Advertisement

Dynamic Protention: The Architecture of Real-Time Cognition for Future Events

  • Mark A. ElliottEmail author
  • Liam Coleman
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 41)

Abstract

For over 30 years now, a body of physiological evidence has been acquired which indicates that cognitive operations coordinate via the phase synchronization of neuronal firing. While usually ascribed to “binding,” i.e., the putting together of basic perceptual features to form more complex perceptual units, this ascription is not without critics, who identify phase synchronization as a function of sensorimotor coordination. From the perspective of an experimental paradigm used to measure the effects of stimulus synchronization, we discuss what is “bound” and attempt a reconciliation between perceptual and sensorimotor accounts of oscillatory synchronization. Our evidence identifies a role for synchronization in protentive coding, this is to say, coding in anticipation of a future event, and hence describes the architecture of real-time cognition for future events.

Keywords

Generalized phase angle hypothesis Perception Priming Protention Return phase hypothesis Synchronization 

References

  1. Bauer F, Cheadle SW, Parton A, Müller HJ, Usher M (2009) Gamma flicker triggers attentional selection without awareness. Proc Natl Acad Sci 106(5):1666–1671CrossRefGoogle Scholar
  2. Bosman CA, Womelsdorf T, Desimone R, Fries P (2009) A microsaccadic rhythm modulates gamma-band synchronization and behavior. J Neurosci 29:9471–9480CrossRefGoogle Scholar
  3. Deutsch JA, Deutsch D (1963) Attention: some theoretical considerations. Psychol Rev 70:80–90CrossRefGoogle Scholar
  4. Driver J, Davis G, Russell C, Turatto M, Freeman E (2001) Segmentation, attention and phenomenal visual objects. Cognition 80:61–95CrossRefGoogle Scholar
  5. Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 96:433–458CrossRefGoogle Scholar
  6. Elliott MA (2014) Atemporal equilibria: pro- and retroactive coding in the dynamics of cognitive microstructures. Front Psychol 5:990.  https://doi.org/10.3389/fpsyg.2014.00990 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Elliott MA, Müller HJ (1998) Synchronous information presented in 40-Hz flicker enhances visual feature binding. Psychol Sci 9:277–283CrossRefGoogle Scholar
  8. Elliott MA, Müller HJ (2000) Evidence for a 40-Hz oscillatory short-term visual memory revealed by human reaction time measurements. J Exp Psychol Learn Mem Cogn 26:703–718CrossRefGoogle Scholar
  9. Elliott MA, Müller HJ (2001) Effects of stimulus synchrony on mechanisms of perceptual organization. Vis Cognit 8:655–677CrossRefGoogle Scholar
  10. Elliott MA, Müller HJ (2004) Synchronization and stimulus timing: implications for temporal models of visual information processing. In: Kaernbach C, Schröger E, Müller H (eds) Psychophysics beyond sensation. Lawrence Erlbaum and Associates, Mahwah, pp 137–156Google Scholar
  11. Elliott MA, Becker C, Boucart M, Müller HJ (2000) Enhanced GABAA inhibition enhances synchrony coding in human perception. Neuroreport 11:3403–3407PubMedGoogle Scholar
  12. Elliott MA, Herrmann CS, Mecklinger A, Müller HJ (2001) The loci of 40-Hz visual-object priming mechanisms: a combined electroencephalographic and reaction-time study. Int J Psychophysiol 38(3):211–225Google Scholar
  13. Elliott MA, Conci M, Müller HJ (2003) Prefrontal cortex maintains visual information in very short-term oscillatory persistence. Behav Brain Sci 26:733–734CrossRefGoogle Scholar
  14. Elliott MA, Giersch A, Seifert D (2006a) Some facilitatory effects of lorazepam on dynamic visual binding. Psychopharmacology (Berl) 184:229–238CrossRefGoogle Scholar
