pp 1-24 | Cite as

One Face of Chlamydia trachomatis: The Infectious Elementary Body

  • Mathilde M. Cossé
  • Richard D. Hayward
  • Agathe Subtil
Chapter
Part of the Current Topics in Microbiology and Immunology book series

Abstract

The lifestyle of Chlamydiae is unique: the bacteria alternate between two morphologically distinct forms, an infectious non-replicative elementary body (EB), and a replicative, non-infectious reticulate body (RB). This review focuses on recent advances in understanding the structure and function of the infectious form of the best-studied member of the phylum, the human pathogen Chlamydia trachomatis. Once considered as an inert particle of little functional capacity, the EB is now perceived as a sophisticated entity that encounters at least three different environments during each infectious cycle. We review current knowledge on its composition and morphology, and emerging metabolic activities. These features confer resistance to the extracellular environment, the ability to penetrate a host cell and ultimately enable the EB to establish a niche enabling bacterial survival and growth. The bacterial and host molecules involved in these processes are beginning to emerge.

Notes

Acknowledgments

We thank Dr. Andrea Nans for providing the EM image shown in Fig. 1. This work was supported by the European Research Council (NUChLEAR grant number 282046), the Agence Nationale pour la Recherche (Expendo ANR-14-CE11-0024-02), the Institut Pasteur and the Centre National de la Recherche Scientifique. Research on EB structure and inclusion biogenesis is supported by projects grants MR/N000846/1 and MR/I008696/1 from the Medical Research Council to R.D.H.

References

  1. AbdelRahman YM, Belland RJ (2005) The chlamydial developmental cycle. FEMS Microbiol Rev 29:949–959Google Scholar
  2. Abromaitis S, Stephens RS (2009) Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog 5:e1000357Google Scholar
  3. Agaisse H, Derre I (2014) Expression of the effector protein IncD in Chlamydia trachomatis mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane. Infect Immun 82:2037–2047Google Scholar
  4. Albrecht M, Sharma CM, Dittrich MT, Muller T, Reinhardt R, Vogel J, Rudel T (2011) The transcriptional landscape of Chlamydia pneumoniae. Genome Biol 12:R98Google Scholar
  5. Al-Younes HM, Al-Zeer MA, Khalil H, Gussmann J, Karlas A, Machuy N, Brinkmann V, Braun PR, Meyer TF (2011) Autophagy-independent function of MAP-LC3 during intracellular propagation of Chlamydia trachomatis. Autophagy 7:814–828Google Scholar
  6. Al-Zeer MA, Al-Younes HM, Lauster D, Abu Lubad M, Meyer TF (2013) Autophagy restricts Chlamydia trachomatis growth in human macrophages via IFNG-inducible guanylate binding proteins. Autophagy 9:46–58Google Scholar
  7. Balañá ME, Niedergang F, Subtil A, Alcover A, Chavrier P, Dautry-Varsat A (2005) ARF6 GTPase controls bacterial invasion by actin remodelling. J Cell Sci 118:2201–2210Google Scholar
  8. Barry CE 3rd, Hayes SF, Hackstadt T (1992) Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog. Science 256:377–379Google Scholar
  9. Batteiger BE (2012) Chlamydia infection and epidemiology. In: Tan M, Bavoil PM (eds) Intracellular pathogens I; Chlamydiales. ASM press, Washington, DCGoogle Scholar
  10. Bavoil P, Ohlin A, Schachter J (1984) Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect Immun 44:479–485Google Scholar
  11. Becker E, Hegemann JH (2014) All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function. Microbiol Open 3:544–556Google Scholar
  12. Bedson SP, Gostling JV (1954) A study of the mode of multiplication of psittacosis virus. Br J Exp Pathol 35:299–308Google Scholar
  13. Belland RJ, Scidmore MA, Crane DD, Hogan DM, Whitmire W, McClarty G, Caldwell HD (2001) Chlamydia trachomatis cytotoxicity associated with complete and partial cytotoxin genes. Proc Natl Acad Sci USA 98:13984–13989Google Scholar
