Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections

  • Rafael K. Campos
  • Mariano A. Garcia-BlancoEmail author
  • Shelton S. BradrickEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 419)


Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus–host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection.



We thank our colleagues from the Bradrick and Garcia-Blanco laboratory, University of Texas Medical Branch for their support. This work was supported by NIH grants R01-AI089526 and R01-AI101431 (MAG-B) and startup funds from the University of Texas Medical Branch.


  1. Acosta EG, Bartenschlager R (2016) Paradoxical role of antibodies in dengue virus infections: considerations for prophylactic vaccine development. Expert Rev Vaccines 15:467–482PubMedGoogle Scholar
  2. Acosta EG, Castilla V, Damonte EB (2009) Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11:1533–1549PubMedGoogle Scholar
  3. Agis-Juarez RA, Galvan I, Medina F, Daikoku T, Padmanabhan R, Ludert JE, del Angel RM (2009) Polypyrimidine tract-binding protein is relocated to the cytoplasm and is required during dengue virus infection in Vero cells. J Gen Virol 90:2893–2901PubMedGoogle Scholar
  4. Anwar A, Leong KM, Ng ML, Chu JJ, Garcia-Blanco MA (2009) The polypyrimidine tract-binding protein is required for efficient dengue virus propagation and associates with the viral replication machinery. J Biol Chem 284:17021–170219PubMedPubMedCentralGoogle Scholar
  5. Artpradit C, Robinson LN, Gavrilov BK, Rurak TT, Ruchirawat M, Sasisekharan R (2013) Recognition of heparan sulfate by clinical strains of dengue virus serotype 1 using recombinant subviral particles. Virus Res 176:69–77PubMedPubMedCentralGoogle Scholar
  6. Ast T, Cohen G, Schuldiner M (2013) A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152:1134–1145PubMedGoogle Scholar
  7. Avirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, Kasinrerk W, Malasit P, Atkinson JP, Diamond MS (2007) Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog 3:e183PubMedPubMedCentralGoogle Scholar
  8. Barrows NJ, Campos RK, Powell ST, Prasanth KR, Schott-Lerner G, Soto-Acosta R, Galarza-Munoz G, McGrath EL, Urrabaz-Garza R, Gao J, Wu P, Menon R, Saade G, Fernandez-Salas I, Rossi SL, Vasilakis N, Routh A, Bradrick SS, Garcia-Blanco MA (2016) A screen of FDA-approved drugs for inhibitors of Zika Virus infection. Cell Host Microbe 20:259–270PubMedPubMedCentralGoogle Scholar
  9. Beasley DW, Whiteman MC, Zhang S, Huang CY, Schneider BS, Smith DR, Gromowski GD, Higgs S, Kinney RM, Barrett AD (2005) Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347PubMedPubMedCentralGoogle Scholar
  10. Beatman E, Oyer R, Shives KD, Hedman K, Brault AC, Tyler KL, Beckham JD (2012) West Nile virus growth is independent of autophagy activation. Virology 433:262–272PubMedPubMedCentralGoogle Scholar
  11. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507PubMedPubMedCentralGoogle Scholar
  12. Blumenthal T, Carmichael GG (1979) RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem 48:525–548PubMedGoogle Scholar
  13. Byk LA, Gamarnik AV (2016) Properties and functions of the Dengue Virus Capsid Protein. Annu Rev Virol 3:263–281PubMedPubMedCentralGoogle Scholar
  14. Byk LA, Iglesias NG, De Maio FA, Gebhard LG, Rossi M, Gamarnik AV (2016) Dengue virus genome uncoating requires ubiquitination. MBio 7(3):e00804–e00816PubMedPubMedCentralGoogle Scholar
  15. Cabrera-Hernandez A, Thepparit C, Suksanpaisan L, Smith DR (2007) Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol 79:386–392PubMedGoogle Scholar
  16. Campos RK, Wong B, Xie X, Lu YF, Shi PY, Pompon J, Garcia-Blanco MA, Bradrick SS (2017) RPLP1 and RPLP2 are essential flavivirus host factors that promote early viral protein accumulation. J Virol 91(4):e01706–e01716PubMedPubMedCentralGoogle Scholar
