Prefrontal Contributions to Attention and Working Memory

  • Zahra Bahmani
  • Kelsey Clark
  • Yaser Merrikhi
  • Adrienne Mueller
  • Warren Pettine
  • M. Isabel Vanegas
  • Tirin Moore
  • Behrad NoudoostEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 41)


The processes of attention and working memory are conspicuously interlinked, suggesting that they may involve overlapping neural mechanisms. Working memory (WM) is the ability to maintain information in the absence of sensory input. Attention is the process by which a specific target is selected for further processing, and neural resources directed toward that target. The content of WM can be used to direct attention, and attention can in turn determine which information is encoded into WM. Here we discuss the similarities between attention and WM and the role prefrontal cortex (PFC) plays in each. First, at the theoretical level, we describe how attention and WM can both rely on models based on attractor states. Then we review the evidence for an overlap between the areas involved in both functions, especially the frontal eye field (FEF) portion of the prefrontal cortex. We also discuss similarities between the neural changes in visual areas observed during attention and WM. At the cellular level, we review the literature on the role of prefrontal DA in both attention and WM at the behavioral and neural levels. Finally, we summarize the anatomical evidence for an overlap between prefrontal mechanisms involved in attention and WM. Altogether, a summary of pharmacological, electrophysiological, behavioral, and anatomical evidence for a contribution of the FEF part of prefrontal cortex to attention and WM is provided.


Attention Dopamine Working memory 


  1. Albrecht DG (1995) Visual cortex neurons in monkey and cat: effect of contrast on the spatial and temporal phase transfer functions. Vis Neurosci 12(6):1191–1210PubMedGoogle Scholar
  2. Anderson JC, Kennedy H, Martin KAC (2011) Pathways of attention: synaptic relationships of frontal eye field to V4, lateral intraparietal cortex, and area 46 in macaque monkey. J Neurosci 31(30):10872–10881. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson EB, Mitchell JF, Reynolds JH (2013) Attention-dependent reductions in burstiness and action-potential height in macaque area V4. Nat Neurosci 16(8):1125–1131. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anton-Erxleben K, Carrasco M (2013) Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat Rev Neurosci 14(3):188–200PubMedPubMedCentralGoogle Scholar
  5. Anton-Erxleben K, Stephan VM, Treue S (2009) Attention reshapes center-surround receptive field structure in macaque cortical area MT. Cereb Cortex 19(10):2466–2478. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ardid S, Wang X-J, Compte A (2007) An integrated microcircuit model of attentional processing in the neocortex. J Neurosci 27(32):8486–8495. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Armstrong KM, Chang MH, Moore T (2009) Selection and maintenance of spatial information by frontal eye field neurons. J Neurosci 29(50):15621–15629. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arnsten AF (2000) Stress impairs prefrontal cortical function in rats and monkeys: role of dopamine D1 and norepinephrine alpha-1 receptor mechanisms. Prog Brain Res 126:183–192. CrossRefPubMedGoogle Scholar
  9. Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116(2):143–151PubMedGoogle Scholar
  10. Arnsten AF, Cai JX, Steere JC, Goldman-Rakic PS (1995) Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys. J Neurosci 15(5 Pt 1):3429–3439PubMedPubMedCentralGoogle Scholar
  11. Awh E, Jonides J (2001) Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci 5(3):119–126PubMedGoogle Scholar
  12. Bahmani Z, Daliri MR, Merrikhi Y, Clark K, Noudoost B (2018) Working memory enhances cortical representations via spatially specific coordination of spike times. Neuron 97(4):967–979.e6. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121(1):65–94PubMedGoogle Scholar
