Advertisement

Secondary Bacterial Infections in Influenza Virus Infection Pathogenesis

  • Amber M. Smith
  • Jonathan A. McCullers
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 385)

Abstract

Influenza is often complicated by bacterial pathogens that colonize the nasopharynx and invade the middle ear and/or lung epithelium. Incidence and pathogenicity of influenza-bacterial coinfections are multifactorial processes that involve various pathogenic virulence factors and host responses with distinct site- and strain-specific differences. Animal models and kinetic models have improved our understanding of how influenza viruses interact with their bacterial co-pathogens and the accompanying immune responses. Data from these models indicate that considerable alterations in epithelial surfaces and aberrant immune responses lead to severe inflammation , a key driver of bacterial acquisition and infection severity following influenza. However, further experimental and analytical studies are essential to determining the full mechanistic spectrum of different viral and bacterial strains and species and to finding new ways to prevent and treat influenza-associated bacterial coinfections. Here, we review recent advances regarding transmission and disease potential of influenza-associated bacterial infections and discuss the current gaps in knowledge.

Keywords

Influenza Virus Respiratory Syncytial Virus Alveolar Macrophage Influenza Infection Influenza Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by NIH grant AI100946 (AMS) and ALSAC (JAM). We thank Betsy Williford and Klo Spelshouse (SJCRH Biomedical Communications) for assistance with figure illustration.

References

  1. Abramson JS, Giebink GS, Mills EL, Quie PG (1981) Polymorphonuclear leukocyte dysfunction during influenza virus infection in chinchillas. J Infect Dis 143:836–845. doi: 10.1093/infdis/143.6.836 PubMedGoogle Scholar
  2. Abramson JS, Giebink GS, Quie PG (1982) Influenza A virus-induced polymorphonuclear leukocyte dysfunction in the pathogenesis of experimental pneumococcal otitis media. Infect Immun 36:289–296PubMedCentralPubMedGoogle Scholar
  3. Abt MC, Osborne LC, Monticelli LA et al (2012) Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37:158–170. doi: 10.1016/j.immuni.2012.04.011 PubMedCentralPubMedGoogle Scholar
  4. Alymova IV, Green AM, van de Velde N et al (2011) Immunopathogenic and antibacterial effects of H3N2 influenza A virus PB1-F2 map to amino acid residues 62, 75, 79, and 82. J Virol 85:12324–12333. doi: 10.1128/JVI.05872-11 PubMedCentralPubMedGoogle Scholar
  5. Ansaldi F, de Florentiis D, Parodi V et al (2012) Bacterial carriage and respiratory tract infections in subjects > or = 60 years during an influenza season: implications for the epidemiology of community acquired pneumonia and influenza vaccine effectiveness. J Prev Med Hyg 53:94–97PubMedGoogle Scholar
  6. Ayala VI, Teijaro JR, Farber DL et al (2011) Bordetella pertussis infection exacerbates influenza virus infection through pertussis toxin-mediated suppression of innate immunity. PLoS ONE 6:e19016. doi: 10.1371/journal.pone.0019016 PubMedCentralPubMedGoogle Scholar
  7. Baccam P, Beauchemin C, Macken CA et al (2006) Kinetics of influenza a virus infection in humans. J Virol 80:7590–7599. doi: 10.1128/JVI.01623-05 PubMedCentralPubMedGoogle Scholar
  8. Barclay AN, Wright GJ, Brooke G, Brown MH (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23:285–290. doi: 10.1016/S1471-4906(02)02223-8 PubMedGoogle Scholar
  9. Beauchemin CA, Handel A (2011) A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health 11:S7. doi: 10.1186/1471-2458-11-S1-S7 PubMedCentralPubMedGoogle Scholar
  10. Beighton D, Whiley RA (1990) Sialidase activity of the “Streptococcus milleri group” and other viridans group Streptococci. J Clin Microbiol 28:1431–1433PubMedCentralPubMedGoogle Scholar
  11. Berendt RF, Long GG, Walker JS (1975) Influenza alone and in sequence with pneumonia due to Streptococcus pneumoniae in the squirrel monkey. J Infect Dis 132:689–693. doi: 10.1093/infdis/132.6.689 PubMedGoogle Scholar
  12. Bosch AATM, Biesbroek G, Trzcinski K et al (2013) Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 9:e1003057. doi: 10.1371/journal.ppat.1003057 PubMedCentralPubMedGoogle Scholar
  13. Bradley JS, Byington CL, Shah SS et al (2011) The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the pediatric infectious diseases society and the infectious diseases society of America. Clin Infect Dis 53:e25–e76. doi: 10.1093/cid/cir531 PubMedGoogle Scholar
  14. Brundage JF, Shanks GD (2007) What really happened during the 1918 influenza pandemic? The importance of bacterial secondary infections. J Infect Dis 196:1717–1718. doi: 10.1086/522355 PubMedGoogle Scholar