  17. Carnec X, Meertens L, Dejarnac O, Perera-Lecoin M, Hafirassou ML, Kitaura J, Ramdasi R, Schwartz O, Amara A (2016) The Phosphatidylserine and Phosphatidylethanolamine receptor CD300a Binds Dengue Virus and enhances infection. J Virol 90:92–102PubMedGoogle Scholar
  18. Cervantes-Salazar M, Angel-Ambrocio AH, Soto-Acosta R, Bautista-Carbajal P, Hurtado-Monzon AM, Alcaraz-Estrada SL, Ludert JE, del Angel RM (2015) Dengue virus NS1 protein interacts with the ribosomal protein RPL18: this interaction is required for viral translation and replication in Huh-7 cells. Virology 484:113–126PubMedGoogle Scholar
  19. Chan KR, Ong EZ, Tan HC, Zhang SL, Zhang Q, Tang KF, Kaliaperumal N, Lim AP, Hibberd ML, Chan SH, Connolly JE, Krishnan MN, Lok SM, Hanson BJ, Lin CN, Ooi EE (2014) Leukocyte immunoglobulin-like receptor B1 is critical for antibody-dependent dengue. Proc Natl Acad Sci U S A 111:2722–2727PubMedPubMedCentralGoogle Scholar
  20. Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453:672–676PubMedGoogle Scholar
  21. Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3:866–871PubMedGoogle Scholar
  22. Cheng G, Cox J, Wang P, Krishnan MN, Dai J, Qian F, Anderson JF, Fikrig E (2010) A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142:714–725PubMedPubMedCentralGoogle Scholar
  23. Chiu WW, Kinney RM, Dreher TW (2005) Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79:8303–8315PubMedPubMedCentralGoogle Scholar
  24. Choy MM, Zhang SL, Costa VV, Tan HC, Horrevorts S, Ooi EE (2015) Proteasome inhibition suppresses Dengue Virus egress in antibody dependent infection. PLoS Negl Trop Dis 9:e0004058PubMedPubMedCentralGoogle Scholar
  25. Clyde K, Harris E (2006) RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 80:2170–2182PubMedPubMedCentralGoogle Scholar
  26. Courageot MP, Frenkiel MP, dos Santos CD, Deubel V, Despres P (2000) Alpha-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J Virol 74:564–572PubMedPubMedCentralGoogle Scholar
  27. Crabtree MB, Kinney RM, Miller BR (2005) Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses. Arch Virol 150:771–786PubMedGoogle Scholar
  28. D’Ortenzio E, Matheron S, Yazdanpanah Y, de Lamballerie X, Hubert B, Piorkowski G, Maquart M, Descamps D, Damond F, Leparc-Goffart I (2016) Evidence of sexual transmission of Zika Virus. N Engl J Med 374:2195–2198PubMedGoogle Scholar
  29. Dalrymple N, Mackow ER (2011) Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol 85:9478–9485PubMedPubMedCentralGoogle Scholar
  30. Das S, Laxminarayana SV, Chandra N, Ravi V, Desai A (2009) Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Virology 385:47–57PubMedGoogle Scholar
  31. Davis CW, Mattei LM, Nguyen HY, Ansarah-Sobrinho C, Doms RW, Pierson TC (2006) The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J Biol Chem 281:37183–37194PubMedGoogle Scholar
  32. Davis WG, Blackwell JL, Shi PY, Brinton MA (2007) Interaction between the cellular protein eEF1A and the 3’-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol 81:10172–10187PubMedPubMedCentralGoogle Scholar
  33. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau VM, Malasit P, Rey FA, Mongkolsapaya J, Screaton GR (2016) Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol 17:1102–1108PubMedPubMedCentralGoogle Scholar
  34. Dejnirattisai W, Webb AI, Chan V, Jumnainsong A, Davidson A, Mongkolsapaya J, Screaton G (2011) Lectin switching during dengue virus infection. J Infect Dis 203:1775–1783PubMedPubMedCentralGoogle Scholar
  35. Devaux PF, Herrmann A, Ohlwein N, Kozlov MM (2008) How lipid flippases can modulate membrane structure. Biochim Biophys Acta 1778:1591–1600PubMedGoogle Scholar
  36. Diaz A, Ahlquist P (2012) Role of host reticulon proteins in rearranging membranes for positive-strand RNA virus replication. Curr Opin Microbiol 15:519–524PubMedPubMedCentralGoogle Scholar
  37. Duan X, Lu X, Li J, Liu Y (2008) Novel binding between pre-membrane protein and vacuolar ATPase is required for efficient dengue virus secretion. Biochem Biophys Res Commun 373:319–324PubMedGoogle Scholar