  14. Bell AH, Meredith MA, Van Opstal AJ, Munoz DP (2006) Stimulus intensity modifies saccadic reaction time and visual response latency in the superior colliculus. Exp Brain Res 174(1):53–59. CrossRefPubMedGoogle Scholar
  15. Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988) Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. J Comp Neurol 273(1):99–119. CrossRefPubMedGoogle Scholar
  16. Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14(1):21–27PubMedGoogle Scholar
  17. Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15(12):7821–7836PubMedPubMedCentralGoogle Scholar
  18. Bodis-Wollner I (1990) The visual system in Parkinson’s disease. Res Publ Assoc Res Nerv Ment Dis 67:297–316PubMedGoogle Scholar
  19. Bodis-Wollner I, Marx MS, Mitra S, Bobak P, Mylin L, Yahr M (1987) Visual dysfunction in Parkinson’s disease – loss in spatiotemporal contrast sensitivity. Brain 110:1675–1698. CrossRefPubMedGoogle Scholar
  20. Brown RG, Marsden CD (1988) Internal versus external cues and the control of attention in Parkinsons-disease. Brain 111:323–345. CrossRefPubMedGoogle Scholar
  21. Brown RG, Jahanshahi M, Marsden D (1993) Response choice in Parkinsons-disease – the effects of uncertainty and stimulus-response compatibility. Brain 116:869–885. CrossRefPubMedGoogle Scholar
  22. Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53(3):603–635PubMedGoogle Scholar
  23. Bulens C, Meerwaldt JD, Vanderwildt GJ, Vandeursen JBP (1987) Effect of levodopa treatment on contrast sensitivity in Parkinsons-disease. Ann Neurol 22(3):365–369. CrossRefPubMedGoogle Scholar
  24. Carandini M, Heeger DJ (2012) Normalization as a canonical neural computation. Nat Rev Neurosci 13(1):51–62. CrossRefGoogle Scholar
  25. Castner S a, Williams GV (2007) Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 63(2):94–122. CrossRefPubMedGoogle Scholar
  26. Clark KL, Noudoost B, Schafer RJ, Moore T (2014) Neuronal mechanisms of attentional control: frontal cortex. In: Kastner S, Nobre AC (eds) Handbook of attention. Oxford University Press, OxfordGoogle Scholar
  27. Clark K, Squire RF, Merrikhi Y, Noudoost B (2015) Visual attention: linking prefrontal sources to neuronal and behavioral correlates. Prog Neurobiol 132:59–80. CrossRefPubMedGoogle Scholar
  28. Clementz BA, Wang J, Keil A (2008) Normal electrocortical facilitation but abnormal target identification during visual sustained attention in schizophrenia. J Neurosci 28(50):13411–13418. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Cohen MR, Kohn A (2011) Measuring and interpreting neuronal correlations. Nat Neurosci 14(7):811–819. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cohen MR, Maunsell JH (2009) Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci 12(12):1594–1600. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Compte A, Brunel N, Goldman-Rakic PS, Wang X-J (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10(9):910–923PubMedGoogle Scholar
  32. Connor CE, Gallant JL, Preddie DC, Van Essen DC (1996) Responses in area V4 depend on the spatial relationship between stimulus and attention. J Neurophysiol 75(3):1306–1308PubMedGoogle Scholar
  33. Connor CE, Preddie DC, Gallant JL, Van Essen DC (1997) Spatial attention effects in macaque area V4. J Neurosci 17(9):3201–3214PubMedPubMedCentralGoogle Scholar
  34. Cools R, D’Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69(12):E113–E125. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11(12):1136–1143PubMedPubMedCentralGoogle Scholar
  36. Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125(Pt 3):584–594PubMedGoogle Scholar
  37. Cools R, Miyakawa A, Sheridan M, D’Esposito M (2010) Enhanced frontal function in Parkinson’s disease. Brain 133(Pt 1):225–233. CrossRefPubMedGoogle Scholar
  38. Cooper JA, Sagar HJ, Tidswell P, Jordan N (1994) Slowed central processing in simple and go no-go reaction-time tasks in Parkinson’s disease. Brain 117:517–529. CrossRefPubMedGoogle Scholar
  39. Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of Parkinsonism – chronic treatment with L-dopa. N Engl J Med 280(7):337–345. CrossRefPubMedGoogle Scholar
