Xiong R, Braeckmans K, Van Reeth K, Nauwynck H (2014) A beneficiary role for neuraminidase in influenza virus penetration through the respiratory mucus. PLoS One 9(10):e110026PubMedPubMedCentralGoogle Scholar
  207. Yasuda J, Nakada S, Kato A, Toyoda T, Ishihama A (1993) Molecular assembly of influenza virus: association of the NS2 protein with virion matrix. Virology 196(1):249–255PubMedGoogle Scholar
  208. Ye Z, Liu T, Offringa DP, McInnis J, Levandowski RA (1999) Association of influenza virus matrix protein with ribonucleoproteins. J Virol 73(9):7467–7473PubMedPubMedCentralGoogle Scholar
  209. York A, Hutchinson EC, Fodor E (2014) Interactome analysis of the influenza A virus transcription/replication machinery identifies protein phosphatase 6 as a cellular factor required for efficient virus replication. J Virol 88(22):13284–13299PubMedPubMedCentralGoogle Scholar
  210. Zanin M, Marathe B, Wong SS, Yoon SW, Collin E, Oshansky C, Jones J, Hause B, Webby R (2015) Pandemic swine H1N1 influenza viruses with almost undetectable neuraminidase activity are not transmitted via aerosols in ferrets and are inhibited by human mucus but not swine mucus. J Virol 89(11):5935–5948PubMedPubMedCentralGoogle Scholar
  211. Zebedee SL, Lamb RA (1988) Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 62(8):2762–2772PubMedPubMedCentralGoogle Scholar
  212. Zhang J, Li G, Ye X (2010) Cyclin T1/CDK9 interacts with influenza A virus polymerase and facilitates its association with cellular RNA polymerase II. J Virol 84(24):12619–12627PubMedPubMedCentralGoogle Scholar
  213. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509(7501):487–491PubMedGoogle Scholar
  214. Zhu L, Ly H, Liang Y (2014) PLC-gamma1 signaling plays a subtype-specific role in postbinding cell entry of influenza A virus. J Virol 88(1):417–424PubMedPubMedCentralGoogle Scholar
  215. Zhu P, Liang L, Shao X, Luo W, Jiang S, Zhao Q, Sun N, Zhao Y, Li J, Wang J, Zhou Y, Zhang J, Wang G, Jiang L, Chen H, Li C (2016) Host cellular protein TRAPPC6ADelta interacts with influenza A virus M2 protein and regulates viral propagation by modulating M2 trafficking. J Virol 91(1). pii: e01757-16Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Institute of Medical VirologyUniversity of ZurichZurichSwitzerland

Personalised recommendations