  38. Edgil D, Polacek C, Harris E (2006) Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80:2976–8296PubMedPubMedCentralGoogle Scholar
  39. Evans EA, Gilmore R, Blobel G (1986) Purification of microsomal signal peptidase as a complex. Proc Natl Acad Sci U S A 83:581–585PubMedPubMedCentralGoogle Scholar
  40. Evron T, Daigle TL, Caron MG (2012) GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol Sci 33:154–164PubMedPubMedCentralGoogle Scholar
  41. Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V (1999) Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73:6104–6110PubMedPubMedCentralGoogle Scholar
  42. Friedman DI, Schauer AT, Baumann MR, Baron LS, Adhya SL (1981) Evidence that ribosomal protein S10 participates in control of transcription termination. Proc Natl Acad Sci U S A 78:1115–1118PubMedPubMedCentralGoogle Scholar
  43. Friedrich S, Schmidt T, Geissler R, Lilie H, Chabierski S, Ulbert S, Liebert UG, Golbik RP, Behrens SE (2014) AUF1 p45 promotes West Nile virus replication by an RNA chaperone activity that supports cyclization of the viral genome. J Virol 88:11586–11599PubMedPubMedCentralGoogle Scholar
  44. Friedrich S, Schmidt T, Schierhorn A, Lilie H, Szczepankiewicz G, Bergs S, GOLBIK RP, Behrens SE (2016) Arginine methylation enhances the RNA chaperone activity of the West Nile virus host factor AUF1 p45. Rna 22(10):1574–1591PubMedPubMedCentralGoogle Scholar
  45. Gamarnik AV, Andino R (1998) Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12:2293–2304PubMedPubMedCentralGoogle Scholar
  46. Garcia-Blanco MA, Vasudevan SG, Bradrick SS, Nicchitta C (2016) Flavivirus RNA transactions from viral entry to genome replication. Antiviral Res 134:244–249PubMedGoogle Scholar
  47. Garcia-Montalvo BM, Medina F, del Angel RM (2004) La protein binds to NS5 and NS3 and to the 5′ and 3′ ends of Dengue 4 virus RNA. Virus Res 102:141–150PubMedGoogle Scholar
  48. Garske T, van Kerkhove MD, Yactayo S, Ronveaux O, Lewis RF, Staples JE, Perea W, Ferguson NM, Yellow Fever Expert Committee (2014) Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med 11:e1001638PubMedPubMedCentralGoogle Scholar
  49. Gomila RC, Martin GW, Gehrke L (2011) NF90 binds the dengue virus RNA 3′ terminus and is a positive regulator of dengue virus replication. PLoS ONE 6:e16687PubMedPubMedCentralGoogle Scholar
  50. Guirakhoo F, Hunt AR, Lewis JG, Roehrig JT (1993) Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 194:219–223PubMedGoogle Scholar
  51. Guo Y, Feinberg H, Conroy E, Mitchell DA, Alvarez R, Blixt O, Taylor ME, Weis WI, Drickamer K (2004) Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11:591–598PubMedGoogle Scholar
  52. Hackett BA, Yasunaga A, Panda D, Tartell MA, Hopkins KC, Hensley SE, Cherry S (2015) RNASEK is required for internalization of diverse acid-dependent viruses. Proc Natl Acad Sci U S A 112:7797–7802PubMedPubMedCentralGoogle Scholar
  53. Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, Surasombatpattana P, Talignani L, Thomas F, Cao-Lormeau VM, Choumet V, Briant L, Despres P, Amara A, Yssel H, Misse D (2015) Biology of Zika Virus infection in human skin cells. J Virol 89:8880–8896PubMedPubMedCentralGoogle Scholar
  54. Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM, Doms RW (2005) N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol 79:13262–13274PubMedPubMedCentralGoogle Scholar
  55. Harrower J, Kiedrzynski T, Baker S, Upton A, Rahnama F, Sherwood J, Huang QS, Todd A, Pulford D (2016) Sexual Transmission of Zika Virus and persistence in Semen, New Zealand, 2016. Emerg Infect Dis 22:1855–1857PubMedPubMedCentralGoogle Scholar
  56. Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, Randall G (2010) Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 107:17345–17350PubMedPubMedCentralGoogle Scholar
  57. Heaton NS, Randall G (2010) Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8:422–432PubMedPubMedCentralGoogle Scholar