  14. Belland RJ, Zhong GM, Crane DD, Hogan D, Sturdevant D, Sharma J, Beatty WL, Caldwell HD (2003) Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 100:8478–8483Google Scholar
  15. Betts HJ, Twiggs LE, Sal MS, Wyrick PB, Fields KA (2008) Bioinformatic and biochemical evidence for the identification of the type III secretion system needle protein of Chlamydia trachomatis. J Bacteriol 190:1680–1690Google Scholar
  16. Betts-Hampikian HJ, Fields KA (2011) Disulfide bonding within components of the Chlamydia type III secretion apparatus correlates with development. J Bacteriol 193:6950–6959Google Scholar
  17. Birkelund S, Morgan-Fisher M, Timmerman E, Gevaert K, Shaw AC, Christiansen G (2009) Analysis of proteins in Chlamydia trachomatis L2 outer membrane complex, COMC. FEMS Immunol Med Microbiol 55:187–195Google Scholar
  18. Bothe M, Dutow P, Pich A, Genth H, Klos A (2015) DXD motif-dependent and -independent effects of the Chlamydia trachomatis cytotoxin CT166. Toxins 7:621–637Google Scholar
  19. Brickman TJ, Barry CE 3rd, Hackstadt T (1993) Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity. J Bacteriol 175:4274–4281Google Scholar
  20. Brinkworth AJ, Malcolm DS, Pedrosa AT, Roguska K, Shahbazian S, Graham JE, Hayward RD, Carabeo RA (2011) Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP. Mol Microbiol 82:131–144Google Scholar
  21. Carabeo RA, Grieshaber SS, Fischer E, Hackstadt T (2002) Chlamydia trachomatis induces remodeling of the actin cytoskeleton during attachment and entry into HeLa cells. Infect Immun 70:3793–3803Google Scholar
  22. Carabeo RA, Grieshaber SS, Hasenkrug A, Dooley C, Hackstadt T (2004) Requirement for the Rac GTPase in Chlamydia trachomatis invasion of non-phagocytic cells. Traffic 5:418–425Google Scholar
  23. Carabeo RA, Dooley CA, Grieshaber SS, Hackstadt T (2007) Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion. Cell Microbiol 9:2278–2288Google Scholar
  24. Chen JC-R, Stephens RS (1994) Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells. Mol Microbiol 11:501–507Google Scholar
  25. Chen Y-S, Bastidas RJ, Saka HA, Carpenter VK, Richards KL, Plano GV, Valdivia RH (2014) The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling. PLoS Pathog 10:e1003954Google Scholar
  26. Cheng E, Tan M (2012) Differential effects of DNA supercoiling on Chlamydia early promoters correlate with expression patterns in midcycle. J Bacteriol 194:3109–3115Google Scholar
  27. Christiansen G, Pedersen LB, Koehler JE, Lundemose AG, Birkelund S (1993) Interaction between the Chlamydia trachomatis histone H1-like protein (Hc1) and DNA. J Bacteriol 175:1785–1795Google Scholar
  28. Clifton DR, Fields KA, Grieshaber NA, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA 101:10166–10171Google Scholar
  29. Collingro A, Tischler P, Weinmaier T, Penz T, Heinz E, Brunham RC, Read TC, Bavoil PM, Sachse K, Kahane S, Friedman MG, Rattei T, Myers GS, Horn M (2011) Unity in variety—the pan-genome of the Chlamydiae. Mol Biol Evol 28:3253–3270Google Scholar
  30. Conant CG, Stephens RS (2007) Chlamydia attachment to mammalian cells requires protein disulfide isomerase. Cell Microbiol 9:222–232Google Scholar
  31. da Cunha M, Milho C, Almeida F, Pais SV, Borges V, Mauricio R, Borrego MJ, Gomes JP, Mota LJ (2014) Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system. BMC Microbiol 14:40Google Scholar
  32. Davis CH, Raulston JE, Wyrick PB (2002) Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells. Infect Immun 70:3413–3418Google Scholar
  33. Dehoux P, Flores R, Dauga C, Zhong G, Subtil A (2011) Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. BMC Genom 12:109Google Scholar
  34. Derre I, Swiss R, Agaisse H (2011) The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog 7:e1002092Google Scholar
  35. Downie AW (1971) Obituary. S. P. Bedson, 1886–1969. J Gen Microbiol 65:1–3Google Scholar