  15. Camara M, Mitchell TJ, Andrew PW, Boulnois GJ (1991) Streptococcus pneumoniae produces at least two distinct enzymes with neuraminidase activity: cloning and expression of a second neuraminidase gene in Escherichia coli. Infect Immun 59:2856–2858PubMedCentralPubMedGoogle Scholar
  16. Canini L, Carrat F (2010) Population modeling of influenza A/H1N1 virus kinetics and symptom dynamics. J Virol 85:2764–2770. doi: 10.1128/JVI.01318-10 PubMedCentralPubMedGoogle Scholar
  17. Centers for Disease Control Deaths and MortalityGoogle Scholar
  18. Centers for Disease Control Estimated Burden of Acute Otits ExternaGoogle Scholar
  19. Chanturiya AN, Basanez G, Schubert U et al (2004) PB1-F2, an influenza A virus-encoded proapoptotic mitochondrial protein, creates variably sized pores in planar lipid membranes. J Virol 78:6304–6312. doi: 10.1128/JVI.78.12.6304-6312.2004 PubMedCentralPubMedGoogle Scholar
  20. Chaussee MS, Sandbulte HR, Schuneman MJ et al (2011) Inactivated and live, attenuated influenza vaccines protect mice against influenza: Streptococcus pyogenes super-infections. Vaccine 29:3773–3781. doi: 10.1016/j.vaccine.2011.03.031 PubMedCentralPubMedGoogle Scholar
  21. Chen W, Calvo PA, Malide D et al (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306–1312. doi: 10.1038/nm1201-1306 PubMedGoogle Scholar
  22. Colamussi ML, White MR, Crouch E, Hartshorn KL (1999) Influenza A virus accelerates neutrophil apoptosis and markedly potentiates apoptotic effects of bacteria. Blood 93:2395–2403PubMedGoogle Scholar
  23. Conenello GM, Tisoncik JR, Rosenzweig E et al (2011) A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J Virol 85:652–662. doi: 10.1128/JVI.01987-10 PubMedCentralPubMedGoogle Scholar
  24. Conenello GM, Zamarin D, Perrone LA et al (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3:e141. doi: 10.1371/journal.ppat.0030141 PubMedCentralGoogle Scholar
  25. Cundell DR, Gerard NP, Gerard C et al (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435–438. doi: 10.1038/377435a0 PubMedGoogle Scholar
  26. Danishuddin M, Khan SN, Khan AU (2010) Molecular interactions between mitochondrial membrane proteins and the C-terminal domain of PB1-F2: an in silico approach. J Mol Model 16:535–541. doi: 10.1007/s00894-009-0555-5 PubMedGoogle Scholar
  27. Diavatopoulos DA, Short KR, Price JT et al (2010a) Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J 24:1789–1798. doi: 10.1096/fj.09-146779 PubMedGoogle Scholar
  28. Diavatopoulos DA, Short KR, Price JT et al (2010b) Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J 24:1789–1798. doi: 10.1096/fj.09-146779 PubMedGoogle Scholar
  29. Didierlaurent A, Goulding J, Patel S et al (2008) Sustained desensitization to bacterial toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 205:323–329. doi: 10.1084/jem.20070891 PubMedCentralPubMedGoogle Scholar
  30. Dockrell DH, Marriott HM, Prince LR et al (2003) Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection. J Immunol (Baltimore Md 1950) 171:5380–5388Google Scholar
  31. Domínguez-Cherit G (2009) Critically ill patients with 2009 influenza A(H1N1) in Mexico. JAMA 302:1880. doi: 10.1001/jama.2009.1536 PubMedGoogle Scholar
  32. Duval X, van der Werf S, Blanchon T et al (2010) Efficacy of Oseltamivir-Zanamivir combination compared to each monotherapy for seasonal influenza: a randomized placebo-controlled trial. PLoS Med 7:e1000362. doi: 10.1371/journal.pmed.1000362 PubMedCentralPubMedGoogle Scholar
  33. Engelich G, White M, Hartshorn KL (2001) Neutrophil survival is markedly reduced by incubation with influenza virus and Streptococcus pneumoniae: role of respiratory burst. J Leukoc Biol 69:50–56PubMedGoogle Scholar
  34. Fainstein V, Musher DM, Cate TR (1980) Bacterial adherence to pharyngeal cells during viral infection. J Infect Dis 141:172–176. doi: 10.1093/infdis/141.2.172 PubMedGoogle Scholar
  35. File TM Jr, Marrie TJ (2010) Burden of community-acquired pneumonia in North American adults. Postgrad Med 122:130–141. doi: 10.3810/pgm.2010.03.2130 PubMedGoogle Scholar
  36. Fillion I, Ouellet N, Simard M et al (2001) Role of chemokines and formyl peptides in pneumococcal pneumonia-induced monocyte/macrophage recruitment. J Immunol (Baltimore Md 1950) 166:7353–7361Google Scholar
  37. Francis T, de Torregrosa MV (1945) Combined infection of mice with H. influenzae and influenza virus by the intranasal route. J Infect Dis 76:70–77. doi: 10.2307/30085688 Google Scholar
  38. García-Rodríguez JA, Fresnadillo Martínez MJ (2002) Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J Antimicrob Chemother 50 Suppl S2:59–73Google Scholar
  39. Ghoneim HE, McCullers JA (2013) Adjunctive corticosteroid therapy improves lung immunopathology and survival during severe secondary pneumococcal pneumonia in mice. J Infect Dis. doi: 10.1093/infdis/jit653 PubMedGoogle Scholar