  58. Hirsch AJ, Medigeshi GR, Meyers HL, Defilippis V, Fruh K, Briese T, Lipkin WI, Nelson JA (2005) The Src family kinase c-Yes is required for maturation of West Nile virus particles. J Virol 79:11943–11951PubMedPubMedCentralGoogle Scholar
  59. Iglesias NG, Mondotte JA, Byk LA, de Maio FA, Samsa MM, Alvarez C, Gamarnik AV (2015) Dengue Virus uses a non-canonical function of the host GBF1-Arf-COPI system for capsid protein accumulation on lipid droplets. Traffic 16:962–977PubMedPubMedCentralGoogle Scholar
  60. Ivanov A, Mikhailova T, Eliseev B, Yeramala L, Sokolova E, Susorov D, Shuvalov A, Schaffitzel C, Alkalaeva E (2016) PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res 44:7766–7776PubMedPubMedCentralGoogle Scholar
  61. Ivanyi-Nagy R, Lavergne JP, Gabus C, Ficheux D, Darlix JL (2008) RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res 36:712–725PubMedGoogle Scholar
  62. Jan CH, Williams CC, Weissman JS (2014) Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346:1257521PubMedPubMedCentralGoogle Scholar
  63. Jiang L, Yao H, Duan X, Lu X, Liu Y (2009) Polypyrimidine tract-binding protein influences negative strand RNA synthesis of dengue virus. Biochem Biophys Res Commun 385:187–192PubMedGoogle Scholar
  64. Jindadamrongwech S, Thepparit C, Smith DR (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927PubMedGoogle Scholar
  65. Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J, Schwappach B, Walter P, Weissman JS, Schuldiner M (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323:1693–1697PubMedPubMedCentralGoogle Scholar
  66. Junjhon J, Pennington JG, Edwards TJ, Perera R, Lanman J, Kuhn RJ (2014) Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J Virol 88:4687–4697PubMedPubMedCentralGoogle Scholar
  67. Kahvejian A, Svitkin YV, Sukarieh R, M’Boutchou MN, Sonenberg N (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19:104–113PubMedPubMedCentralGoogle Scholar
  68. Kalia M, Khasa R, Sharma M, Nain M, Vrati S (2013) Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol 87:148–162PubMedPubMedCentralGoogle Scholar
  69. Kim J, Chubatsu LS, Admon A, Stahl J, Fellous R, Linn S (1995) Implication of mammalian ribosomal protein S3 in the processing of DNA damage. J Biol Chem 270:13620–13629PubMedGoogle Scholar
  70. Kim JM, Yun SI, Song BH, Hahn YS, Lee CH, Oh HW, Lee YM (2008) A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J Virol 82:7846–7862PubMedPubMedCentralGoogle Scholar
  71. Kobayashi N, Karisola P, Pena-Cruz V, Dorfman DM, Jinushi M, Umetsu SE, Butte MJ, Nagumo H, Chernova I, Zhu B, Sharpe AH, Ito S, Dranoff G, Kaplan GG, Casasnovas JM, Umetsu DT, Dekruyff RH, Freeman GJ (2007) TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27:927–940PubMedPubMedCentralGoogle Scholar
  72. Kobayashi S, Orba Y, Yamaguchi H, Takahashi K, Sasaki M, Hasebe R, Kimura T, Sawa H (2014) Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection. Virus Res 191:83–91PubMedGoogle Scholar
  73. Kobayashi S, Suzuki T, Kawaguchi A, Phongphaew W, Yoshii K, Iwano T, Harada A, Kariwa H, Orba Y, Sawa H (2016) Rab8b Regulates Transport of West Nile Virus Particles from Recycling Endosomes. J Biol Chem 291:6559–6568PubMedPubMedCentralGoogle Scholar
  74. Kooijman EE, Chupin V, de Kruijff B, Burger KN (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174PubMedGoogle Scholar
  75. Kostyuchenko VA, Lim EX, Zhang S, Fibriansah G, Ng TS, Ooi JS, Shi J, Lok SM (2016) Structure of the thermally stable Zika virus. Nature 533:425–428PubMedGoogle Scholar
  76. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, Brass AL, Adametz R, Tsui M, Qian F, Montgomery RR, Lev S, Mason PW, Koski RA, Elledge SJ, Xavier RJ, Agaisse H, Fikrig E (2008) RNA interference screen for human genes associated with West Nile virus infection. Nature 455:242–245PubMedPubMedCentralGoogle Scholar