  15. Elliott MA, Shi Z, Kelly SD (2006b) A moment to reflect upon perceptual synchrony. J Cogn Neurosci 18:1880–1883CrossRefGoogle Scholar
  16. Farid H (2002) Temporal synchrony in perceptual grouping: a critique. Trends Cogn Sci 6:284–288CrossRefGoogle Scholar
  17. Fries P, Nikolić D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316CrossRefGoogle Scholar
  18. Gray CM (1999) The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24:31–47CrossRefGoogle Scholar
  19. Hassler U, Trujillo-Barreto N, Gruber T (2011) Induced gamma band responses in human EEG after the control of miniature saccadic artifacts. Neuroimage 57:1411–1421CrossRefGoogle Scholar
  20. Hassler U, Friese U, Martens U, Trujillo-Barreto N, Gruber T (2013) Repetition priming effects dissociate between miniature eye movements and induced gamma-band responses in the human electroencephalogram. Eur J Neurosci 38(3):2425–2433CrossRefGoogle Scholar
  21. Herrmann CS, Bosch V (2001) Gestalt perception modulates early visual processing. Neuroreport 12:901–904CrossRefGoogle Scholar
  22. Herrmann CS, Mecklinger A (2001) Gamma activity in human EEG is related to highspeed memory comparisons during object selective attention. Vis Cognit 8:593–608CrossRefGoogle Scholar
  23. Herrmann C, Mecklinger A, Pfeifer E (1999) Gamma responses and ERPs in a visual classification task. Clin Neurophysiol 110:636–642CrossRefGoogle Scholar
  24. Husserl E (1928) Zur Phänomenologie des inneren Zeitbewusstseins. Niemeyer, Halle a. S.Google Scholar
  25. Kompass R, Elliott MA (2001) Modeling as part of perception: a hypothesis on the function of neural oscillations. In: Sommerfeld E, Kompass R, Lachmann T (eds) Fechner Day 2001. Proceedings of the seventeenth annual meeting of the international society of psychophysics. Pabst Science Publishers, Lengerich, pp 130–135Google Scholar
  26. Martinovic J, Busch N (2011) High frequency oscillations as a correlate of visual perception. Int J Psychophysiol 79:32–38CrossRefGoogle Scholar
  27. Melloni L, Schwiedrzik CM, Rodriguez E, Singer W (2009a) (Micro)Saccades, corollary activity and cortical oscillations. Trends Cogn Sci 13:239–245CrossRefGoogle Scholar
  28. Melloni L, Schwiedrzik CM, Wibral M, Rodriguez E, Singer W (2009b) Response to: Yuval-Greenberg et al., “Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades.” Neuron 58:429–441. Neuron 62:8–10CrossRefGoogle Scholar
  29. Pantev C (1995) Evoked and induced gamma-band activity of the human cortex. Brain Topogr 7:321–330CrossRefGoogle Scholar
  30. Rensink RA, Enns JT (1995) Preemption effects in visual search: evidence for low-level grouping. Psychol Rev 102:101CrossRefGoogle Scholar
  31. Shi Z, Elliott MA (2007) Oscillatory priming and form complexity. Percept Psychophys 69:193–208CrossRefGoogle Scholar
  32. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24:49–65CrossRefGoogle Scholar
  33. Tallon-Baudry C (2009) The roles of gamma-band oscillatory synchrony in human visual cognition. Front Biosci 14:321–332CrossRefGoogle Scholar
  34. Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162CrossRefGoogle Scholar
  35. Usher M, Donnelly N (1998) Visual synchrony affects binding and segmentation processes in perception. Nature 394:179–182CrossRefGoogle Scholar
  36. Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY (2008) Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 58:429–441CrossRefGoogle Scholar
  37. Yuval-Greenberg S, Keren AS, Tomer O, Nelken I, Deouell LY (2009) Response to Letter: Melloni et al., “Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades”. Neuron 58:429–441. Neuron 62:10–12CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of PsychologyNational University of Ireland GalwayGalwayIreland

Personalised recommendations