  40. Ghoneim HE, Thomas PG, McCullers JA (2013) Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections. J Immunol 191:1250–1259. doi: 10.4049/jimmunol.1300014 PubMedGoogle Scholar
  41. Gibbs JS, Malide D, Hornung F et al (2003) The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. J Virol 77:7214–7224. doi: 10.1128/JVI.77.13.7214-7224.2003 PubMedCentralPubMedGoogle Scholar
  42. Giebink G, Ripley M, Wright P (1987) Eustachian tube histopathology during experimental influenza A virus infection in the chinchilla. Ann Otol Rhinol Laryngol 96:199–206PubMedGoogle Scholar
  43. Giles C, Shuttleworth EM (1957) Postmortem findings in 46 influenza deaths. Lancet 273:1224–1225PubMedGoogle Scholar
  44. le Goffic R, Bouguyon E, Chevalier C et al (2010) Influenza A virus protein PB1-F2 exacerbates IFN-expression of human respiratory epithelial cells. J Immunol 185:4812–4823. doi: 10.4049/jimmunol.0903952 PubMedGoogle Scholar
  45. Goulding J, Godlee A, Vekaria S et al (2011) Lowering the threshold of lung innate immune cell activation alters susceptibility to secondary bacterial superinfection. J Infect Dis 204:1086–1094. doi: 10.1093/infdis/jir467 PubMedCentralPubMedGoogle Scholar
  46. Gwaltney JM, Sande MA, Austrian R, Hendley JO (1975) Spread of Streptococcus pneumoniae in families. II. Relation of transfer of S. pneumoniae to incidence of colds and serum antibody. J Infect Dis 132:62–68. doi: 10.1093/infdis/132.1.62 PubMedGoogle Scholar
  47. Hai R, Schmolke M, Varga ZT et al (2010) PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J Virol 84:4442–4450. doi: 10.1128/JVI.02717-09 PubMedCentralPubMedGoogle Scholar
  48. Hajek DM, Yuan Z, Quartey MK, Giebink GS (1999) Otitis media: the chinchilla model. In: Zak O, Sande MA (eds) Handbook of animal models of infection: experimental models in antimicrobial chemotherapy Academic, San Diego, CA, pp 389–401 Google Scholar
  49. Hale BG, Randall RE, Ortin J, Jackson D (2008) The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89:2359–2376. doi: 10.1099/vir.0.2008/004606-0 PubMedGoogle Scholar
  50. Handel A, Longini IM, Antia R (2010) Towards a quantitative understanding of the within-host dynamics of influenza A infections. J R Soc Interface 7:35–47. doi: 10.1098/rsif.2009.0067 PubMedCentralPubMedGoogle Scholar
  51. Hayden FG (2006) Antiviral resistance in influenza viruses—implications for management and pandemic response. N Engl J Med 354:785–788. doi: 10.1056/NEJMp068030 PubMedGoogle Scholar
  52. Hayden FG (2013) Newer influenza antivirals, biotherapeutics and combinations: novel influenza antivirals and therapeutics. Influenza Other Respir Viruses 7:63–75. doi: 10.1111/irv.12045 PubMedGoogle Scholar
  53. Heikkinen T (2000) The role of respiratory viruses in otitis media. Vaccine 19:S51–S55. doi: 10.1016/S0264-410X(00)00278-4 PubMedGoogle Scholar
  54. Herzog H, Staub H, Richterich R (1959) Gas-analytical studies in severe pneumonia; observations during the 1957 influenza epidemic. Lancet 1:593–597PubMedGoogle Scholar
  55. Hirano T, Kurono Y, Ichimiya I et al (1999) Effects of influenza A virus on lectin-binding patterns in murine nasopharyngeal mucosa and on bacterial colonization. Otolaryngol Head Neck Surg 121:616–621. doi: 10.1016/S0194-5998(99)70068-9 PubMedGoogle Scholar
  56. Homer KA, Kelley S, Hawkes J et al (1996) Metabolism of glycoprotein-derived sialic acid and N-acetylglucosamine by Streptococcus oralis. Microbiol Read Engl 142(Pt 5):1221–1230Google Scholar
  57. Huber VC, Peltola V, Iverson AR, McCullers JA (2010) Contribution of Vaccine-induced immunity toward either the HA or the NA component of influenza viruses limits secondary bacterial complications. J Virol 84:4105–4108. doi: 10.1128/JVI.02621-09 PubMedCentralPubMedGoogle Scholar
  58. Hughes MT, Matrosovich M, Rodgers ME et al (2000) Influenza A viruses lacking sialidase activity can undergo multiple cycles of replication in cell culture, eggs, or mice. J Virol 74:5206–5212. doi: 10.1128/JVI.74.11.5206-5212.2000 PubMedCentralPubMedGoogle Scholar
  59. Hussell T, Cavanagh MM (2009) The innate immune rheostat: influence on lung inflammatory disease and secondary bacterial pneumonia. Biochem Soc Trans 37:811. doi: 10.1042/BST0370811 PubMedGoogle Scholar
  60. Ichinohe T, Pang IK, Kumamoto Y et al (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Nat Acad Sci U.S.A 108:5354–5359. doi: 10.1073/pnas.1019378108 Google Scholar
  61. Iverson AR, Boyd KL, McAuley JL et al (2011) Influenza virus primes mice for pneumonia from Staphylococcus aureus. J Infect Dis 203:880–888. doi: 10.1093/infdis/jiq113 PubMedCentralPubMedGoogle Scholar
  62. Jain S, Kamimoto L, Bramley AM et al (2009) Hospitalized patients with 2009 H1N1 influenza in the United States, April–June 2009. N Engl J Med 361:1935–1944. doi: 10.1056/NEJMoa0906695 PubMedGoogle Scholar