  77. Krishnan MN, Sukumaran B, Pal U, Agaisse H, Murray JL, Hodge TW, Fikrig E (2007) Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 81:4881–4885PubMedPubMedCentralGoogle Scholar
  78. Kroschewski H, Allison SL, Heinz FX, Mandl CW (2003) Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 308:92–100PubMedGoogle Scholar
  79. Kudelko M, Brault JB, Kwok K, Li MY, Pardigon N, Peiris JS, Bruzzone R, Despres P, Nal B, Wang PG (2012) Class II ADP-ribosylation factors are required for efficient secretion of dengue viruses. J Biol Chem 287:767–777PubMedGoogle Scholar
  80. Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Gorlich D (1998) Identification of a tRNA-specific nuclear export receptor. Mol Cell 1:359–369PubMedGoogle Scholar
  81. Landry DM, Hertz MI, Thompson SR (2009) RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs. Genes Dev 23:2753–2764PubMedPubMedCentralGoogle Scholar
  82. le Sommer C, Barrows NJ, Bradrick SS, Pearson JL, Garcia-Blanco MA (2012) G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication. PLoS Negl Trop Dis 6:e1820PubMedPubMedCentralGoogle Scholar
  83. Lee E, Lobigs M (2000) Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74:8867–8875PubMedPubMedCentralGoogle Scholar
  84. Li L, Lok SM, Yu IM, Zhang Y, Kuhn RJ, Chen J, Rossmann MG (2008) The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319:1830–1834PubMedGoogle Scholar
  85. Li MY, Grandadam M, Kwok K, Lagache T, Siu YL, Zhang JS, Bruzzone R, Wang PG (2015) KDEL receptors assist dengue virus exit from the endoplasmic reticulum. Cell reports 10(9):1496–1507Google Scholar
  86. LINDENBACH B, THIEL H-J, RICE C (2013) Flaviviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM. (eds) Fields virology. 6th edn. Wolters Kluwer Health/Lippincott, Williams & Wilkins, PhiladelphiaGoogle Scholar
  87. Liu H, Chiou SS, Chen WJ (2004) Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparan sulfate on the cell surface. J Med Virol 72:618–624PubMedGoogle Scholar
  88. Liu Y, Zhang F, Liu J, Xiao X, Zhang S, Qin C, Xiang Y, Wang P, Cheng G (2014) Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention. PLoS Pathog 10:e1003931PubMedPubMedCentralGoogle Scholar
  89. Lobigs M, Lee E, Ng ML, Pavy M, Lobigs P (2010) A flavivirus signal peptide balances the catalytic activity of two proteases and thereby facilitates virus morphogenesis. Virology 401:80–89PubMedGoogle Scholar
  90. Louie RJ, Guo J, Rodgers JW, White R, Shah N, Pagant S, Kim P, Livstone M, Dolinski K, McKinney BA, Hong J, Sorscher EJ, Bryan J, Miller EA, Hartman JLT (2012) A yeast phenomic model for the gene interaction network modulating CFTR-DeltaF508 protein biogenesis. Genome Med 4:103PubMedPubMedCentralGoogle Scholar
  91. Lozach PY, Burleigh L, Staropoli I, Navarro-Sanchez E, Harriague J, Virelizier JL, Rey FA, Despres P, Arenzana-Seisdedos F, Amara A (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem 280:23698–23708PubMedGoogle Scholar
  92. Luca VC, Nelson CA, Fremont DH (2013) Structure of the St. Louis encephalitis virus postfusion envelope trimer. J Virol 87:818–828PubMedPubMedCentralGoogle Scholar
  93. Ma H, Dang Y, Wu Y, Jia G, Anaya E, Zhang J, Abraham S, Choi JG, Shi G, Qi L, Manjunath N, Wu H (2015) A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death. Cell Rep 12:673–683PubMedPubMedCentralGoogle Scholar
  94. Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE (2016) Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535:159–163PubMedPubMedCentralGoogle Scholar
  95. Mateo R, Nagamine CM, Spagnolo J, Méndez E, Rahe M, Gale M, Yuan J, Kirkegaard K (2013) Inhibition of cellular autophagy deranges dengue virion maturation. J Virol 87(3):1312–1321PubMedPubMedCentralGoogle Scholar
  96. Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, Lew E, Lemke G, Schwartz O, Amara A (2012) The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12:544–557PubMedPubMedCentralGoogle Scholar
  97. Miller JL, de Wet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4:e17PubMedPubMedCentralGoogle Scholar