  40. D’Esposito M, Postle BR (2015) The cognitive neuroscience of working memory. Annu Rev Psychol 66(1):115–142. CrossRefPubMedGoogle Scholar
  41. Dakin S, Carlin P, Hemsley D (2005) Weak suppression of visual context in chronic schizophrenia. Curr Biol 15(20):R822–R824. CrossRefPubMedGoogle Scholar
  42. Davidoff SA, Benes FM (1998) High-resolution scatchard analysis shows D1 receptor binding on pyramidal and nonpyramidal neurons. Synapse 28(1):83–90.<83::AID-SYN10>3.0.CO;2-Z CrossRefPubMedGoogle Scholar
  43. Deco G, Hugues E (2012) Neural network mechanisms underlying stimulus driven variability reduction. PLoS Comput Biol 8(3):e1002395. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Deco G, Kringelbach ML (2016) Metastability and coherence: extending the communication through coherence hypothesis using a whole-brain computational perspective. Trends Neurosci 39(3):125–135PubMedGoogle Scholar
  45. Descarries L, Lemay B, Doucet G, Berger B (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21(3):807–824PubMedGoogle Scholar
  46. Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36(12):1827–1837PubMedGoogle Scholar
  47. Druckmann S, Chklovskii DB (2012) Neuronal circuits underlying persistent representations despite time varying activity. Curr Biol 22(22):2095–2103PubMedPubMedCentralGoogle Scholar
  48. Ferraina S, Paré M, Wurtz RH (2002) Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J Neurophysiol 87(2):845–858. CrossRefPubMedGoogle Scholar
  49. Fuller RL, Luck SJ, Braun EL, Robinson BM, McMahon RP, Gold JM (2006) Impaired control of visual attention in schizophrenia. J Abnorm Psychol 115(2):266–275. CrossRefPubMedGoogle Scholar
  50. Galashan FO, Saßen HC, Kreiter AK, Wegener D (2013) Monkey area MT latencies to speed changes depend on attention and correlate with behavioral reaction times. Neuron 78(4):740–750. CrossRefPubMedGoogle Scholar
  51. Gamo NJ, Arnsten AF (2011) Molecular modulation of prefrontal cortex: rational development of treatments for psychiatric disorders. Behav Neurosci 125(3):282–296. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gao W-J, Krimer LS, Goldman-Rakic PS (2001) Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci 98(1):295–300. CrossRefPubMedGoogle Scholar
  53. Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7(5):1050–1063PubMedGoogle Scholar
  54. Gazzaley A, Nobre AC (2012) Top-down modulation: bridging selective attention and working memory. Trends Cogn Sci 16(2):129–135. CrossRefPubMedGoogle Scholar
  55. Ghilardi MF, Eidelberg D, Silvestri G, Ghez C (2003) The differential effect of PD and normal aging on early explicit sequence learning. Neurology 60:1313–1319. CrossRefPubMedGoogle Scholar
  56. Glausier JR, Khan ZU, Muly EC (2009) Dopamine D1 and D5 receptors are localized to discrete populations of interneurons in primate prefrontal cortex. Cereb Cortex 19(8):1820–1834. CrossRefPubMedGoogle Scholar
  57. Goldman MS (2009) Memory without feedback in a neural network. Neuron 61(4):621–634PubMedPubMedCentralGoogle Scholar
  58. Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci 86(22):9015–9019PubMedGoogle Scholar
  59. Goldman-Rakic PS, Lidow MS, Gallager DW (1990) Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10(7):2125–2138PubMedPubMedCentralGoogle Scholar
  60. Gonzalez-Islas C, Hablitz JJ (2003) Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex. J Neurosci 23(3):867–875PubMedPubMedCentralGoogle Scholar
  61. Green D, Swets DJ (1966) Signal detection theory and psychophysics. Wiley, New YorkGoogle Scholar
  62. Gurvich C, Georgiou-Karistianis N, Fitzgerald PB, Millist L, White OB (2007) Inhibitory control and spatial working memory in Parkinson’s disease. Mov Disord 22(10):1444–1450. CrossRefPubMedGoogle Scholar
  63. Herz DM, Bogacz R, Brown P (2016) Neuroscience: impaired decision-making in Parkinson’s disease. Curr Biol 26(14):R671–R673. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hutton JT, Morris JL, Elias JW (1993) Levodopa improves spatial contrast sensitivity in Parkinsons-disease. Arch Neurol 50(7):721–724. CrossRefPubMedGoogle Scholar