  63. Jamieson AM, Yu S, Annicelli CH, Medzhitov R (2010) Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection. Cell Host Microbe 7:103–114. doi: 10.1016/j.chom.2010.01.010 PubMedCentralPubMedGoogle Scholar
  64. Jiang-Shieh Y-F, Chien H-F, Chang C-Y et al (2010) Distribution and expression of CD200 in the rat respiratory system under normal and endotoxin-induced pathological conditions. J Anat 216:407–416. doi: 10.1111/j.1469-7580.2009.01190.x PubMedCentralPubMedGoogle Scholar
  65. Jonsson S, Musher DM, Chapman A et al (1985) Phagocytosis and killing of common bacterial pathogens of the lung by human alveolar macrophages. J Infect Dis 152:4–13. doi: 10.1093/infdis/152.1.4 PubMedGoogle Scholar
  66. Joyce EA, Popper SJ, Falkow S (2009) Streptococcus pneumoniae nasopharyngeal colonization induces type I interferons and interferon-induced gene expression. BMC Genomics 10:404. doi: 10.1186/1471-2164-10-404 PubMedCentralPubMedGoogle Scholar
  67. Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288–301. doi: 10.1038/nrmicro1871 PubMedGoogle Scholar
  68. Karlström Å, Boyd KL, English BK, McCullers JA (2009) Treatment with protein synthesis inhibitors improves outcomes of secondary bacterial pneumonia after influenza. J Infect Dis 199:311–319. doi: 10.1086/596051 PubMedCentralPubMedGoogle Scholar
  69. Karlstrom A, Heston SM, Boyd KL et al (2011) Toll-like receptor 2 mediates fatal immunopathology in mice during treatment of secondary pneumococcal pneumonia following influenza. J Infect Dis 204:1358–1366. doi: 10.1093/infdis/jir522 PubMedCentralPubMedGoogle Scholar
  70. Knapp S, Leemans JC, Florquin S et al (2003) Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia. Am J Respir Crit Care Med 167:171–179. doi: 10.1164/rccm.200207-698OC PubMedGoogle Scholar
  71. Kobayashi SD, Braughton KR, Palazzolo-Ballance AM et al (2010) Rapid neutrophil destruction following phagocytosis of Staphylococcus aureus. J. Innate Immun 2:560–575. doi: 10.1159/000317134 PubMedCentralPubMedGoogle Scholar
  72. Kobayashi SD, Braughton KR, Whitney AR et al (2003) Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Nat Acad Sci U.S.A 100:10948–10953. doi: 10.1073/pnas.1833375100 Google Scholar
  73. Koppe U, Suttorp N, Opitz B (2012) Recognition of Streptococcus pneumoniae by the innate immune system: Innate immune recognition of Streptococcus pneumoniae. Cell Microbiol 14:460–466. doi: 10.1111/j.1462-5822.2011.01746.x PubMedGoogle Scholar
  74. Kudva A, Scheller EV, Robinson KM et al (2011) Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. J Immunol (Baltimore Md 1950) 186:1666–1674. doi: 10.4049/jimmunol.1002194 Google Scholar
  75. Kumar A (2009) Critically ill patients with 2009 influenza A(H1N1) infection in Canada. JAMA 302:1872. doi: 10.1001/jama.2009.1496 PubMedGoogle Scholar
  76. Kuri T, Smed Sörensen A, Thomas S et al (2013) Influenza A virus-mediated priming enhances cytokine secretion by human dendritic cells infected with Streptococcus pneumoniae: Influenza virus and pneumococcal co-infection of human DCs. Cell Microbiol 15:1385–1400. doi: 10.1111/cmi.12122 PubMedCentralPubMedGoogle Scholar
  77. Laennec RTH (1923) Translation of selected passages from De l’auscultation mediate. Bale & Danielsson, LondonGoogle Scholar
  78. Lee LN, Dias P, Han D et al (2010) A mouse model of lethal synergism between influenza virus and haemophilus influenzae. Am J Pathol 176:800–811. doi: 10.2353/ajpath.2010.090596 PubMedCentralPubMedGoogle Scholar
  79. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129. doi: 10.1038/nm1145 PubMedGoogle Scholar
  80. Li R, Lim A, Phoon MC et al (2010) Attenuated bordetella pertussis protects against highly pathogenic influenza a viruses by dampening the cytokine storm. J Virol 84:7105–7113. doi: 10.1128/JVI.02542-09 PubMedCentralPubMedGoogle Scholar
  81. Li W, Moltedo B, Moran TM (2012) Type I interferon induction during influenza virus infection increases susceptibility to secondary Streptococcus pneumoniae infection by negative regulation of γδ T cells. J Virol 86:12304–12312. doi: 10.1128/JVI.01269-12 PubMedCentralPubMedGoogle Scholar
  82. Licciardi PV, Toh ZQ, Dunne E et al (2012) Protecting against ppneumococcal disease: critical interactions between probiotics and the airway microbiome. PLoS Pathog 8:e1002652. doi: 10.1371/journal.ppat.1002652 PubMedCentralPubMedGoogle Scholar
  83. Liu C, Air GM (1993) Selection and characterization of a neuraminidase-minus mutant of influenza virus and its rescue by cloned neuraminidase genes. Virology 194:403–407. doi: 10.1006/viro.1993.1276 PubMedGoogle Scholar
  84. Liu X, He Y, Xiao K et al (2013) Effect of linezolid on clinical severity and pulmonary cytokines in a murine model of influenza A and Staphylococcus aureus coinfection. PLoS ONE 8:e57483. doi: 10.1371/journal.pone.0057483 PubMedCentralPubMedGoogle Scholar