  98. Miner JJ, Sene A, Richner JM, Smith AM, Santeford A, Ban N, Weger-Lucarelli J, Manzella F, Ruckert C, Govero J, Noguchi KK, Ebel GD, Diamond MS, Apte RS (2016) Zika Virus Infection in Mice Causes Panuveitis with Shedding of Virus in Tears. Cell Rep 16:3208–3218PubMedPubMedCentralGoogle Scholar
  99. Moller-Tank S, Maury W (2014) Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 468–470:565–580PubMedGoogle Scholar
  100. Mondotte JA, Lozach PY, Amara A, Gamarnik AV (2007) Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol 81:7136–7148PubMedPubMedCentralGoogle Scholar
  101. Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ (2003) Structure of West Nile virus. Science 302:248PubMedGoogle Scholar
  102. Muylaert IR, Chambers TJ, Galler R, Rice CM (1996) Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology 222:159–168PubMedGoogle Scholar
  103. Nagy PD, Strating JR, van Kuppeveld FJ (2016) Building Viral Replication Organelles: Close Encounters of the Membrane Types. PLoS Pathog 12:e1005912PubMedPubMedCentralGoogle Scholar
  104. Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, Arenzana-Seisdedos F, Despres P (2003) Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723–728PubMedPubMedCentralGoogle Scholar
  105. Nour AM, Li Y, Wolenski J, Modis Y (2013) Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses. PLoS Pathog 9:e1003585PubMedPubMedCentralGoogle Scholar
  106. Okamoto K, Kinoshita H, del Carmen Parquet M, Raekiansyah M, Kimura D, Yui K, Islam MA, Hasebe F, Morita K (2012) Dengue virus strain DEN2 16681 utilizes a specific glycochain of syndecan-2 proteoglycan as a receptor. J Gen Virol 93(4):761–770PubMedGoogle Scholar
  107. Padwad YS, Mishra KP, Jain M, Chanda S, Ganju L (2010) Dengue virus infection activates cellular chaperone Hsp70 in THP-1 cells: downregulation of Hsp70 by siRNA revealed decreased viral replication. Viral Immunol 23:557–565PubMedGoogle Scholar
  108. Pena J, Harris E (2012) Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway. PLoS ONE 7:e38202PubMedPubMedCentralGoogle Scholar
  109. Perera-Lecoin M, Meertens L, Carnec X, Amara A (2014) Flavivirus entry receptors: an update. Viruses 6:69–88Google Scholar
  110. Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, Pasa-Tolic L, Metz TO, Adamec J, Kuhn RJ (2012) Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog 8:e1002584PubMedPubMedCentralGoogle Scholar
  111. Perreira JM, Aker AM, Savidis G, Chin CR, McDougall WM, Portmann JM, Meraner P, Smith MC, Rahman M, Baker RE, Gauthier A, Franti M, Brass AL (2015) RNASEK Is a V-ATPase-Associated Factor Required for Endocytosis and the Replication of Rhinovirus, Influenza A Virus, and Dengue Virus. Cell Rep 12:850–863PubMedGoogle Scholar
  112. Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregorio GG, Hendrickson WA, Kuhn RJ, Rossmann MG (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493PubMedGoogle Scholar
  113. Polacek C, Friebe P, Harris E (2009) Poly(A)-binding protein binds to the non-polyadenylated 3’ untranslated region of dengue virus and modulates translation efficiency. J Gen Virol 90:687–692PubMedGoogle Scholar
  114. Reyes-del Valle J, Chávez-Salinas S, Medina F, del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79(8):4557–4567PubMedPubMedCentralGoogle Scholar
  115. Richard M, Boulin T, Robert VJ, Richmond JE, Bessereau JL (2013) Biosynthesis of ionotropic acetylcholine receptors requires the evolutionarily conserved ER membrane complex. Proc Natl Acad Sci U S A 110:E1055–E1063PubMedPubMedCentralGoogle Scholar
  116. Roehrig JT, Butrapet S, Liss NM, Bennett SL, Luy BE, Childers T, Boroughs KL, Stovall JL, Calvert AE, Blair CD, Huang CY (2013) Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion. Virology 441:114–125PubMedGoogle Scholar
  117. Romero-Brey I, Bartenschlager R (2014) Membranous replication factories induced by plus-strand RNA viruses. Viruses 6:2826–2857PubMedPubMedCentralGoogle Scholar