  65. Jacob SN, Ott T, Nieder A (2013) Dopamine regulates two classes of primate prefrontal neurons that represent sensory signals. J Neurosci 33(34):13724–13734. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Jahanshahi M, Frith CD (1998) Willed action and its impairments. Cogn Neuropsychol 15(6–8):483–533. CrossRefPubMedGoogle Scholar
  67. Jahanshahi M, Jenkins H, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements. 1. An investigation using measurement of regional cerebral blood-flow with pet and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118:913–933. CrossRefPubMedGoogle Scholar
  68. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiat 79(4):368–376. CrossRefPubMedGoogle Scholar
  69. Javitt DC, Doneshka P, Grochowski S, Ritter W (1995) Impaired mismatch negativity generation reflects widespread dysfunction of working-memory in schizophrenia. Arch Gen Psychiatry 52(7):550–558PubMedGoogle Scholar
  70. Karatekin C, Asarnow RF (1998) Working memory in childhood-onset schizophrenia and attention-deficit/hyperactivity disorder. Psychiatry Res 80(2):165–176. CrossRefPubMedGoogle Scholar
  71. Kempton S, Vance A, Maruff P, Luk E, Costin J, Pantelis C (1999) Executive function and attention deficit hyperactivity disorder: stimulant medication and better executive function performance in children. Psychol Med 29(3):527–538. CrossRefPubMedGoogle Scholar
  72. Kraynyukova N, Tchumatchenko T (2018) Stabilized supralinear network can give rise to bistable, oscillatory, and persistent activity. Proc Natl Acad Sci 115(13):3464–3469. CrossRefPubMedGoogle Scholar
  73. Kupersmith MJ, Shakin E, Siegel IM, Lieberman A (1982) Visual system abnormalities in patients with Parkinson’s disease. Arch Neurol 39(5):284–286PubMedGoogle Scholar
  74. Kusunoki M, Goldberg ME (2003) The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J Neurophysiol 89(3):1519–1527. CrossRefPubMedGoogle Scholar
  75. Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992) L-dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 107(2–3):394–404PubMedGoogle Scholar
  76. Lange KW, Paul GM, Naumann M, Gsell W (1995) Dopaminergic effects on cognitive performance in patients with Parkinson’s disease. J Neural Trans Suppl 46:423–432Google Scholar
  77. Lawrence BM, White RL, Snyder LH (2005) Delay-period activity in visual, visuomovement, and movement neurons in the frontal eye field. J Neurophysiol 94(2):1498–1508. CrossRefPubMedGoogle Scholar
  78. Lee H, Simpson GV, Logothetis NK, Rainer G (2005) Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 45(1):147–156. CrossRefPubMedGoogle Scholar
  79. Leichnetz GR (1982) Connections between the frontal eye field and pretectum in the monkey: an anterograde/retrograde study using HRP GEL and TMB neurohistochemistry. J Comp Neurol 207(4):394–402. CrossRefPubMedGoogle Scholar
  80. Lidow MS (1998) Nonhuman primate model of the effect of prenatal cocaine exposure on cerebral cortical development. Ann N Y Acad Sci 846:182–193PubMedGoogle Scholar
  81. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40(3):657–671PubMedGoogle Scholar
  82. Ling S, Liu T, Carrasco M (2009) How spatial and feature-based attention affect the gain and tuning of population responses. Vis Res 49(10):1194–1204. CrossRefPubMedGoogle Scholar
  83. Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J et al (2014a) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24(1):17–36. CrossRefPubMedGoogle Scholar
  84. Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C et al (2014b) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522(1):225–259. CrossRefPubMedGoogle Scholar