  36. Elwell CA, Ceesay A, Kim JH, Kalman D, Engel JN (2008) RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog 4:e1000021Google Scholar
  37. Fadel S, Eley A (2008) Is lipopolysaccharide a factor in infectivity of Chlamydia trachomatis? J Med Microbiol 57:261–266Google Scholar
  38. Ferrell JC, Fields KA (2016) A working model for the type III secretion mechanism in Chlamydia. Microbes Infect 18:84–92Google Scholar
  39. Furtado AR, Essid M, Perrinet S, Balañá ME, Dautry-Varsat A, Yoder N, Dehoux P, Subtil A (2013) The chlamydial OTU-domain like protein ChlaOTU is an early type III secretion effector targeting ubiquitin and NDP52. Cellular Microbiol 15:2064–2079Google Scholar
  40. Galan JE, Lara-Tejero M, Marlovits TC, Wagner S (2014) Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438Google Scholar
  41. Gehre L, Gorgette O, Prévost MC, Ducatez M, Giebel AM, Nelson DE, Ball SG, Subtil A (2016) Sequestration of host metabolism by an intracellular pathogen. eLife. doi: 10.7554/eLife.12552
  42. Gregory WW, Gardner M, Byrne GI, Moulder JW (1979) Arrays of hemispheric surface projections on Chlamydia psittaci and Chlamydia trachomatis observed by scanning electron microscopy. J Bacteriol 138:241–244Google Scholar
  43. Grieshaber NA, Fischer ER, Mead DJ, Dooley CA, Hackstadt T (2004) Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. Proc Natl Acad Sci USA 101:7451–7456Google Scholar
  44. Grieshaber NA, Sager JB, Dooley CA, Hayes SF, Hackstadt T (2006) Regulation of the Chlamydia trachomatis histone H1-like protein Hc2 is IspE dependent and IhtA independent. J Bacteriol 188:5289–5292Google Scholar
  45. Guseva NV, Dessus-Babus S, Moore CG, Whittimore JD, Wyrick PB (2007) Differences in Chlamydia trachomatis serovar E growth rate in polarized endometrial and endocervical epithelial cells grown in three-dimensional culture. Infect Immun 75:553–564Google Scholar
  46. Hackstadt T, Todd WJ, Caldwell HD (1985) Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae? J Bacteriol 161:25–31Google Scholar
  47. Hackstadt T, Baehr W, Ying Y (1991) Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. Proc Natl Acad Sci USA 88:3937–3941Google Scholar
  48. Hackstadt T, Fischer ER, Scidmore MA, Rockey DD, Heinzen RA (1997) Origins and functions of the chlamydial inclusion. Trends Microbiol 5:288–293Google Scholar
  49. Haider S, Wagner M, Schmid MC, Sixt BS, Christian JG, Hacker G, Pichler P, Mechtler K, Muller A, Baranyi C, Toenshoff ER, Montanaro J, Horn M (2010) Raman microspectroscopy reveals long-term extracellular activity of Chlamydiae. Mol Microbiol 77:687–700Google Scholar
  50. Hanson BR, Slepenkin A, Peterson EM, Tan M (2015) Chlamydia trachomatis type III secretion proteins regulate transcription. J Bacteriol 197:3238–3244Google Scholar
  51. Hatch TP (1999) Developmental biology. In: Stephens RS (ed) Chlamydia: intracellular biology, pathogenesis, and immunity. American Society for Microbiology, Washington, DC, pp 29–67Google Scholar
  52. Hegemann JH, Moelleken K (2012) Chlamydial adhesion and adhesins. In: Tan M, Bavoil PM (eds) Intracellular pathogens I: Chlamydiales. American Society for Microbiology, Washington, DC, pp 97–125Google Scholar
  53. Hower S, Wolf K, Fields KA (2009) Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Mol Microbiol 72:1423–1437Google Scholar
  54. Huang Z, Chen M, Li K, Dong X, Han J, Zhang Q (2010) Cryo-electron tomography of Chlamydia trachomatis gives a clue to the mechanism of outer membrane changes. J Electron Microsc (Tokyo) 59:237–241Google Scholar
  55. Jewett TJ, Fischer ER, Mead DJ, Hackstadt T (2006) Chlamydial TARP is a bacterial nucleator of actin. Proc Natl Acad Sci USA 103:15599–15604Google Scholar
  56. Jewett TJ, Dooley CA, Mead DJ, Hackstadt T (2008) Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases. Biochem Biophys Res Commun 371:339–344Google Scholar