  118. Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, da Poian AT, Bozza PT, Gamarnik AV (2009) Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5:e1000632PubMedPubMedCentralGoogle Scholar
  119. Satoh T, Ohba A, Liu Z, Inagaki T, Satoh AK (2015) dPob/EMC is essential for biosynthesis of rhodopsin and other multi-pass membrane proteins in Drosophila photoreceptors. Elife 4:e06306PubMedCentralGoogle Scholar
  120. Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, John SP, Aker AM, Renzette N, Robbins DR, Guo Z, Green S, Kowalik TF, Brass AL (2016) Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics. Cell Rep 16:232–246PubMedGoogle Scholar
  121. Seitz HM, Camenisch TD, Lemke G, Earp HS, Matsushima GK (2007) Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J Immunol 178:5635–5642PubMedGoogle Scholar
  122. Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, Ramirez JL, Dimopoulos G, Yang PL, Pearson JL, Garcia-Blanco MA (2009) Discovery of insect and human dengue virus host factors. Nature 458:1047–1050PubMedPubMedCentralGoogle Scholar
  123. Sirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, Kuhn RJ (2016) The 3.8 A resolution cryo-EM structure of Zika virus. Science 352:467–470PubMedPubMedCentralGoogle Scholar
  124. Smit JM, Moesker B, Rodenhuis-Zybert I, Wilschut J (2011) Flavivirus cell entry and membrane fusion. Viruses 3:160–171PubMedPubMedCentralGoogle Scholar
  125. Somnuke P, Hauhart RE, Atkinson JP, Diamond MS, Avirutnan P (2011) N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology 413:253–264PubMedPubMedCentralGoogle Scholar
  126. Stadler K, Allison SL, Schalich J, Heinz FX (1997) Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71:8475–8481PubMedPubMedCentralGoogle Scholar
  127. Tabata K, Arimoto M, Arakawa M, Nara A, Saito K, Omori H, Arai A, Ishikawa T, Konishi E, Suzuki R, Matsuura Y, Morita E (2016a) Unique Requirement for ESCRT Factors in Flavivirus Particle Formation on the Endoplasmic Reticulum. Cell Rep 16:2339–2347PubMedGoogle Scholar
  128. Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C, Fang-Hoover J, Harris E, Pereira L (2016b) Zika Virus Targets Different Primary Human Placental Cells, Suggesting Two Routes for Vertical Transmission. Cell Host Microbe 20:155–166PubMedPubMedCentralGoogle Scholar
  129. Taguwa S, Maringer K, Li X, Bernal-Rubio D, Rauch JN, Gestwicki JE, Andino R, Fernandez-Sesma A, Frydman J (2015) Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection. Cell 163:1108–1123PubMedPubMedCentralGoogle Scholar
  130. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829PubMedPubMedCentralGoogle Scholar
  131. Thepparit C, Smith DR (2004) Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78:12647–12656PubMedPubMedCentralGoogle Scholar
  132. Tio PH, Jong WW, Cardosa MJ (2005) Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. Virol J 2:25PubMedPubMedCentralGoogle Scholar
  133. Tung YT, Wu MF, Wang GJ, Hsieh SL (2014) Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the CLEC5A receptor. Nanomedicine 10:1335–1341PubMedGoogle Scholar
  134. Uchida L, Espada-Murao LA, Takamatsu Y, Okamoto K, Hayasaka D, Yu F, Nabeshima T, Buerano CC, Morita K (2014) The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response. Sci Rep 4:7395PubMedPubMedCentralGoogle Scholar
  135. van der Schaar HM, Rust MJ, Chen C, Van der Ende-Metselaar H, Wilschut J, Zhuang X, Smit JM (2008) Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4:e1000244PubMedPubMedCentralGoogle Scholar
  136. Vashist S, Anantpadma M, Sharma H, Vrati S (2009) La protein binds the predicted loop structures in the 3’ non-coding region of Japanese encephalitis virus genome: role in virus replication. J Gen Virol 90:1343–1352PubMedGoogle Scholar
  137. Walter P, Blobel G (1981a) Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91:557–561PubMedGoogle Scholar