  85. Mathis KI, Wynn JK, Breitmeyer B, Nuechterlein KH, Green MF (2011) The attentional blink in schizophrenia: isolating the perception/attention interface. J Psychiatr Res 45(10):1346–1351. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Mendoza-Halliday D, Torres S, Martinez-Trujillo JC (2014) Sharp emergence of feature-selective sustained activity along the dorsal visual pathway. Nat Neurosci 17(9):1255–1262. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Merrikhi Y, Clark KK, Albarran E, Parsa M, Zirnsak M, Moore T, Noudoost B (2017) Spatial working memory alters the efficacy of input to visual cortex. Nat Commun 8:15041. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Miller EK, Erickson C a, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16(16):5154–5167PubMedPubMedCentralGoogle Scholar
  89. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225PubMedGoogle Scholar
  90. Mitchell JF, Sundberg KA, Reynolds JH (2007) Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55(1):131–141. CrossRefPubMedGoogle Scholar
  91. Mitchell JF, Sundberg KA, Reynolds JH (2009) Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63(6):879–888. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373. CrossRefPubMedGoogle Scholar
  93. Moore T, Fallah M (2001) Control of eye movements and spatial attention. Proc Natl Acad Sci 98(3):1273–1276. CrossRefPubMedGoogle Scholar
  94. Moore T, Fallah M (2004) Microstimulation of the frontal eye field and its effects on covert spatial attention. J Neurophysiol 91(1):152–162. CrossRefPubMedGoogle Scholar
  95. Morris RG, Downes JJ, Sahakian BJ, Evenden JL, Heald A, Robbins TW (1988) Planning and spatial working memory in Parkinson’s disease. J Neurol Neurosurg Psychiatry 51(6):757–766. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Moustafa AA, Sherman SJ, Frank MJ (2008) A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia 46(13):3144–3156. CrossRefPubMedGoogle Scholar
  97. Mueller A, Shepard SB, Moore T (2018) Differential expression of dopamine D5 receptors across neuronal subtypes in macaque frontal eye field. Front Neural Circuits 12:12. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Muly EC, Szigeti K, Goldman-Rakic PS (1998) D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. J Neurosci 18(24):10553–10565PubMedPubMedCentralGoogle Scholar
  99. Noudoost B, Moore T (2011a) A reliable microinjectrode system for use in behaving monkeys. J Neurosci Methods 194(2):218–223. CrossRefPubMedGoogle Scholar
  100. Noudoost B, Moore T (2011b) Control of visual cortical signals by prefrontal dopamine. Nature 474(7351):372–375. CrossRefPubMedPubMedCentralGoogle Scholar
  101. Noudoost B, Chang MH, Steinmetz NA, Moore T (2010) Top-down control of visual attention. Curr Opin Neurobiol 20(2):183–190PubMedPubMedCentralGoogle Scholar
  102. Noudoost B, Clark KL, Moore T (2014) A distinct contribution of the frontal eye field to the visual representation of saccadic targets. J Neurosci 34(10):3687–3698. CrossRefPubMedPubMedCentralGoogle Scholar
  103. Oram MW, Xiao D, Dritschel B, Payne KR (2002) The temporal resolution of neural codes: does response latency have a unique role? Philos Trans R Soc Lond Ser B Biol Sci 357(1424):987–1001. CrossRefGoogle Scholar
  104. Ott T, Westendorff S, Nieder A (2018) Dopamine receptors influence internally generated oscillations during rule processing in primate prefrontal cortex. J Cogn Neurosci 30:770–784. CrossRefPubMedGoogle Scholar
  105. Patel N, Jankovic J, Hallett M (2014) Sensory aspects of movement disorders. Lancet Neurol 13(1):100–112PubMedPubMedCentralGoogle Scholar
  106. Perugini A, Ditterich J, Basso MA (2016) Patients with Parkinson’s disease show impaired use of priors in conditions of sensory uncertainty. Curr Biol 26(14):1902–1910. CrossRefPubMedPubMedCentralGoogle Scholar
  107. Postle BR (2005) Delay-period activity in the prefrontal cortex: one function is sensory gating. J Cogn Neurosci 17(11):1679–1690. CrossRefPubMedPubMedCentralGoogle Scholar
  108. Postle BR (2006) Working memory as an emergent property of the mind and brain. Neuroscience 139(1):23–38. CrossRefPubMedPubMedCentralGoogle Scholar
  109. Praamstra P, Stegeman DF, Cools AR, Horstink M (1998) Reliance on external cues for movement initiation in Parkinson’s disease – evidence from movement-related potentials. Brain 121:167–177. CrossRefPubMedGoogle Scholar