  57. Jewett TJ, Miller NJ, Dooley CA, Hackstadt T (2010) The conserved tarp actin binding domain is important for chlamydial invasion. PLoS Pathog 6:e1000997Google Scholar
  58. Jiwani S, Alvarado S, Ohr RJ, Romero A, Nguyen B, Jewett TJ (2013) Chlamydia trachomatis Tarp harbors distinct G and F actin binding domains that bundle actin filaments. J Bacteriol 195:708–716Google Scholar
  59. Karunakaran K, Subbarayal P, Vollmuth N, Rudel T (2015) Chlamydia-infected cells shed Gp96 to prevent chlamydial re-infection. Mol Microbiol 98:694–711Google Scholar
  60. Kim JH, Jiang S, Elwell CA, Engel JN (2011) Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog 7:e1002285Google Scholar
  61. Lane BJ, Mutchler C, Al Khodor S, Grieshaber SS, Carabeo RA (2008) Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog 4:e1000014Google Scholar
  62. Liechti GW, Kuru E, Hall E, Kalinda A, Brun YV, VanNieuwenhze M, Maurelli AT (2014) A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506:507–510Google Scholar
  63. Liu X, Afrane M, Clemmer DE, Zhong G, Nelson DE (2010) Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics. J Bacteriol 192:2852–2860Google Scholar
  64. Lutter EI, Bonner C, Holland MJ, Suchland RJ, Stamm WE, Jewett TJ, McClarty G, Hackstadt T (2010) Phylogenetic analysis of Chlamydia trachomatis Tarp and correlation with clinical phenotype. Infect Immun 78:3678–3688Google Scholar
  65. Matsumoto A (1981) Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci. J Bacteriol 145:605–612Google Scholar
  66. Mehlitz A, Banhart S, Hess S, Selbach M, Meyer TF (2008) Complex kinase requirements for Chlamydia trachomatis Tarp phosphorylation. FEMS Microbiol Lett 289:233–240Google Scholar
  67. Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL, Starnbach MN (2006) Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol 61:142–150Google Scholar
  68. Mital J, Lutter EI, Barger AC, Dooley CA, Hackstadt T (2015) Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1). Biochem Biophys Res Commun 462:165–170Google Scholar
  69. Moelleken K, Hegemann JH (2008) The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding. Mol Microbiol 67:403–419Google Scholar
  70. Molleken K, Schmidt E, Hegemann JH (2010) Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs. Mol Microbiol 78:1004–1017Google Scholar
  71. Molleken K, Becker E, Hegemann JH (2013) The Chlamydia pneumoniae invasin protein Pmp21 recruits the EGF receptor for host cell entry. PLoS Pathog 9:e1003325Google Scholar
  72. Moulder JW (1966) The relation of the psittacosis group (Chlamydiae) to bacteria and viruses. Annu Rev Microbiol 20:107–130Google Scholar
  73. Mueller KE, Fields KA (2015) Application of β-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis. PLoS ONE 10:e0135295Google Scholar
  74. Mueller KE, Plano GV, Fields KA (2014) New frontiers in type III secretion biology: the Chlamydia perspective. Infect Immun 82:2–9Google Scholar
  75. Nans A, Saibil HR, Hayward RD (2014) Pathogen-host reorganization during Chlamydia invasion revealed by cryo-electron tomography. Cell Microbiol 16:1457–1472Google Scholar
  76. Nans A, Kudryashev M, Saibil HR, Hayward RD (2015) Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nat Comm 6:10114Google Scholar
  77. Nguyen BD, Cunningham D, Liang X, Chen X, Toone EJ, Raetz CR, Zhou P, Valdivia RH (2011) Lipooligosaccharide is required for the generation of infectious elementary bodies in Chlamydia trachomatis. Proc Natl Acad Sci USA 108:10284–10289Google Scholar
  78. Nichols BA, Setzer PY, Pang F, Dawson CR (1985) New view of the surface projections of Chlamydia trachomatis. J Bacteriol 164:344–349Google Scholar
  79. Niehus E, Cheng E, Tan M (2008) DNA supercoiling-dependent gene regulation in Chlamydia. J Bacteriol 190:6419–6427Google Scholar
  80. Omsland A, Sager J, Nair V, Sturdevant DE, Hackstadt T (2012) Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium. Proc Natl Acad Sci USA 109:19781–19785Google Scholar