  138. Walter P, Blobel G (1981b) Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91:551–556PubMedGoogle Scholar
  139. Walter P, Ibrahimi I, Blobel G (1981) Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91:545–550PubMedGoogle Scholar
  140. Walter P, Johnson AE (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10:87–119PubMedGoogle Scholar
  141. Wang P, Hu K, Luo S, Zhang M, Deng X, Li C, Jin W, Hu B, He S, Li M, Du T, Xiao G, Zhang B, Liu Y, Hu Q (2016) DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein. Virology 488:108–119PubMedGoogle Scholar
  142. Ward AM, Bidet K, Yinglin A, Ler SG, Hogue K, Blackstock W, Gunaratne J, Garcia-Blanco MA (2011) Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3’ UTR structures. RNA Biol 8:1173–1186PubMedPubMedCentralGoogle Scholar
  143. Ward AM, Calvert ME, Read LR, Kang S, Levitt BE, Dimopoulos G, Bradrick SS, Gunaratne J, Garcia-Blanco MA (2016) The Golgi associated ERI3 is a Flavivirus host factor. Sci Rep 6:34379PubMedPubMedCentralGoogle Scholar
  144. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY, Vasilakis N (2016) Zika virus: history, emergence, biology, and prospects for control. Antiviral research. 30(130):69–80Google Scholar
  145. Wells MF, Salick MR, Wiskow O, Ho DJ, Worringer KA, Ihry RJ, Kommineni S, Bilican B, Klim JR, Hill EJ, Kane LT, Ye C, Kaykas A, Eggan K (2016) Genetic Ablation of AXL Does Not Protect Human Neural Progenitor Cells and Cerebral Organoids from Zika Virus Infection. Cell Stem Cell 19:703–708PubMedGoogle Scholar
  146. Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, Walther P, Fuller SD, Antony C, Krijnse-Locker J, Bartenschlager R (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365–375PubMedGoogle Scholar
  147. Wilder-Smith A, Byass P (2016) The elusive global burden of dengue. Lancet Infect Dis 16(6):629–631PubMedGoogle Scholar
  148. Xu Z, Hobman TC (2012) The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles. Virology 433:226–235PubMedGoogle Scholar
  149. Ye J, Chen Z, Zhang B, Miao H, Zohaib A, Xu Q, Chen H, Cao S (2013) Heat shock protein 70 is associated with replicase complex of Japanese encephalitis virus and positively regulates viral genome replication. PLoS ONE 8:e75188PubMedPubMedCentralGoogle Scholar
  150. Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J (2008) Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–1837PubMedGoogle Scholar
  151. Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV (2010) Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog 6:e1001131PubMedPubMedCentralGoogle Scholar
  152. Zeisel MB, Felmlee DJ, Baumert TF (2013) Hepatitis C virus entry. Curr Top Microbiol Immunol 369:87–112PubMedGoogle Scholar
  153. Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H, White JP, Zuiani A, Zhang P, Fernandez E, Zhang Q, Dowd KA, Pierson TC, Cherry S, Diamond MS (2016) A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535:164–168PubMedPubMedCentralGoogle Scholar
  154. Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, Schein S, Zhou ZH (2013) Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nat Struct Mol Biol 20:105–110PubMedGoogle Scholar
  155. Zhou X, Liao WJ, Liao JM, Liao P, Lu H (2015) Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7:92–104PubMedPubMedCentralGoogle Scholar
  156. Zhouravleva G, Frolova L, le Goff X, le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065–4072PubMedPubMedCentralGoogle Scholar
  157. Zybert IA, Van der Ende-Metselaar H, Wilschut J, Smit JM (2008) Functional importance of dengue virus maturation: infectious properties of immature virions. J Gen Virol 89:3047–3051PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Molecular Genetics and Microbiology, Center for RNA BiologyDuke UniversityDurhamUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Programme in Emerging Infectious DiseasesDuke-NUS Medical SchoolSingaporeSingapore

Personalised recommendations