  85. Louie J, Jean C, Chen TH et al (2009) Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1)—United States, May-August 2009. Morb Mortal Wkly Rep 58:1071–1074Google Scholar
  86. Louria DB, Blumenfeld HL, Ellis JT et al (1959) Studies on influenza in the pandemic of 1957-1958. II. Pulmonary Complications Of Influenza. J Clin Invest 38:213–265. doi: 10.1172/JCI103791 PubMedCentralPubMedGoogle Scholar
  87. Loving CL, Brockmeier SL, Vincent AL et al (2010) Influenza virus coinfection with Bordetella bronchiseptica enhances bacterial colonization and host responses exacerbating pulmonary lesions. Microb Pathog 49:237–245. doi: 10.1016/j.micpath.2010.06.004 PubMedGoogle Scholar
  88. Ludewick HP, Aerts L, Hamelin M-E, Boivin G (2011) Long-term impairment of Streptococcus pneumoniae lung clearance is observed after initial infection with influenza A virus but not human metapneumovirus in mice. J Gen Virol 92:1662–1665. doi: 10.1099/vir.0.030825-0 PubMedGoogle Scholar
  89. Marks LR, Davidson BA, Knight PR, Hakansson AP (2013) Interkingdom signaling induces streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. mBio 4:e00438–13. doi: 10.1128/mBio.00438-13
  90. McAuley JL, Chipuk JE, Boyd KL et al (2010a) PB1-F2 proteins from H5N1 and 20th century pandemic influenza viruses cause immunopathology. PLoS Pathog 6:e1001014. doi: 10.1371/journal.ppat.1001014 PubMedCentralPubMedGoogle Scholar
  91. McAuley JL, Hornung F, Boyd KL et al (2007) Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2:240–249. doi: 10.1016/j.chom.2007.09.001 PubMedCentralPubMedGoogle Scholar
  92. McAuley JL, Zhang K, McCullers JA (2010b) The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis. J Virol 84:558–564. doi: 10.1128/JVI.01785-09 PubMedCentralPubMedGoogle Scholar
  93. McCullers JA (2001) Molecular pathogenesis of pneumococcal pneumonia. Front Biosci 6:d877. doi: 10.2741/McCullers PubMedGoogle Scholar
  94. McCullers JA (2005) Antiviral therapy of influenza. Expert Opin Investig Drugs 14:305–312. doi: 10.1517/13543784.14.3.305 PubMedGoogle Scholar
  95. McCullers JA (2011) Preventing and treating secondary bacterial infections with antiviral agents. Antivir Ther 16:123–135. doi: 10.3851/IMP1730 PubMedGoogle Scholar
  96. McCullers JA (2014) The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol 12:252–262. doi: 10.1038/nrmicro3231 PubMedGoogle Scholar
  97. McCullers JA (2004) Effect of antiviral treatment on the outcome of secondary bacterial pneumonia after influenza. J Infect Dis 190:519–526. doi: 10.1086/421525 PubMedGoogle Scholar
  98. McCullers JA, Bartmess KC (2003) Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J Infect Dis 187:1000–1009. doi: 10.1086/368163 PubMedGoogle Scholar
  99. McCullers JA, English BK (2008) Improving therapeutic strategies for secondary bacterial pneumonia following influenza. Future Microbiol 3:397–404. doi: 10.2217/17460913.3.4.397 PubMedCentralPubMedGoogle Scholar
  100. McCullers JA, Karlström Å, Iverson AR et al (2007) Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae. PLoS Pathog 3:e28. doi: 10.1371/journal.ppat.0030028 PubMedCentralPubMedGoogle Scholar
  101. McCullers JA, McAuley JL, Browall S et al (2010) Influenza enhances susceptibility to natural acquisition of and disease due to Streptococcus pneumoniae in ferrets. J Infect Dis 202:1287–1295. doi: 10.1086/656333 PubMedCentralPubMedGoogle Scholar
  102. McCullers JA, Rehg JE (2002) Lethal synergism between influenza virus and streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis 186:341–350. doi: 10.1086/341462 PubMedGoogle Scholar
  103. McHugh KJ, Mandalapu S, Kolls JK et al (2013) A novel outbred mouse model of 2009 pandemic influenza and bacterial co-infection severity. PLoS ONE 8:e82865. doi: 10.1371/journal.pone.0082865 PubMedCentralPubMedGoogle Scholar
  104. McNamee LA, Harmsen AG (2006) Both influenza-induced neutrophil dysfunction and neutrophil-independent mechanisms contribute to increased susceptibility to a secondary Streptococcus pneumoniae infection. Infect Immun 74:6707–6721. doi: 10.1128/IAI.00789-06 PubMedCentralPubMedGoogle Scholar
  105. Metzger DW, Sun K (2013) Immune dysfunction and bacterial coinfections following influenza. J Immunol 191:2047–2052. doi: 10.4049/jimmunol.1301152 PubMedCentralPubMedGoogle Scholar
  106. Miao H, Hollenbaugh JA, Zand MS et al (2010) Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus. J Virol 84:6687–6698. doi: 10.1128/JVI.00266-10 PubMedCentralPubMedGoogle Scholar
  107. Miao H, Xia X, Perelson AS, Wu H (2011) On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Rev 53:3–39. doi: 10.1137/090757009 Google Scholar