  81. Omsland A, Sixt BS, Horn M, Hackstadt T (2014) Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol Rev 38:779–801Google Scholar
  82. Osaka I, Hefty PS (2014) Lipopolysaccharide-binding alkylpolyamine DS-96 inhibits Chlamydia trachomatis infection by blocking attachment and entry. Antimicrob Agents Chemother 58:3245–3254Google Scholar
  83. Pais SV, Milho C, Almeida F, Mota LJ (2013) Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis. PLoS ONE 8:e56292Google Scholar
  84. Pedersen LB, Birkelund S, Christiansen G (1996) Purification of recombinant Chlamydia trachomatis histone H1-like protein Hc2, and comparative functional analysis of Hc2 and Hc1. Mol Microbiol 20:295–311Google Scholar
  85. Pilhofer M, Aistleitner K, Ladinsky MS, Konig L, Horn M, Jensen GJ (2014) Architecture and host interface of environmental chlamydiae revealed by electron cryotomography. Environ Microbiol 16:417–429Google Scholar
  86. Randow F, Youle RJ (2014) Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15:403–411Google Scholar
  87. Rao X, Deighan P, Hua Z, Hu X, Wang J, Luo M, Wang J, Liang Y, Zhong G, Hochschild A, Shen L (2009) A regulator from Chlamydia trachomatis modulates the activity of RNA polymerase through direct interaction with the beta subunit and the primary sigma subunit. Genes Dev 23:1818–1829Google Scholar
  88. Rogov V, Dötsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53:167–178Google Scholar
  89. Rosario CJ, Hanson BR, Tan M (2014) The transcriptional repressor EUO regulates both subsets of Chlamydia late genes. Mol Microbiol 94:888–897Google Scholar
  90. Rund S, Lindner B, Brade H, Holst O (1999) Structural analysis of the lipopolysaccharide from Chlamydia trachomatis serotype L2. J Biol Chem 274:16819–16824Google Scholar
  91. Rzomp KA, Moorhead AR, Scidmore MA (2006) The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Infect Immun 74:5362–5373Google Scholar
  92. Saka HA, Thompson JW, Chen YS, Kumar Y, Dubois LG, Moseley MA, Valdivia RH (2011) Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol Microbiol 82:1185–1203Google Scholar
  93. Sarov I, Becker Y (1971) Deoxyribonucleic acid-dependent ribonucleic acid polymerase activity in purified trachoma elementary bodies: effect of sodium chloride on ribonucleic acid transcription. J Bacteriol 107:593–598Google Scholar
  94. Schachter J (1988) The intracellular life of Chlamydia. Curr Top Microbiol Immunol 138:109–139Google Scholar
  95. Schwoppe C, Winkler HH, Neuhaus HE (2002) Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J Bacteriol 184:2108–2115Google Scholar
  96. Scidmore MA, Rockey DD, Fischer ER, Heinzen RA, Hackstadt T (1996) Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect Immun 64:5366–5372Google Scholar
  97. Shaw EI, Dooley CA, Fischer ER, Scidmore MA, Fields KA, Hackstadt T (2000) Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol 37:913–925Google Scholar
  98. Shen L, Macnaughtan MA, Frohlich KM, Cong Y, Goodwin OY, Chou CW, LeCour L Jr, Krup K, Luo M, Worthylake DK (2015) Multipart chaperone-effector recognition in the type III secretion system of Chlamydia trachomatis. J Biol Chem 290:28141–28155Google Scholar
  99. Silva-Herzog E, Joseph SS, Avery AK, Coba JA, Wolf K, Fields KA, Plano GV (2011) Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae. J Bacteriol 193:3490–3496Google Scholar
  100. Sixt BS, Siegl A, Muller C, Watzka M, Wultsch A, Tziotis D, Montanaro J, Richter A, Schmitt-Kopplin P, Horn M (2013) Metabolic features of Protochlamydia amoebophila elementary bodies–a link between activity and infectivity in Chlamydiae. PLoS Pathog 9:e1003553Google Scholar
  101. Skipp P, Robinson J, O’Connor CD, Clarke IN (2005) Shotgun proteomic analysis of Chlamydia trachomatis. Proteomics 5:1558–1573Google Scholar