  110. Raiguel SE, Xiao DK, Marcar VL, Orban GA (1999) Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters. J Neurophysiol 82(4):1944–1956PubMedGoogle Scholar
  111. Robinson DA, Fuchs AF (1969) Eye movements evoked by stimulation of frontal eye fields. J Neurophysiol 32(5):637–648PubMedGoogle Scholar
  112. Rodnitzky RL (1998) Visual dysfunction in Parkinson’s disease. Clin Neurosci 5(2):102–106PubMedGoogle Scholar
  113. Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, Obeso JA (2009) Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 8(12):1128–1139. CrossRefPubMedGoogle Scholar
  114. Ruff D, Cohen M (2014) Attention can either increase or decrease spike count correlations in visual cortex. Nat Neurosci 17(11):1591–1597PubMedPubMedCentralGoogle Scholar
  115. Santana N, Artigas F (2017) Laminar and cellular distribution of monoamine receptors in rat medial prefrontal cortex. Front Neuroanat 11:87. CrossRefPubMedPubMedCentralGoogle Scholar
  116. Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 15(6):4464–4487PubMedPubMedCentralGoogle Scholar
  117. Schnyder H, Reisine H, Hepp K, Henn V (1985) Frontal eye field projection to the paramedian pontine reticular formation traced with wheat germ agglutinin in the monkey. Brain Res 329(1–2):151–160PubMedGoogle Scholar
  118. Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74(1):1–58. CrossRefPubMedGoogle Scholar
  119. Sesack SR, Snyder CL, Lewis DA (1995) Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex. J Comp Neurol 363(2):264–280. CrossRefPubMedGoogle Scholar
  120. Seymour K, Stein T, Sanders LLO, Guggenmos M, Theophil I, Sterzer P (2013) Altered contextual modulation of primary visual cortex responses in schizophrenia. Neuropsychopharmacology 38(13):2607–2612. CrossRefPubMedPubMedCentralGoogle Scholar
  121. Siegert RJ, Harper DN, Cameron FB, Abernethy D (2002) Self-initiated versus externally cued reaction times in Parkinson’s disease. J Clin Exp Neuropsychol 24(2):146–153. CrossRefPubMedGoogle Scholar
  122. Slagter HA, van Wouwe NC, Kanoff K, Grasman R, Claassen DO, van den Wildenberg WPM, Wylie SA (2016) Dopamine and temporal attention: an attentional blink study in Parkinson’s disease patients on and off medication. Neuropsychologia 91:407–414. CrossRefPubMedPubMedCentralGoogle Scholar
  123. Smiley JF, Goldman-Rakic PS (1993) Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. Cereb Cortex 3(3):223–238PubMedGoogle Scholar
  124. Smiley JF, Williams SM, Szigeti K, Goldman-Rakic PS (1992) Light and electron microscopic characterization of dopamine-immunoreactive axons in human cerebral cortex. J Comp Neurol 321(3):325–335. CrossRefPubMedGoogle Scholar
  125. Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS (1994) D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc Natl Acad Sci 91(12):5720–5724PubMedGoogle Scholar
  126. Soltani A, Noudoost B, Moore T (2013) Dissociable dopaminergic control of saccadic target selection and its implications for reward modulation. Proc Natl Acad Sci 110(9):3579–3584. CrossRefPubMedGoogle Scholar
  127. Sommer MA, Wurtz RH (2000) Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J Neurophysiol 83(4):1979–2001PubMedGoogle Scholar
  128. Sommer MA, Wurtz RH (2001) Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. J Neurophysiol 85(4):1673–1685PubMedGoogle Scholar
  129. Squire RF, Noudoost B, Schafer RJ, Moore T (2013) Prefrontal contributions to visual selective attention. Annu Rev Neurosci 36(1):451–466. CrossRefPubMedGoogle Scholar
  130. Stablein M, Sieprath L, Knochel C, Landertinger A, Schmied C, Ghinea D et al (2016) Impaired working memory for visual motion direction in schizophrenia: absence of recency effects and association with psychopathology. Neuropsychology 30(6):653–663. CrossRefPubMedGoogle Scholar
  131. Stanton GB, Bruce CJ, Goldberg ME (1993) Topography of projections to the frontal lobe from the macaque frontal eye fields. J Comp Neurol 330(2):286–301. CrossRefPubMedGoogle Scholar
  132. Stanton GB, Bruce CJ, Goldberg ME (1995) Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol 353(2):291–305. CrossRefPubMedGoogle Scholar
  133. Stern Y, Mayeux R, Rosen J, Ilson J (1983) Perceptual motor dysfunction in Parkinson’s disease: a deficit in sequential and predictive voluntary movement. J Neurol Neurosurg Psychiatry 46(2):145–151. CrossRefPubMedPubMedCentralGoogle Scholar
  134. Sundberg KA, Mitchell JF, Gawne TJ, Reynolds JH (2012) Attention influences single unit and local field potential response latencies in visual cortical area V4. J Neurosci 32(45):16040–16050. CrossRefPubMedPubMedCentralGoogle Scholar
  135. Suzuki S, Cavanagh P (1997) Focused attention distorts visual space: an attentional repulsion effect. J Exp Psychol Hum Percept Perform 23(2):443–463PubMedGoogle Scholar
  136. Tseng KY, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24(22):5131–5139. CrossRefPubMedPubMedCentralGoogle Scholar
  137. Umeno MM, Goldberg ME (2001) Spatial processing in the monkey frontal eye field. II. Memory responses. J Neurophysiol 86(5):2344–2352PubMedGoogle Scholar
  138. van Eden CG, Hoorneman EM, Buijs RM, Matthijssen MA, Geffard M, Uylings HB (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 22(3):849–862PubMedGoogle Scholar
  139. Verney C, Alvarez C, Geffard M, Berger B (1990) Ultrastructural double-labelling study of dopamine terminals and GABA-containing neurons in rat anteromedial cerebral cortex. Eur J Neurosci 2(11):960–972PubMedGoogle Scholar
  140. Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10(3):376–384. CrossRefPubMedGoogle Scholar
  141. Vijayraghavan S, Major AJ, Everling S (2016) Dopamine D1 and D2 receptors make dissociable contributions to dorsolateral prefrontal cortical regulation of rule-guided oculomotor behavior. Cell Rep 16(3):805–816. CrossRefPubMedGoogle Scholar
  142. Vincent SL, Khan Y, Benes FM (1993) Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. J Neurosci 13(6):2551–2564PubMedPubMedCentralGoogle Scholar
  143. Wang X-J (2008) Decision making in recurrent neuronal circuits. Neuron 60(2):215–234. CrossRefPubMedPubMedCentralGoogle Scholar
  144. Wang M, Vijayraghavan S, Goldman-Rakic PS (2004) Selective D2 receptor actions on the functional circuitry of working memory. Science 303(5659):853–856. CrossRefPubMedGoogle Scholar
  145. Wardak C, Ibos G, Duhamel J-R, Olivier E (2006) Contribution of the monkey frontal eye field to covert visual attention. J Neurosci 26(16):4228–4235. CrossRefPubMedPubMedCentralGoogle Scholar
  146. Wei X, Ma T, Cheng Y, Huang CCY, Wang X, Lu J, Wang J (2018) Dopamine D1 or D2 receptor-expressing neurons in the central nervous system. Addict Biol 23(2):569–584. CrossRefPubMedGoogle Scholar
  147. Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376(6541):572–575. CrossRefPubMedGoogle Scholar
  148. Womelsdorf T, Anton-Erxleben K, Pieper F, Treue S (2006) Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nat Neurosci 9(9):1156–1160. CrossRefPubMedGoogle Scholar
  149. Yahr MD, Duvoisin RC, Schear MJ, Barrett RE, Hoehn MM (1969) Treatment of parkinsonism with levodopa. Arch Neurol 21(4):343–354. CrossRefPubMedGoogle Scholar
  150. Zaksas D, Pasternak T (2006) Directional signals in the prefrontal cortex and in area MT during a working memory for visual motion task. J Neurosci 26(45):11726–11742. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zahra Bahmani
    • 1
  • Kelsey Clark
    • 2
  • Yaser Merrikhi
    • 3
    • 4
  • Adrienne Mueller
    • 5
    • 6
  • Warren Pettine
    • 7
  • M. Isabel Vanegas
    • 2
  • Tirin Moore
    • 5
    • 6
  • Behrad Noudoost
    • 2
    Email author
  1. 1.School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM)TehranIran
  2. 2.Department of Ophthalmology and Visual SciencesUniversity of UtahSalt Lake CityUSA
  3. 3.Department of Physiology & PharmacologyThe Brain and Mind Institute, University of Western OntarioLondonCanada
  4. 4.Robarts Research Institute, University of Western OntarioLondonCanada
  5. 5.Department of NeurobiologyStanford UniversityStanfordUSA
  6. 6.Howard Hughes Medical Institute, Stanford UniversityStanfordUSA
  7. 7.Center for Neural Science, New York UniversityNew YorkUSA

Personalised recommendations