  108. Miller ML, Gao G, Pestina T et al (2007) Hypersusceptibility to invasive pneumococcal infection in experimental sickle cell disease involves platelet-activating factor receptor. J Infect Dis 195:581–584. doi: 10.1086/510626 PubMedGoogle Scholar
  109. Mina MJ, Klugman KP, McCullers JA (2013) Liveattenuated influenza vaccine, but not pneumococcal conjugate vaccine, protects against increased density and duration of pneumococcal carriage after influenza infection in pneumococcal colonized mice. J Infect Dis 208:1281–1285. doi: 10.1093/infdis/jit317 PubMedGoogle Scholar
  110. Minas K, Liversidge J (2006) Is the CD200/CD200 receptor interaction more than just a myeloid cell inhibitory signal? Crit Rev Immunol 26:213–230PubMedCentralPubMedGoogle Scholar
  111. Moncla BJ, Braham P (1989) Detection of sialidase (neuraminidase) activity in Actinomyces species by using 2’-(4-methylumbelliferyl) alpha-D-N-acetylneuraminic acid in a filter paper spot test. J Clin Microbiol 27:182–184PubMedCentralPubMedGoogle Scholar
  112. Moncla BJ, Braham P, Hillier SL (1990) Sialidase (neuraminidase) activity among gram-negative anaerobic and capnophilic bacteria. J Clin Microbiol 28:422–425PubMedCentralPubMedGoogle Scholar
  113. Montgomery CP, Boyle-Vavra S, Adem PV et al (2008) Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis 198:561–570. doi: 10.1086/590157 PubMedGoogle Scholar
  114. Morens DM, Taubenberger JK, Fauci AS (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 198:962–970. doi: 10.1086/591708 PubMedCentralPubMedGoogle Scholar
  115. Moscona A (2005) Neuraminidase inhibitors for influenza. N Engl J Med 353:1363–1373. doi: 10.1056/NEJMra050740 PubMedGoogle Scholar
  116. Murphy TF, Bakaletz LO, Smeesters PR (2009) Microbial interactions in the respiratory tract. Pediatr Infect Dis J 28:S121–S126. doi: 10.1097/INF.0b013e3181b6d7ec PubMedGoogle Scholar
  117. Musher DM, Dowell ME, Shortridge VD et al (2002) Emergence of macrolide resistance during treatment of pneumococcal pneumonia. N Engl J Med 346:630–631. doi: 10.1056/NEJM200202213460820 PubMedGoogle Scholar
  118. Nakamura S, Davis KM, Weiser JN (2011) Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice. J Clin Invest 121:3657–3665. doi: 10.1172/JCI57762 PubMedCentralPubMedGoogle Scholar
  119. Navarini AA, Recher M, Lang KS et al (2006) Increased susceptibility to bacterial superinfection as a consequence of innate antiviral responses. Proc Nat Acad Sci U.S.A 103:15535–15539. doi: 10.1073/pnas.0607325103 Google Scholar
  120. Nelson JC, Jackson M, Yu O et al (2008) Impact of the introduction of pneumococcal conjugate vaccine on rates of communityacquired pneumonia in children and adults. Vaccine 26:4947–4954. doi: 10.1016/j.vaccine.2008.07.016 PubMedGoogle Scholar
  121. Niemann S, Ehrhardt C, Medina E et al (2012) Combined action of influenza virus and Staphylococcus aureus panton-valentine leukocidin provokes severe lung epithelium damage. J Infect Dis 206:1138–1148. doi: 10.1093/infdis/jis468 PubMedCentralPubMedGoogle Scholar
  122. Nishikawa T, Shimizu K, Tanaka T et al (2012) Bacterial neuraminidase rescues influenza virus replication from inhibition by a neuraminidase inhibitor. PLoS ONE 7:e45371. doi: 10.1371/journal.pone.0045371 PubMedCentralPubMedGoogle Scholar
  123. Nonaka H, Ishikawa Y, Otsuka M et al (1983) Purification and some properties of neuraminidase isolated from the culture medium of oral bacterium Streptococcus mitis ATCC 9811. J Dent Res 62:792–797PubMedGoogle Scholar
  124. Okamoto S, Kawabata S, Nakagawa I et al (2003) Influenza A virus-infected hosts boost an invasive type of Streptococcus pyogenes infection in mice. J Virol 77:4104–4112PubMedCentralPubMedGoogle Scholar
  125. Oseasohn R, Adelson L, Kaji M (1959) Clinicopathologic study of thirty-three fatal cases of Asian influenza. N Engl J Med 260:509–518. doi: 10.1056/NEJM195903122601101 PubMedGoogle Scholar
  126. Palacios G, Hornig M, Cisterna D et al (2009) Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza. PLoS ONE 4:e8540. doi: 10.1371/journal.pone.0008540 PubMedCentralPubMedGoogle Scholar
  127. Pawelek KA, Huynh GT, Quinlivan M et al (2012) Modeling within-host dynamics of influenza virus infection including immune responses. PLoS Comput Biol 8:e1002588. doi: 10.1371/journal.pcbi.1002588 PubMedCentralPubMedGoogle Scholar
  128. Peltola VT, Boyd KL, McAuley JL et al (2006) Bacterial sinusitis and otitis media following influenza virus infection in ferrets. Infect Immun 74:2562–2567. doi: 10.1128/IAI.74.5.2562-2567.2006 PubMedCentralPubMedGoogle Scholar
  129. Peltola VT, Murti KG, McCullers JA (2005) Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J Infect Dis 192:249–257. doi: 10.1086/430954 PubMedCentralPubMedGoogle Scholar
  130. Pettigrew MM, Gent JF, Revai K et al (2008) Microbial interactions during upper respiratory tract infections. Emerg Infect Dis 14:1584–1591. doi: 10.3201/eid1410.080119 PubMedCentralPubMedGoogle Scholar