  102. Skipp PJ, Hughes C, McKenna T, Edwards R, Langridge J, Thomson NR, Clarke IN (2016) Quantitative proteomics of the infectious and replicative forms of Chlamydia trachomatis. PLoS ONE 11:e0149011Google Scholar
  103. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–755Google Scholar
  104. Subbarayal P, Karunakaran K, Winkler AC, Rother M, Gonzalez E, Meyer TF, Rudel T (2015) EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog 11:e1004846Google Scholar
  105. Subtil A, Delevoye C, Balañá ME, Tastevin L, Perrinet S, Dautry-Varsat A (2005) A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Mol Microbiol 56:1636–1647Google Scholar
  106. Swanson KA, Taylor LD, Frank SD, Sturdevant GL, Fischer ER, Carlson JH, Whitmire WM, Caldwell HD (2009) Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect Immun 77:508–516Google Scholar
  107. Tamura A, Matsumoto A, Higashi N (1967) Purification and chemical composition of reticulate bodies of the meningopneumonitis organisms. J Bacteriol 93:2003–2008Google Scholar
  108. Tamura A, Matsumoto A, Manire GP, Higashi N (1971) Electron microscopic observations on the structure of the envelopes of mature elementary bodies and developmental reticulate forms of Chlamydia psittaci. J Bacteriol 105:355–360Google Scholar
  109. Tan C, Hsia RC, Shou H, Haggerty CL, Ness RB, Gaydos CA, Dean D, Scurlock AM, Wilson DP, Bavoil PM (2009) Chlamydia trachomatis-infected patients display variable antibody profiles against the nine-member polymorphic membrane protein family. Infect Immun 77:3218–3226Google Scholar
  110. Tan C, Hsia RC, Shou H, Carrasco JA, Rank RG, Bavoil PM (2010) Variable expression of surface-exposed polymorphic membrane proteins in in vitro-grown Chlamydia trachomatis. Cell Microbiol 12:174–187Google Scholar
  111. Tang L, Chen J, Zhou Z, Yu P, Yang Z, Zhong G (2015) Chlamydia-secreted protease CPAF degrades host antimicrobial peptides. Microbes Infect 17:402–408Google Scholar
  112. Thalmann J, Janik K, May M, Sommer K, Ebeling J, Hofmann F, Genth H, Klos A (2010) Actin re-organization induced by Chlamydia trachomatis serovar D–evidence for a critical role of the effector protein CT166 targeting Rac. PLoS ONE 5:e9887Google Scholar
  113. Thwaites T, Nogueira AT, Campeotto I, Silva AP, Grieshaber SS, Carabeo RA (2014) The Chlamydia effector TarP mimics the mammalian leucine-aspartic acid motif of paxillin to subvert the focal adhesion kinase during invasion. J Biol Chem 289:30426–30442Google Scholar
  114. Thwaites TR, Pedrosa AT, Peacick TP, Carabeo RA (2015) Vinculin interacts with the Chlamydia effector TarP via a tripartite vinculin binding domain to mediate actin recruitment and assembly at the plasma membrane. Front Cell Inf Microbiol 5:88Google Scholar
  115. Tipples G, McClarty G (1993) The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates. Mol Microbiol 8:1105–1114Google Scholar
  116. Vandahl BB, Birkelund S, Demol H, Hoorelbeke B, Christiansen G, Vandekerckhove J, Gevaert K (2001) Proteome analysis of the Chlamydia pneumoniae elementary body. Electrophoresis 22:1204–1223Google Scholar
  117. Vromman F, Laverriere M, Perrinet S, Dufour A, Subtil A (2014) Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry. PLoS ONE 9:e99197Google Scholar
  118. Weber MM, Bauler LD, Lam J, Hackstadt T (2015) Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis. Infect Immun 83:4710–4718Google Scholar
  119. Yasir M, Pachikara ND, Bao X, Pan Z, Fan H (2011) Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Infect Immun 79:4019–4028Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Mathilde M. Cossé
    • 1
    • 2
  • Richard D. Hayward
    • 3
  • Agathe Subtil
    • 1
    • 2
  1. 1.Unité de Biologie cellulaire de l’infection microbienneInstitut PasteurParisFrance
  2. 2.CNRS UMR3691ParisFrance
  3. 3.Institute of Structural and Molecular BiologyBirkbeck and University College LondonLondonUK

Personalised recommendations