  131. Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG (2010) Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 42:450–460. doi: 10.1165/rcmb.2007-0417OC PubMedCentralPubMedGoogle Scholar
  132. Plotkowski MC, Bajolet-Laudinat O, Puchelle E (1993) Cellular and molecular mechanisms of bacterial adhesion to respiratory mucosa. Eur Respir J 6:903–916PubMedGoogle Scholar
  133. Plotkowski MC, Puchelle E, Beck G et al (1986) Adherence of type I Streptococcus pneumoniae to tracheal epithelium of mice infected with influenza A/PR8 virus. Am Rev Respir Dis 134:1040–1044PubMedGoogle Scholar
  134. Puchelle E, Zahm J-M, Tournier J-M, Coraux C (2006) Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc Am Thorac Soc 3:726–733. doi: 10.1513/pats.200605-126SF PubMedGoogle Scholar
  135. Rarey KE, DeLacure MA, Sandridge SA, Small PA (1987) Effect of upper respiratory infection on hearing in the ferret model. Am J Otolaryngol 8:161–170. doi: 10.1016/S0196-0709(87)80040-6 PubMedGoogle Scholar
  136. Redford PS, Mayer-Barber KD, McNab FW et al (2014) Influenza A virus impairs control of mycobacterium tuberculosis coinfection through a type I interferon receptor-dependent pathway. J Infect Dis 209:270–274. doi: 10.1093/infdis/jit424 PubMedCentralPubMedGoogle Scholar
  137. Saenz RA, Quinlivan M, Elton D et al (2010) Dynamics of influenza virus infection and pathology. J Virol 84:3974–3983. doi: 10.1128/JVI.02078-09 PubMedCentralPubMedGoogle Scholar
  138. Scanlon KL, Diven WF, Glew RH (1989) Purification and properties of Streptococcus pneumoniae neuraminidase. Enzyme 41:143–150PubMedGoogle Scholar
  139. Seki M, Yanagihara K, Higashiyama Y et al (2004) Immunokinetics in severe pneumonia due to influenza virus and bacteria coinfection in mice. Eur Respir J 24:143–149. doi: 10.1183/09031936.04.00126103 PubMedGoogle Scholar
  140. Shahangian A, Chow EK, Tian X et al (2009) Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 119:1910–1920. doi: 10.1172/JCI35412 PubMedCentralPubMedGoogle Scholar
  141. Shanks GD, Mackenzie A, McLaughlin R et al (2010) Mortality risk factors during the 1918-1919 influenza pandemic in the Australian army. J Infect Dis 201:1880–1889. doi: 10.1086/652868 PubMedGoogle Scholar
  142. Shope RE (1931) Swine influenza: I. Experimental transmission and pathology. J Exp Med 54:349–359. doi: 10.1084/jem.54.3.349 PubMedCentralPubMedGoogle Scholar
  143. Short KR, Diavatopoulos DA, Thornton R et al (2011) Influenza virus induces bacterial and nonbacterial otitis media. J Infect Dis 204:1857–1865. doi: 10.1093/infdis/jir618 PubMedCentralPubMedGoogle Scholar
  144. Short KR, Habets MN, Hermans PW, Diavatopoulos DA (2012a) Interactions between Streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Future Microbiol 7:609–624. doi: 10.2217/fmb.12.29 PubMedGoogle Scholar
  145. Short KR, Habets MN, Payne J et al (2013a) Influenza A virusinduced bacterial otitis media is independent of virus tropism for α2,6-linked sialic acid. Virol J 10:128. doi: 10.1186/1743-422X-10-128 PubMedCentralPubMedGoogle Scholar
  146. Short KR, Reading PC, Brown LE et al (2013b) Influenza-induced inflammation drives pneumococcal otitis media. Infect Immun 81:645–652. doi: 10.1128/IAI.01278-12 PubMedCentralPubMedGoogle Scholar
  147. Short KR, Reading PC, Wang N et al (2012b) Increased nasopharyngeal bacterial titers and local inflammation facilitate transmission of Streptococcus pneumoniae. mBio 3:e00255–12. doi: 10.1128/mBio.00255-12
  148. van der Sluijs KF, van Elden LJR, Nijhuis M et al (2004) IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J Immunol (Baltimore Md 1950) 172:7603–7609Google Scholar
  149. Small C-L, Shaler CR, McCormick S et al (2010) Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung. J Immunol 184:2048–2056. doi: 10.4049/jimmunol.0902772 PubMedGoogle Scholar
  150. Smith AM, Adler FR, McAuley JL et al (2011a) Effect of 1918 PB1-F2 expression on influenza A virus infection kinetics. PLoS Comput Biol 7:e1001081. doi: 10.1371/journal.pcbi.1001081 PubMedCentralPubMedGoogle Scholar
  151. Smith AM, Adler FR, Perelson AS (2010) An accurate two-phase approximate solution to an acute viral infection model. J Math Biol 60:711–726. doi: 10.1007/s00285-009-0281-8 PubMedCentralPubMedGoogle Scholar
  152. Smith AM, Adler FR, Ribeiro RM et al (2013) Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae. PLoS Pathog 9:e1003238. doi: 10.1371/journal.ppat.1003238 PubMedCentralPubMedGoogle Scholar
  153. Smith AM, McCullers JA (2013) Molecular signatures of virulence in the PB1-F2 proteins of H5N1 influenza viruses. Virus Res 178:146–150. doi: 10.1016/j.virusres.2013.02.012 PubMedGoogle Scholar
  154. Smith AM, McCullers JA, Adler FR (2011b) Mathematical model of a three-stage innate immune response to a pneumococcal lung infection. J Theor Biol 276:106–116. doi: 10.1016/j.jtbi.2011.01.052 PubMedCentralPubMedGoogle Scholar
  155. Smith AM, Perelson AS (2011) Influenza A virus infection kinetics: quantitative data and models. Wiley Interdiscip Rev Syst Biol Med 3:429–445. doi: 10.1002/wsbm.129 PubMedCentralPubMedGoogle Scholar
  156. Smith AM, Ribeiro RM (2010) Modeling the viral dynamics of influenza A virus infection. Crit Rev Immunol 30:291–298. doi: 10.1615/CritRevImmunol.v30.i3.60 PubMedGoogle Scholar
  157. Smith MW, Schmidt JE, Rehg JE et al (2007) Induction of pro- and anti-inflammatory molecules in a mouse model of pneumococcal pneumonia after influenza. Comp Med 57:82–89PubMedCentralPubMedGoogle Scholar
  158. Snelgrove RJ, Goulding J, Didierlaurent AM et al (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9:1074–1083. doi: 10.1038/ni.1637 PubMedGoogle Scholar
  159. Sun K, Metzger DW (2008) Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection. Nat Med 14:558–564. doi: 10.1038/nm1765 PubMedGoogle Scholar
  160. Tashiro M, Ciborowski P, Klenk H-D et al (1987) Role of Staphylococcus protease in the development of influenza pneumonia. Nature 325:536–537. doi: 10.1038/325536a0 PubMedGoogle Scholar
  161. Tian X, Xu F, Lung WY et al (2012) Poly I: C enhances susceptibility to secondary pulmonary infections by gram-positive bacteria. PLoS ONE 7:e41879. doi: 10.1371/journal.pone.0041879 PubMedCentralPubMedGoogle Scholar
  162. Tong HH, Weiser JN, James MA, DeMaria TF (2001) Effect of influenza A virus infection on nasopharyngeal colonization and otitis media induced by transparent or opaque phenotype variants of Streptococcus pneumoniae in the chinchilla model. Infect Immun 69:602–606. doi: 10.1128/IAI.69.1.602-606.2001 PubMedCentralPubMedGoogle Scholar
  163. Tuomanen EI, Austrian R, Masure HR (1995) Pathogenesis of pneumococcal infection. N Engl J Med 332:1280–1284. doi: 10.1056/NEJM199505113321907 PubMedGoogle Scholar
  164. Varga ZT, Grant A, Manicassamy B, Palese P (2012) Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential. J Virol 86:8359–8366. doi: 10.1128/JVI.01122-12 PubMedCentralPubMedGoogle Scholar
  165. Varga ZT, Ramos I, Hai R et al (2011) The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathog 7:e1002067. doi: 10.1371/journal.ppat.1002067 PubMedCentralPubMedGoogle Scholar
  166. Wang J, Li F, Sun R et al (2013) Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat Commun. doi: 10.1038/ncomms3106 Google Scholar
  167. Wanzeck K, Boyd KL, McCullers JA (2011) Glycan shielding of the influenza virus hemagglutinin contributes to immunopathology in mice. Am J Respir Crit Care Med 183:767–773. doi: 10.1164/rccm.201007-1184OC PubMedCentralPubMedGoogle Scholar
  168. Weeks-Gorospe JN, Hurtig HR, Iverson AR et al (2012) Naturally occurring swine influenza A virus PB1-F2 phenotypes that contribute to superinfection with gram-positive respiratory pathogens. J Virol 86:9035–9043. doi: 10.1128/JVI.00369-12 PubMedCentralPubMedGoogle Scholar
  169. Weinberger DM, Simonsen L, Jordan R et al (2011) Impact of the 2009 influenza pandemic on pneumococcal pneumonia hospitalizations in the United States. J Infect Dis 205:458–465. doi: 10.1093/infdis/jir749 PubMedCentralPubMedGoogle Scholar
  170. Wherry WB, Butterfield CT (1921) Inhalation experiments on influenza and pneumonia, and on the importance of spray-borne bacteria in respiratory infections. Public Health Rep (1896–1970) 36:1443. doi: 10.2307/4576030 Google Scholar
  171. World Health Organization Global Burden of DiseaseGoogle Scholar
  172. World Health Organization Writing Group, Bell D, Nicoll A et al (2006) Non-pharmaceutical interventions for pandemic influenza, international measures. Emerg Infect Dis 12:81–87. doi: 10.3201/eid1201.051370 PubMedGoogle Scholar
  173. Wu Y, Mao H, Ling M-T et al (2011) Successive influenza virus infection and Streptococcus pneumoniae stimulation alter human dendritic cell function. BMC Infect Dis 11:201. doi: 10.1186/1471-2334-11-201 PubMedCentralPubMedGoogle Scholar
  174. Zamarin D, García-Sastre A, Xiao X et al (2005) Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog 1:e4. doi: 10.1371/journal.ppat.0010004 PubMedCentralPubMedGoogle Scholar
  175. Zamarin D, Ortigoza MB, Palese P (2006) Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol 80:7976–7983. doi: 10.1128/JVI.00415-06 PubMedCentralPubMedGoogle Scholar
  176. Zell R, Krumbholz A, Eitner A et al (2007) Prevalence of PB1-F2 of influenza A viruses. J Gen Virol 88:536–546. doi: 10.1099/vir.0.82378-0 PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Infectious DiseasesSt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of PediatricsUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations