Advertisement

pp 1-36 | Cite as

Neurocognitive Impairment and Associated Genetic Aspects in HIV Infection

  • Daniela Gomez
  • Christopher Power
  • Esther Fujiwara
Chapter
Part of the Current Topics in Behavioral Neurosciences book series

Abstract

HIV enters the central nervous system (CNS) early after infection. HIV-associated neurocognitive disorders (HAND) remain a serious complication of HIV infection despite available antiretroviral therapy (ART). Neurocognitive deficits observed in HAND are heterogeneous, suggesting a variability in individuals’ susceptibility or resiliency to the detrimental CNS effects of HIV infection. This chapter reviews primary host genomic changes (immune-related genes, genes implicated in cognitive changes in primary neurodegenerative diseases), epigenetic mechanisms, and genetic interactions with ART implicated in HIV progression or HAND/neurocognitive complications of HIV. Limitations of the current findings include diversity of the HAND phenotype and limited replication of findings across cohorts. Strategies to improve the precision of future (epi)genetic studies of neurocognitive consequences of HIV infection are offered.

Keywords

Antiretroviral toxicity Epigenetics Genetics HIV HIV-associated neurocognitive disorders 

References

  1. Agace WW, Amara A, Roberts AI, Pablos JL, Thelen S, Uguccioni M, Li XY, Marsal J, Arenzana-Seisdedos F, Delaunay T, Ebert EC, Moser B, Parker CM (2000) Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Curr Biol 10(6):325–328.  https://doi.org/10.1016/S0960-9822(00)00380-8CrossRefGoogle Scholar
  2. Anderson PL, Lamba J, Aquilante CL, Schuetz E, Fletcher CV (2006) Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr 42(4):441–449.  https://doi.org/10.1097/01.qai.0000225013.53568.69CrossRefGoogle Scholar
  3. Andrade AS, Deutsch R, Celano S, Duarte NA, Marcotte TD, Umlauf A, Atkinson JH, McCutchan JA, Franklin D, Alexander TJ, McArthur JC, Marra C, Grant I, Collier AC (2013) Relationships among neurocognitive status, medication adherence measured by pharmacy refill records, and virologic suppression in HIV-infected persons. J Acquir Immune Defic Syndr 62(3):282–292.  https://doi.org/10.1097/QAI.0b013e31827ed678CrossRefGoogle Scholar
  4. Andres MA, Feger U, Nath A, Munsaka S, Jiang CS, Chang L (2011) APOE epsilon 4 allele and CSF APOE on cognition in HIV-infected subjects. J Neuroimmune Pharmacol 6(3):389–398.  https://doi.org/10.1007/s11481-010-9254-3CrossRefGoogle Scholar
  5. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799.  https://doi.org/10.1212/01.WNL.0000287431.88658.8bCrossRefGoogle Scholar
  6. Arenzana-Seisdedos F, Parmentier M (2006) Genetics of resistance to HIV infection: role of co-receptors and co-receptor ligands. Semin Immunol 18(6):387–403.  https://doi.org/10.1016/j.smim.2006.07.007CrossRefGoogle Scholar
  7. Asahchop EL, Akinwumi SM, Branton WG, Fujiwara E, Gill MJ, Power C (2016) Plasma microRNA profiling predicts HIV-associated neurocognitive disorder. AIDS 30(13):2021–2031.  https://doi.org/10.1097/QAD.0000000000001160CrossRefGoogle Scholar
  8. Becker JT, Martinson JJ, Penugonda S, Kingsley L, Molsberry S, Reynolds S, Aronow A, Goodkin K, Levine A, Martin E, Miller EN, Munro CA, Ragin A, Sacktor N (2015) No association between Apoε4 alleles, HIV infection, age, neuropsychological outcome, or death. J Neurovirol 21(1):24–31.  https://doi.org/10.1007/s13365-014-0290-2CrossRefGoogle Scholar
  9. Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700.  https://doi.org/10.1146/annurev.immunol.17.1.657CrossRefGoogle Scholar
  10. Betcheva ET, Mushiroda T, Takahashi A, Kubo M, Karachanak SK, Zaharieva IT, Vazharova RV, Dimova II, Milanova VK, Tolev T, Kirov G, Owen MJ, O’Donovan MC, Kamatani N, Nakamura Y, Toncheva DI (2009) Case-control association study of 59 candidate genes reveals the DRD2 SNP rs6277 (C957T) as the only susceptibility factor for schizophrenia in the Bulgarian population. J Hum Genet 54(2):98–107.  https://doi.org/10.1038/jhg.2008.14CrossRefGoogle Scholar
  11. Bol SM, Booiman T, van Manen D, Bunnik EM, van Sighem AI, Sieberer M, Boeser-Nunnink B, de Wolf F, Schuitemaker H, Portegies P, Kootstra NA, van’t Wout AB (2012) Single nucleotide polymorphism in gene encoding transcription factor Prep1 is associated with HIV-1-associated dementia. PLoS One 7(2):e30990.  https://doi.org/10.1371/journal.pone.0030990CrossRefGoogle Scholar
  12. Bonnet F, Amieva H, Marquant F, Bernard C, Bruyand M, Dauchy FA, Mercie P, Greib C, Richert L, Neau D, Catheline G, Dehail P, Dabis F, Morlat P, Dartigues JF, Chene G, ANRS CO3 Aquitaine Study Group (2013) Cognitive disorders in HIV-infected patients: are they HIV-related? AIDS 27(3):391–400.  https://doi.org/10.1097/QAD.0b013e32835b1019CrossRefGoogle Scholar
  13. Borghans JA, Molgaard A, de Boer RJ, Kesmir C (2007) HLA alleles associated with slow progression to AIDS truly prefer to present HIV-1 p24. PLoS One 2(9):e920.  https://doi.org/10.1371/journal.pone.0000920CrossRefGoogle Scholar
  14. Bousman CA, Cherner M, Atkinson JH, Heaton RK, Grant I, Everall IP, The HNRC Group (2010) COMT Val158Met polymorphism, executive dysfunction, and sexual risk behavior in the context of HIV infection and methamphetamine dependence. Interdiscip Perspect Infect Dis 2010:678648.  https://doi.org/10.1155/2010/678648CrossRefGoogle Scholar
  15. Boven LA, van der Bruggen T, van Asbeck BS, Marx JJ, Nottet HS (1999) Potential role of CCR5 polymorphism in the development of AIDS dementia complex. FEMS Immunol Med Microbiol 26(3–4):243–247.  https://doi.org/10.1111/j.1574-695X.1999.tb01395.xCrossRefGoogle Scholar
  16. Brabers NA, Nottet HS (2006) Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Investig 36(7):447–458.  https://doi.org/10.1111/j.1365-2362.2006.01657.xCrossRefGoogle Scholar
  17. Burt TD, Agan BK, Marconi VC, He W, Kulkarni H, Mold JE, Cavrois M, Huang Y, Mahley RW, Dolan MJ, McCune JM, Ahuja SK (2008) Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE epsilon4/epsilon4 genotype accelerates HIV disease progression. Proc Natl Acad Sci U S A 105(25):8718–8723.  https://doi.org/10.1073/pnas.0803526105CrossRefGoogle Scholar
  18. Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, Heaton RK, The HNRC Group (2004) Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol 26(3):307–319.  https://doi.org/10.1080/13803390490510031CrossRefGoogle Scholar
  19. Castillo-Mancilla JR, Aquilante CL, Wempe MF, Smeaton LM, Firnhaber C, LaRosa AM, Kumarasamy N, Andrade A, Baheti G, Fletcher CV, Campbell TB, Haas DW, MaWhinney S, Anderson PL (2016) Pharmacogenetics of unboosted atazanavir in HIV-infected individuals in resource-limited settings: a sub-study of the AIDS Clinical Trials Group (ACTG) PEARLS study (NWCS 342). J Antimicrob Chemother 71(6):1609–1618.  https://doi.org/10.1093/jac/dkw005CrossRefGoogle Scholar
  20. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361(9355):393–395.  https://doi.org/10.1016/S0140-6736(03)12384-7CrossRefGoogle Scholar
  21. Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, Fowler JS (2008) Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. NeuroImage 42(2):869–878.  https://doi.org/10.1016/j.neuroimage.2008.05.011CrossRefGoogle Scholar
  22. Chang L, Andres M, Sadino J, Jiang CS, Nakama H, Miller E, Ernst T (2011) Impact of apolipoprotein E epsilon4 and HIV on cognition and brain atrophy: antagonistic pleiotropy and premature brain aging. NeuroImage 58(4):1017–1027.  https://doi.org/10.1016/j.neuroimage.2011.07.010CrossRefGoogle Scholar
  23. Chang L, Jiang C, Cunningham E, Buchthal S, Douet V, Andres M, Ernst T (2014) Effects of APOE epsilon4, age, and HIV on glial metabolites and cognitive deficits. Neurology 82(24):2213–2222.  https://doi.org/10.1212/WNL.0000000000000526CrossRefGoogle Scholar
  24. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75(5):807–821.  https://doi.org/10.1086/425589CrossRefGoogle Scholar
  25. Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol 37(5):942–946.  https://doi.org/10.1016/j.biocel.2004.09.009CrossRefGoogle Scholar
  26. Ciccarelli N, Fabbiani M, di Giambenedetto S, Fanti I, Baldonero E, Bracciale L, Tamburrini E, Cauda R, de Luca A, Silveri MC (2011) Efavirenz associated with cognitive disorders in otherwise asymptomatic HIV-infected patients. Neurology 76(16):1403–1409.  https://doi.org/10.1212/WNL.0b013e31821670fbCrossRefGoogle Scholar
  27. Cirulli ET, Kasperaviciute D, Attix DK, Need AC, Ge D, Gibson G, Goldstein DB (2010) Common genetic variation and performance on standardized cognitive tests. Eur J Hum Genet 18(7):815–820.  https://doi.org/10.1038/ejhg.2010.2CrossRefGoogle Scholar
  28. Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13(11):976–986.  https://doi.org/10.1016/S1473-3099(13)70269-XCrossRefGoogle Scholar
  29. Clifford DB, Evans S, Yang Y, Acosta EP, Goodkin K, Tashima K, Simpson D, Dorfman D, Ribaudo H, Gulick RM (2005) Impact of efavirenz on neuropsychological performance and symptoms in HIV-infected individuals. Ann Intern Med 143(10):714–721.  https://doi.org/10.7326/0003-4819-143-10-200511150-00008CrossRefGoogle Scholar
  30. Collier AC, Coombs RW, Schoenfeld DA, Bassett RL, Timpone J, Baruch A, Jones M, Facey K, Whitacre C, McAuliffe VJ, Friedman HM, Merigan TC, Reichman RC, Hooper C, Corey L (1996) Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. AIDS Clinical Trials Group. N Engl J Med 334(16):1011–1017.  https://doi.org/10.1056/NEJM199604183341602CrossRefGoogle Scholar
  31. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95(6):3117–3121.  https://doi.org/10.1073/pnas.95.6.3117CrossRefGoogle Scholar
  32. Corder EH, Robertson K, Lannfelt L, Bogdanovic N, Eggertsen G, Wilkins J, Hall C (1998) HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy. Nat Med 4(10):1182–1184.  https://doi.org/10.1038/2677CrossRefGoogle Scholar
  33. Corley MJ, Dye C, D’Antoni ML, Byron MM, Yo KL, Lum-Jones A, Nakamoto B, Valcour V, SahBandar I, Shikuma CM, Ndhlovu LC, Maunakea AK (2016) Comparative DNA methylation profiling reveals an immunoepigenetic signature of HIV-related cognitive impairment. Sci Rep 6:33310.  https://doi.org/10.1038/srep33310CrossRefGoogle Scholar
  34. Cutler RG, Haughey NJ, Tammara A, McArthur JC, Nath A, Reid R, Vargas DL, Pardo CA, Mattson MP (2004) Dysregulation of sphingolipid and sterol metabolism by ApoE4 in HIV dementia. Neurology 63(4):626–630.  https://doi.org/10.1212/01.WNL.0000134662.19883.06CrossRefGoogle Scholar
  35. Cysique LA, Heaton RK, Kamminga J, Lane T, Gates TM, Moore DM, Hubner E, Carr A, Brew BJ (2014) HIV-associated neurocognitive disorder in Australia: a case of a high-functioning and optimally treated cohort and implications for international neuroHIV research. J Neurovirol 20(3):258–268.  https://doi.org/10.1007/s13365-014-0242-xCrossRefGoogle Scholar
  36. Cysique LA, Hewitt T, Croitoru-Lamoury J, Taddei K, Martins RN, Chew CS, Davies NN, Price P, Brew BJ (2015) APOE epsilon4 moderates abnormal CSF-abeta-42 levels, while neurocognitive impairment is associated with abnormal CSF tau levels in HIV+ individuals – a cross-sectional observational study. BMC Neurol 15:51.  https://doi.org/10.1186/s12883-015-0298-0CrossRefGoogle Scholar
  37. D’Aquila RT, Hughes MD, Johnson VA, Fischl MA, Sommadossi JP, Liou SH, Timpone J, Myers M, Basgoz N, Niu M, Hirsch MS (1996) Nevirapine, zidovudine, and didanosine compared with zidovudine and didanosine in patients with HIV-1 infection. A randomized, double-blind, placebo-controlled trial. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group Protocol 241 Investigators. Ann Intern Med 124(12):1019–1030.  https://doi.org/10.7326/0003-4819-124-12-199606150-00001CrossRefGoogle Scholar
  38. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42(9):1736–1739.  https://doi.org/10.1212/WNL.42.9.1736CrossRefGoogle Scholar
  39. Devlin KN, Giovannetti T (2017) Heterogeneity of neuropsychological impairment in HIV infection: contributions from mild cognitive impairment. Neuropsychol Rev 27(2):101–123.  https://doi.org/10.1007/s11065-017-9348-2CrossRefGoogle Scholar
  40. Dhillon NK, Williams R, Callen S, Zien C, Narayan O, Buch S (2008) Roles of MCP-1 in development of HIV-dementia. Front Biosci 13:3913–3918.  https://doi.org/10.2741/2979CrossRefGoogle Scholar
  41. Diaz-Arrastia R, Gong Y, Kelly CJ, Gelman BB (2004) Host genetic polymorphisms in human immunodeficiency virus-related neurologic disease. J Neurovirol 10(1):67–73.  https://doi.org/10.1080/753312755CrossRefGoogle Scholar
  42. Ding J, Zhao J, Zhou J, Li X, Wu Y, Ge M, Cen S (2018) Association of gene polymorphism of SDF1(CXCR12) with susceptibility to HIV-1 infection and AIDS disease progression: a meta-analysis. PLoS One 13(2):e0191930.  https://doi.org/10.1371/journal.pone.0191930CrossRefGoogle Scholar
  43. Dinh KM, Pedersen OB, Petersen MS, Sorensen E, Sorensen CJ, Kaspersen KA, Larsen MH, Moller B, Hjalgrim H, Ullum H, Erikstrup C (2015) The impact of CCR5-Delta32 deletion on C-reactive protein levels and cardiovascular disease: results from the Danish Blood Donor Study. Atherosclerosis 242(1):222–225.  https://doi.org/10.1016/j.atherosclerosis.2015.07.031CrossRefGoogle Scholar
  44. Doyle KL, Woods SP, Morgan EE, Iudicello JE, Cameron MV, Gilbert PE, Beltran J, HIV Neurobehavioral Research Program Group (2016) Health-related decision-making in HIV disease. J Clin Psychol Med Settings 23(2):135–146.  https://doi.org/10.1007/s10880-016-9455-xCrossRefGoogle Scholar
  45. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV (2003) Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 12(3):205–216.  https://doi.org/10.1093/hmg/ddg055CrossRefGoogle Scholar
  46. Dufouil C, Richert L, Thiebaut R, Bruyand M, Amieva H, Dauchy FA, Dartigues JF, Neau D, Morlat P, Dehail P, Dabis F, Bonnet F, Chene G, ANRS CO3 Aquitaine Study Group (2015) Diabetes and cognitive decline in a French cohort of patients infected with HIV-1. Neurology 85(12):1065–1073.  https://doi.org/10.1212/WNL.0000000000001815CrossRefGoogle Scholar
  47. Ekins S, Mathews P, Saito EK, Diaz N, Naylor D, Chung J, McMurtray AM (2017) alpha7-Nicotinic acetylcholine receptor inhibition by indinavir: implications for cognitive dysfunction in treated HIV disease. AIDS 31(8):1083–1089.  https://doi.org/10.1097/QAD.0000000000001488CrossRefGoogle Scholar
  48. Elbirt D, Mahlab-Guri K, Bezalel-Rosenberg S, Gill H, Attali M, Asher I (2015) HIV-associated neurocognitive disorders (HAND). Isr Med Assoc J 17(1):54–59Google Scholar
  49. Eletto D, Russo G, Passiatore G, del Valle L, Giordano A, Khalili K, Gualco E, Peruzzi F (2008) Inhibition of SNAP25 expression by HIV-1 Tat involves the activity of mir-128a. J Cell Physiol 216(3):764–770.  https://doi.org/10.1002/jcp.21452CrossRefGoogle Scholar
  50. Ferrer I, Aubourg P, Pujol A (2010) General aspects and neuropathology of X-linked adrenoleukodystrophy. Brain Pathol 20(4):817–830.  https://doi.org/10.1111/j.1750-3639.2010.00390.xCrossRefGoogle Scholar
  51. Flensborg Damholdt M, Shevlin M, Borghammer P, Larsen L, Ostergaard K (2012) Clinical heterogeneity in Parkinson’s disease revisited: a latent profile analysis. Acta Neurol Scand 125(5):311–318.  https://doi.org/10.1111/j.1600-0404.2011.01561.xCrossRefGoogle Scholar
  52. Frndak SE, Smerbeck AM, Irwin LN, Drake AS, Kordovski VM, Kunker KA, Khan AL, Benedict RH (2016) Latent profile analysis of regression-based norms demonstrates relationship of compounding MS symptom burden and negative work events. Clin Neuropsychol 30(7):1050–1062.  https://doi.org/10.1080/13854046.2016.1200144CrossRefGoogle Scholar
  53. Gade-Andavolu R, Comings DE, MacMurray J, Rostamkhani M, Cheng LS, Tourtellotte WW, Cone LA (2004) Association of CCR5 delta32 deletion with early death in multiple sclerosis. Genet Med 6(3):126–131 doi:10.109701.GIM.0000127274.45301.54Google Scholar
  54. Garred P (2008) Mannose-binding lectin genetics: from A to Z. Biochem Soc Trans 36:1461–1466.  https://doi.org/10.1042/BST0361461CrossRefGoogle Scholar
  55. Garvey L, Surendrakumar V, Winston A (2011) Low rates of neurocognitive impairment are observed in neuro-asymptomatic HIV-infected subjects on effective antiretroviral therapy. HIV Clin Trials 12(6):333–338.  https://doi.org/10.1310/hct1206-333CrossRefGoogle Scholar
  56. Gaskill PJ, Calderon TM, Luers AJ, Eugenin EA, Javitch JA, Berman JW (2009) Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol 175(3):1148–1159.  https://doi.org/10.2353/ajpath.2009.081067CrossRefGoogle Scholar
  57. Gaskill PJ, Calderon TM, Coley JS, Berman JW (2013) Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J Neuroimmune Pharmacol 8(3):621–642.  https://doi.org/10.1007/s11481-013-9443-yCrossRefGoogle Scholar
  58. Gelman BB (2015) Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep 12(2):272–279.  https://doi.org/10.1007/s11904-015-0266-8CrossRefGoogle Scholar
  59. Gelman BB, Lisinicchia JG, Chen T, Johnson KM, Jennings K, Freeman DH Jr, Soukup VM (2012) Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J Neuroimmune Pharmacol 7(3):686–700.  https://doi.org/10.1007/s11481-012-9345-4CrossRefGoogle Scholar
  60. Giacomelli A, Rusconi S, Falvella FS, Oreni ML, Cattaneo D, Cozzi V, Renisi G, Monge E, Cheli S, Clementi E, Riva A, Galli M, Ridolfo AL (2018) Clinical and genetic determinants of nevirapine plasma trough concentration. SAGE Open Med 6:2050312118780861.  https://doi.org/10.1177/2050312118780861CrossRefGoogle Scholar
  61. Giesbrecht CJ, Thornton AE, Hall-Patch C, Maan EJ, Cote HC, Money DM, Murray M, Pick N (2014) Select neurocognitive impairment in HIV-infected women: associations with HIV viral load, hepatitis C virus, and depression, but not leukocyte telomere length. PLoS One 9(3):e89556.  https://doi.org/10.1371/journal.pone.0089556CrossRefGoogle Scholar
  62. Gisslen M, Krut J, Andreasson U, Blennow K, Cinque P, Brew BJ, Spudich S, Hagberg L, Rosengren L, Price RW, Zetterberg H (2009) Amyloid and tau cerebrospinal fluid biomarkers in HIV infection. BMC Neurol 9:63.  https://doi.org/10.1186/1471-2377-9-63CrossRefGoogle Scholar
  63. Gisslen M, Price RW, Nilsson S (2011) The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis 11:356.  https://doi.org/10.1186/1471-2334-11-356CrossRefGoogle Scholar
  64. Gong W, Howard OM, Turpin JA, Grimm MC, Ueda H, Gray PW, Raport CJ, Oppenheim JJ, Wang JM (1998) Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication. J Biol Chem 273(8):4289–4292.  https://doi.org/10.1074/jbc.273.8.4289CrossRefGoogle Scholar
  65. Gonzalez E, Bamshad M, Sato N, Mummidi S, Dhanda R, Catano G, Cabrera S, McBride M, Cao XH, Merrill G, O’Connell P, Bowden DW, Freedman BI, Anderson SA, Walter EA, Evans JS, Stephan KT, Clark RA, Tyagi S, Ahuja SS, Dolan MJ, Ahuja SK (1999) Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc Natl Acad Sci U S A 96(21):12004–12009.  https://doi.org/10.1073/pnas.96.21.12004CrossRefGoogle Scholar
  66. Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S, Kulkarni H, Bamshad MJ, Telles V, Anderson SA, Walter EA, Stephan KT, Deucher M, Mangano A, Bologna R, Ahuja SS, Dolan MJ, Ahuja SK (2002) HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 99(21):13795–13800.  https://doi.org/10.1073/pnas.202357499CrossRefGoogle Scholar
  67. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, Murthy KK, Rovin BH, Bradley W, Clark RA, Anderson SA, O’Connell RJ, Agan BK, Ahuja SS, Bologna R, Sen L, Dolan MJ, Ahuja SK (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307(5714):1434–1440.  https://doi.org/10.1126/science.1101160CrossRefGoogle Scholar
  68. Goulder PJ, Watkins DI (2008) Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat Rev Immunol 8(8):619–630.  https://doi.org/10.1038/nri2357CrossRefGoogle Scholar
  69. Gounden V, van Niekerk C, Snyman T, George JA (2010) Presence of the CYP2B6 516G> T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. AIDS Res Ther 7:32.  https://doi.org/10.1186/1742-6405-7-32CrossRefGoogle Scholar
  70. Graff J, Tsai LH (2013) The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol 53:311–330.  https://doi.org/10.1146/annurev-pharmtox-011112-140216CrossRefGoogle Scholar
  71. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840.  https://doi.org/10.1038/nature09267CrossRefGoogle Scholar
  72. Guo L, Zhang Q, Ma X, Wang J, Liang T (2017) miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression. Sci Rep 7:39812.  https://doi.org/10.1038/srep39812CrossRefGoogle Scholar
  73. Gupta S, Bousman CA, Chana G, Cherner M, Heaton RK, Deutsch R, Ellis RJ, Grant I, Everall IP (2011) Dopamine receptor D3 genetic polymorphism (rs6280TC) is associated with rates of cognitive impairment in methamphetamine-dependent men with HIV: preliminary findings. J Neurovirol 17(3):239–247.  https://doi.org/10.1007/s13365-011-0028-3CrossRefGoogle Scholar
  74. Haas DW, Ribaudo HJ, Kim RB, Tierney C, Wilkinson GR, Gulick RM, Clifford DB, Hulgan T, Marzolini C, Acosta EP (2004) Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 18(18):2391–2400Google Scholar
  75. Han LKM, Aghajani M, Clark SL, Chan RF, Hattab MW, Shabalin AA, Zhao M, Kumar G, Xie LY, Jansen R, Milaneschi Y, Dean B, Aberg KA, van den Oord E, Penninx B (2018) Epigenetic aging in major depressive disorder. Am J Psychiatry 175:774.  https://doi.org/10.1176/appi.ajp.2018.17060595CrossRefGoogle Scholar
  76. Heaton RK, Marcotte TD, Mindt MR, Sadek J, Moore DJ, Bentley H, McCutchan JA, Reicks C, Grant I, HNRC Group (2004) The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc 10(3):317–331.  https://doi.org/10.1017/S1355617704102130CrossRefGoogle Scholar
  77. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, CHARTER Group (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75(23):2087–2096.  https://doi.org/10.1212/WNL.0b013e318200d727CrossRefGoogle Scholar
  78. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP, Collier AC, Marra CM, Morgello S, Mindt MR, Taylor MJ, Marcotte TD, Atkinson JH, Wolfson T, Gelman BB, McArthur JC, Simpson DM, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, CHARTER Group, HNRC Group (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17(1):3–16.  https://doi.org/10.1007/s13365-010-0006-1CrossRefGoogle Scholar
  79. Heil SG, van der Ende ME, Schenk PW, van der Heiden I, Lindemans J, Burger D, van Schaik RH (2012) Associations between ABCB1, CYP2A6, CYP2B6, CYP2D6, and CYP3A5 alleles in relation to efavirenz and nevirapine pharmacokinetics in HIV-infected individuals. Ther Drug Monit 34(2):153–159.  https://doi.org/10.1097/FTD.0b013e31824868f3CrossRefGoogle Scholar
  80. Hong S, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12.  https://doi.org/10.1016/j.bbi.2014.10.008CrossRefGoogle Scholar
  81. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115.  https://doi.org/10.1186/gb-2013-14-10-r115CrossRefGoogle Scholar
  82. Horvath S, Levine AJ (2015) HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis 212(10):1563–1573.  https://doi.org/10.1093/infdis/jiv277CrossRefGoogle Scholar
  83. Horvath S, Phillips N, Heany SJ, Kobor MS, Lin DT, Myer L, Zar HJ, Stein DJ, Levine AJ, Hoare J (2018) Perinatally acquired HIV infection accelerates epigenetic aging in South African adolescents. AIDS 32:1465.  https://doi.org/10.1097/QAD.0000000000001854CrossRefGoogle Scholar
  84. Huang X, Ling H, Feng L, Ding X, Zhou Q, Han M, Mao W, Xiong H (2009) Human leukocyte antigen profile in HIV-1 infected individuals and AIDS patients from Chongqing, China. Microbiol Immunol 53(9):512–523.  https://doi.org/10.1111/j.1348-0421.2009.00150.xCrossRefGoogle Scholar
  85. Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35(5):325–334.  https://doi.org/10.1016/j.tins.2012.01.004CrossRefGoogle Scholar
  86. Ioannidis JP, Rosenberg PS, Goedert JJ, Ashton LJ, Benfield TL, Buchbinder SP, Coutinho RA, Eugen-Olsen J, Gallart T, Katzenstein TL, Kostrikis LG, Kuipers H, Louie LG, Mallal SA, Margolick JB, Martinez OP, Meyer L, Michael NL, Operskalski E, Pantaleo G, Rizzardi GP, Schuitemaker H, Sheppard HW, Stewart GJ, Theodorou ID, Ullum H, Vicenzi E, Vlahov D, Wilkinson D, Workman C, Zagury JF, O’Brien TR, International Meta-Analysis of HIV Host Genetics (2001) Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3′A alleles on HIV-1 disease progression: an international meta-analysis of individual-patient data. Ann Intern Med 135(9):782–795.  https://doi.org/10.7326/0003-4819-135-9-200111060-00008CrossRefGoogle Scholar
  87. Janssen RS, Cornblath DR, Epstein LG, Foa RP, McArthur JC, Price RW, Asbury AK, Beckett A, Benson DF, Bridge TP, Leventhal CM, Satz P, Saykin AJ, Sidtis JJ, Tross S (1991) Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Report of a working group of the American Academy of Neurology AIDS Task Force. Neurology 41(6):778–785Google Scholar
  88. Ji X, Gewurz H, Spear GT (2005) Mannose binding lectin (MBL) and HIV. Mol Immunol 42(2):145–152.  https://doi.org/10.1016/j.molimm.2004.06.015CrossRefGoogle Scholar
  89. Jia P, Zhao Z, Hulgan T, Bush WS, Samuels DC, Bloss CS, Heaton RK, Ellis RJ, Schork N, Marra CM, Collier AC, Clifford DB, Gelman BB, Sacktor N, Morgello S, Simpson DM, McCutchan JA, Barnholtz-Sloan JS, Franklin DR, Rosario D, Letendre SL, Grant I, Kallianpur AR, CHARTER Group (2017) Genome-wide association study of HIV-associated neurocognitive disorder (HAND): a CHARTER group study. Am J Med Genet B Neuropsychiatr Genet 174(4):413–426.  https://doi.org/10.1002/ajmg.b.32530CrossRefGoogle Scholar
  90. Joska JA, Combrinck M, Valcour VG, Hoare J, Leisegang F, Mahne AC, Myer L, Stein DJ (2010) Association between apolipoprotein E4 genotype and human immunodeficiency virus-associated dementia in younger adults starting antiretroviral therapy in South Africa. J Neurovirol 16(5):377–383.  https://doi.org/10.3109/13550284.2010.513365CrossRefGoogle Scholar
  91. Kadri F, LaPlante A, de Luca M, Doyle L, Velasco-Gonzalez C, Patterson JR, Molina PE, Nelson S, Zea AH, Parsons CH, Peruzzi F (2016) Defining plasma microRNAs associated with cognitive impairment in HIV-infected patients. J Cell Physiol 231(4):829–836.  https://doi.org/10.1002/jcp.25131CrossRefGoogle Scholar
  92. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7(10):854–868.  https://doi.org/10.1038/nrd2681CrossRefGoogle Scholar
  93. Kenedi CA, Goforth HW (2011) A systematic review of the psychiatric side-effects of efavirenz. AIDS Behav 15(8):1803–1818.  https://doi.org/10.1007/s10461-011-9939-5CrossRefGoogle Scholar
  94. Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3):287–303.  https://doi.org/10.1016/j.neuron.2009.06.026CrossRefGoogle Scholar
  95. Kohler S, Hamel R, Sistermans N, Koene T, Pijnenburg YA, van der Flier WM, Scheltens P, Visser PJ, Aalten P, Verhey FR, Ramakers I (2013) Progression to dementia in memory clinic patients without dementia: a latent profile analysis. Neurology 81(15):1342–1349.  https://doi.org/10.1212/WNL.0b013e3182a82536CrossRefGoogle Scholar
  96. Kumar AM, Fernandez JB, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL, Kumar M (2009) Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neurovirol 15(3):257–274.  https://doi.org/10.1080/13550280902973952CrossRefGoogle Scholar
  97. Kumar AM, Ownby RL, Waldrop-Valverde D, Fernandez B, Kumar M (2011) Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance. J Neurovirol 17(1):26–40.  https://doi.org/10.1007/s13365-010-0003-4CrossRefGoogle Scholar
  98. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, de Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414.  https://doi.org/10.1016/j.cell.2007.04.040CrossRefGoogle Scholar
  99. Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kalin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15(6):827–835.  https://doi.org/10.1038/nn.3113CrossRefGoogle Scholar
  100. Levine AJ, Singer EJ, Sinsheimer JS, Hinkin CH, Papp J, Dandekar S, Giovanelli A, Shapshak P (2009) CCL3 genotype and current depression increase risk of HIV-associated dementia. Neurobehav HIV Med 1:1–7.  https://doi.org/10.2147/NBHIV.S6820CrossRefGoogle Scholar
  101. Levine AJ, Service S, Miller EN, Reynolds SM, Singer EJ, Shapshak P, Martin EM, Sacktor N, Becker JT, Jacobson LP, Thompson P, Freimer N (2012) Genome-wide association study of neurocognitive impairment and dementia in HIV-infected adults. Am J Med Genet B Neuropsychiatr Genet 159B(6):669–683.  https://doi.org/10.1002/ajmg.b.32071CrossRefGoogle Scholar
  102. Levine AJ, Reynolds S, Cox C, Miller EN, Sinsheimer JS, Becker JT, Martin E, Sacktor N, Neuropsychology Working Group of the Multicenter AIDS Cohort Study (2014) The longitudinal and interactive effects of HIV status, stimulant use, and host genotype upon neurocognitive functioning. J Neurovirol 20(3):243–257.  https://doi.org/10.1007/s13365-014-0241-yCrossRefGoogle Scholar
  103. Levine AJ, Quach A, Moore DJ, Achim CL, Soontornniyomkij V, Masliah E, Singer EJ, Gelman B, Nemanim N, Horvath S (2016) Accelerated epigenetic aging in brain is associated with pre-mortem HIV-associated neurocognitive disorders. J Neurovirol 22(3):366–375.  https://doi.org/10.1007/s13365-015-0406-3CrossRefGoogle Scholar
  104. Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A (2001) Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol 432(1):119–136.  https://doi.org/10.1002/cne.1092CrossRefGoogle Scholar
  105. Li S, Jiao H, Yu X, Strong AJ, Shao Y, Sun Y, Altfeld M, Lu Y (2007) Human leukocyte antigen class I and class II allele frequencies and HIV-1 infection associations in a Chinese cohort. J Acquir Immune Defic Syndr 44(2):121–131.  https://doi.org/10.1097/01.qai.0000248355.40877.2aCrossRefGoogle Scholar
  106. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3):367–377.  https://doi.org/10.1016/S0092-8674(00)80110-5CrossRefGoogle Scholar
  107. Liu S, Yao L, Ding D, Zhu H (2010) CCL3L1 copy number variation and susceptibility to HIV-1 infection: a meta-analysis. PLoS One 5(12):e15778.  https://doi.org/10.1371/journal.pone.0015778CrossRefGoogle Scholar
  108. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9(2):106–118.  https://doi.org/10.1038/nrneurol.2012.263CrossRefGoogle Scholar
  109. Ma Q, Vaida F, Wong J, Sanders CA, Kao YT, Croteau D, Clifford DB, Collier AC, Gelman BB, Marra CM, McArthur JC, Morgello S, Simpson DM, Heaton RK, Grant I, Letendre SL, CHARTER Group (2016) Long-term efavirenz use is associated with worse neurocognitive functioning in HIV-infected patients. J Neurovirol 22(2):170–178.  https://doi.org/10.1007/s13365-015-0382-7CrossRefGoogle Scholar
  110. Malan-Muller S, Hemmings SM, Spies G, Kidd M, Fennema-Notestine C, Seedat S (2013) Shorter telomere length – a potential susceptibility factor for HIV-associated neurocognitive impairments in South African women. PLoS One 8(3):e58351.  https://doi.org/10.1371/journal.pone.0058351CrossRefGoogle Scholar
  111. Martin AM, Nolan D, Gaudieri S, Almeida CA, Nolan R, James I, Carvalho F, Phillips E, Christiansen FT, Purcell AW, McCluskey J, Mallal S (2004) Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc Natl Acad Sci U S A 101(12):4180–4185.  https://doi.org/10.1073/pnas.0307067101CrossRefGoogle Scholar
  112. Martin-Ruiz C, Dickinson HO, Keys B, Rowan E, Kenny RA, von Zglinicki T (2006) Telomere length predicts poststroke mortality, dementia, and cognitive decline. Ann Neurol 60(2):174–180.  https://doi.org/10.1002/ana.20869CrossRefGoogle Scholar
  113. McGuinness B, Barrett SL, McIlvenna J, Passmore AP, Shorter GW (2015) Predicting conversion to dementia in a memory clinic: a standard clinical approach compared with an empirically defined clustering method (latent profile analysis) for mild cognitive impairment subtyping. Alzheimers Dement (Amst) 1(4):447–454.  https://doi.org/10.1016/j.dadm.2015.10.003CrossRefGoogle Scholar
  114. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17(19):3030–3042.  https://doi.org/10.1093/hmg/ddn201CrossRefGoogle Scholar
  115. Meyer L, Magierowska M, Hubert JB, Theodorou I, van Rij R, Prins M, de Roda Husman AM, Coutinho R, Schuitemaker H (1999) CC-chemokine receptor variants, SDF-1 polymorphism, and disease progression in 720 HIV-infected patients. SEROCO Cohort. Amsterdam Cohort Studies on AIDS. AIDS 13(5):624–626.  https://doi.org/10.1097/00002030-199904010-00015CrossRefGoogle Scholar
  116. Modi WS, Scott K, Goedert JJ, Vlahov D, Buchbinder S, Detels R, Donfield S, O’Brien SJ, Winkler C (2005) Haplotype analysis of the SDF-1 (CXCL12) gene in a longitudinal HIV-1/AIDS cohort study. Genes Immun 6(8):691–698.  https://doi.org/10.1038/sj.gene.6364258CrossRefGoogle Scholar
  117. Modi WS, Lautenberger J, An P, Scott K, Goedert JJ, Kirk GD, Buchbinder S, Phair J, Donfield S, O’Brien SJ, Winkler C (2006) Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV Type 1 transmission and AIDS disease progression. Am J Hum Genet 79(1):120–128.  https://doi.org/10.1086/505331CrossRefGoogle Scholar
  118. Morgan EE, Woods SP, Letendre SL, Franklin DR, Bloss C, Goate A, Heaton RK, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Ellis RJ, Abramson I, Gamst A, Fennema-Notestine C, Smith DM, Grant I, Vaida F, Clifford DB, Group C (2013) Apolipoprotein E4 genotype does not increase risk of HIV-associated neurocognitive disorders. J Neurovirol 19(2):150–156.  https://doi.org/10.1007/s13365-013-0152-3CrossRefGoogle Scholar
  119. Mukerji SS, Locascio JJ, Misra V, Lorenz DR, Holman A, Dutta A, Penugonda S, Wolinsky SM, Gabuzda D (2016) Lipid profiles and APOE4 allele impact midlife cognitive decline in HIV-infected men on antiretroviral therapy. Clin Infect Dis 63(8):1130–1139.  https://doi.org/10.1093/cid/ciw495CrossRefGoogle Scholar
  120. Muthen B, Muthen LK (2000) Integrating person-centered and variable-centered analyses: growth mixture modeling with latent trajectory classes. Alcohol Clin Exp Res 24(6):882–891.  https://doi.org/10.1111/j.1530-0277.2000.tb02070.xCrossRefGoogle Scholar
  121. Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clinical features. Ann Neurol 19(6):517–524.  https://doi.org/10.1002/ana.410190602CrossRefGoogle Scholar
  122. Nightingale S, Winston A, Letendre S, Michael BD, McArthur JC, Khoo S, Solomon T (2014) Controversies in HIV-associated neurocognitive disorders. Lancet Neurol 13(11):1139–1151.  https://doi.org/10.1016/S1474-4422(14)70137-1CrossRefGoogle Scholar
  123. Noorbakhsh F, Ramachandran R, Barsby N, Ellestad KK, LeBlanc A, Dickie P, Baker G, Hollenberg MD, Cohen EA, Power C (2010) MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival. FASEB J 24(6):1799–1812.  https://doi.org/10.1096/fj.09-147819CrossRefGoogle Scholar
  124. Nylund KL, Asparouhov T, Muthen B (2007) Decising on the number of classes in latent class analysis and growth mixture modeling. A Monte Carlo simulation study. Struct Equ Model 14:535–569Google Scholar
  125. Oak JN, Oldenhof J, van Tol HH (2000) The dopamine D(4) receptor: one decade of research. Eur J Pharmacol 405(1–3):303–327.  https://doi.org/10.1016/S0014-2999(00)00562-8CrossRefGoogle Scholar
  126. Panos SE, Hinkin CH, Singer EJ, Thames AD, Patel SM, Sinsheimer JS, del Re AC, Gelman BB, Morgello S, Moore DJ, Levine AJ (2013) Apolipoprotein-E genotype and human immunodeficiency virus-associated neurocognitive disorder: the modulating effects of older age and disease severity. Neurobehav HIV Med 5:11–22.  https://doi.org/10.2147/NBHIV.S39573CrossRefGoogle Scholar
  127. Paternico D, Galluzzi S, Drago V, Bocchio-Chiavetto L, Zanardini R, Pedrini L, Baronio M, Amicucci G, Frisoni GB (2012) Cerebrospinal fluid markers for Alzheimer’s disease in a cognitively healthy cohort of young and old adults. Alzheimers Dement 8(6):520–527.  https://doi.org/10.1016/j.jalz.2011.10.003CrossRefGoogle Scholar
  128. Pemberton LA, Stone E, Price P, van Bockxmeer F, Brew BJ (2008) The relationship between ApoE, TNFA, IL1a, IL1b and IL12b genes and HIV-1-associated dementia. HIV Med 9(8):677–680.  https://doi.org/10.1111/j.1468-1293.2008.00614.xCrossRefGoogle Scholar
  129. Penzak SR, Kabuye G, Mugyenyi P, Mbamanya F, Natarajan V, Alfaro RM, Kityo C, Formentini E, Masur H (2007) Cytochrome P450 2B6 (CYP2B6) G516T influences nevirapine plasma concentrations in HIV-infected patients in Uganda. HIV Med 8(2):86–91.  https://doi.org/10.1111/j.1468-1293.2007.00432.xCrossRefGoogle Scholar
  130. Peterson J, Gisslen M, Zetterberg H, Fuchs D, Shacklett BL, Hagberg L, Yiannoutsos CT, Spudich SS, Price RW (2014) Cerebrospinal fluid (CSF) neuronal biomarkers across the spectrum of HIV infection: hierarchy of injury and detection. PLoS One 9(12):e116081.  https://doi.org/10.1371/journal.pone.0116081CrossRefGoogle Scholar
  131. Pomara N, Belzer KD, Silva R, Cooper TB, Sidtis JJ (2008) The apolipoprotein E epsilon4 allele and memory performance in HIV-1 seropositive subjects: differences at baseline but not after acute oral lorazepam challenge. Psychopharmacology 201(1):125–135.  https://doi.org/10.1007/s00213-008-1253-1CrossRefGoogle Scholar
  132. Popp J, Lewczuk P, Frommann I, Kolsch H, Kornhuber J, Maier W, Jessen F (2010) Cerebrospinal fluid markers for Alzheimer’s disease over the lifespan: effects of age and the APOEepsilon4 genotype. J Alzheimers Dis 22(2):459–468.  https://doi.org/10.3233/JAD-2010-100561CrossRefGoogle Scholar
  133. Quasney MW, Zhang Q, Sargent S, Mynatt M, Glass J, McArthur J (2001) Increased frequency of the tumor necrosis factor-alpha-308 A allele in adults with human immunodeficiency virus dementia. Ann Neurol 50(2):157–162Google Scholar
  134. Rickabaugh TM, Baxter RM, Sehl M, Sinsheimer JS, Hultin PM, Hultin LE, Quach A, Martinez-Maza O, Horvath S, Vilain E, Jamieson BD (2015) Acceleration of age-associated methylation patterns in HIV-1-infected adults. PLoS One 10(3):e0119201.  https://doi.org/10.1371/journal.pone.0119201CrossRefGoogle Scholar
  135. Robertson K, Liner J, Meeker RB (2012) Antiretroviral neurotoxicity. J Neurovirol 18(5):388–399.  https://doi.org/10.1007/s13365-012-0120-3CrossRefGoogle Scholar
  136. Rom S, Rom I, Passiatore G, Pacifici M, Radhakrishnan S, del Valle L, Pina-Oviedo S, Khalili K, Eletto D, Peruzzi F (2010) CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells. FASEB J 24(7):2292–2300.  https://doi.org/10.1096/fj.09-143503CrossRefGoogle Scholar
  137. Rotger M, Colombo S, Furrer H, Bleiber G, Buclin T, Lee BL, Keiser O, Biollaz J, Decosterd L, Telenti A, Swiss HIV Cohort Study (2005) Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics 15(1):1–5.  https://doi.org/10.1097/01213011-200501000-00001CrossRefGoogle Scholar
  138. Roux-Lombard P, Modoux C, Cruchaud A, Dayer JM (1989) Purified blood monocytes from HIV 1-infected patients produce high levels of TNF alpha and IL-1. Clin Immunol Immunopathol 50(3):374–384Google Scholar
  139. Rovin BH, Lu L, Saxena R (1999) A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun 259(2):344–348.  https://doi.org/10.1006/bbrc.1999.0796CrossRefGoogle Scholar
  140. Sacktor N (2018) Changing clinical phenotypes of HIV-associated neurocognitive disorders. J Neurovirol 24(2):141–145.  https://doi.org/10.1007/s13365-017-0556-6CrossRefGoogle Scholar
  141. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E, Ragin A, Levine A, Miller E (2016) Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology 86(4):334–340.  https://doi.org/10.1212/WNL.0000000000002277CrossRefGoogle Scholar
  142. Saiyed ZM, Gandhi N, Agudelo M, Napuri J, Samikkannu T, Reddy PV, Khatavkar P, Yndart A, Saxena SK, Nair MP (2011) HIV-1 Tat upregulates expression of histone deacetylase-2 (HDAC2) in human neurons: implication for HIV-associated neurocognitive disorder (HAND). Neurochem Int 58(6):656–664.  https://doi.org/10.1016/j.neuint.2011.02.004CrossRefGoogle Scholar
  143. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725.  https://doi.org/10.1038/382722a0CrossRefGoogle Scholar
  144. Sandkovsky U, Podany AT, Fletcher CV, Owen A, Felton-Coleman A, Winchester LC, Robertson K, Swindells S (2017) Impact of efavirenz pharmacokinetics and pharmacogenomics on neuropsychological performance in older HIV-infected patients. J Antimicrob Chemother 72(1):200–204.  https://doi.org/10.1093/jac/dkw403CrossRefGoogle Scholar
  145. Savic RM, Barrail-Tran A, Duval X, Nembot G, Panhard X, Descamps D, Verstuyft C, Vrijens B, Taburet AM, Goujard C, Mentre F, ANRS 134–COPHAR 3 Study Group (2012) Effect of adherence as measured by MEMS, ritonavir boosting, and CYP3A5 genotype on atazanavir pharmacokinetics in treatment-naive HIV-infected patients. Clin Pharmacol Ther 92(5):575–583.  https://doi.org/10.1038/clpt.2012.137CrossRefGoogle Scholar
  146. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC (2016) HIV-associated neurocognitive disorder – pathogenesis and prospects for treatment. Nat Rev Neurol 12(4):234–248.  https://doi.org/10.1038/nrneurol.2016.27CrossRefGoogle Scholar
  147. Schrier RD, Gnann JW Jr, Landes R, Lockshin C, Richman D, McCutchan A, Kennedy C, Oldstone MB, Nelson JA (1989) T cell recognition of HIV synthetic peptides in a natural infection. J Immunol 142(4):1166–1176Google Scholar
  148. Schrier RD, Wiley CA, Spina C, McCutchan JA, Grant I (1996) Pathogenic and protective correlates of T cell proliferation in AIDS. HNRC Group. HIV Neurobehavioral Research Center. J Clin Invest 98(3):731–740.  https://doi.org/10.1172/JCI118845CrossRefGoogle Scholar
  149. Schrier RD, Gupta S, Riggs P, Cysique LA, Letendre S, Jin H, Spector SA, Singh KK, Wolfson T, Wu Z, Hong KX, Yu X, Shi C, Heaton RK, The HNRC Group (2012) The influence of HLA on HIV-associated neurocognitive impairment in Anhui, China. PLoS One 7(5):e32303.  https://doi.org/10.1371/journal.pone.0032303CrossRefGoogle Scholar
  150. Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067):201–206.  https://doi.org/10.1126/science.1378648CrossRefGoogle Scholar
  151. Simioni S, Cavassini M, Annoni JM, Rimbault Abraham A, Bourquin I, Schiffer V, Calmy A, Chave JP, Giacobini E, Hirschel B, du Pasquier RA (2010) Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24(9):1243–1250.  https://doi.org/10.1097/QAD.0b013e3283354a7bCrossRefGoogle Scholar
  152. Singh KK, Barroga CF, Hughes MD, Chen J, Raskino C, McKinney RE, Spector SA (2003) Genetic influence of CCR5, CCR2, and SDF1 variants on human immunodeficiency virus 1 (HIV-1)-related disease progression and neurological impairment, in children with symptomatic HIV-1 infection. J Infect Dis 188(10):1461–1472.  https://doi.org/10.1086/379038CrossRefGoogle Scholar
  153. Singh KK, Ellis RJ, Marquie-Beck J, Letendre S, Heaton RK, Grant I, Spector SA (2004) CCR2 polymorphisms affect neuropsychological impairment in HIV-1-infected adults. J Neuroimmunol 157(1–2):185–192.  https://doi.org/10.1016/j.jneuroim.2004.08.027CrossRefGoogle Scholar
  154. Singh KK, Hughes MD, Chen J, Spector SA (2006) Impact of MCP-1-2518-G allele on the HIV-1 disease of children in the United States. AIDS 20(3):475–478.  https://doi.org/10.1097/01.aids.0000200540.09856.58CrossRefGoogle Scholar
  155. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, Goedert JJ, O’Brien TR, Jacobson LP, Kaslow R, Buchbinder S, Vittinghoff E, Vlahov D, Hoots K, Hilgartner MW, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study, O’Brien SJ (1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science 277(5328):959–965.  https://doi.org/10.1126/science.277.5328.959CrossRefGoogle Scholar
  156. Sogaard OS, Graversen ME, Leth S, Olesen R, Brinkmann CR, Nissen SK, Kjaer AS, Schleimann MH, Denton PW, Hey-Cunningham WJ, Koelsch KK, Pantaleo G, Krogsgaard K, Sommerfelt M, Fromentin R, Chomont N, Rasmussen TA, Ostergaard L, Tolstrup M (2015) The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog 11(9):e1005142.  https://doi.org/10.1371/journal.ppat.1005142CrossRefGoogle Scholar
  157. Sorce S, Myburgh R, Krause KH (2011) The chemokine receptor CCR5 in the central nervous system. Prog Neurobiol 93(2):297–311.  https://doi.org/10.1016/j.pneurobio.2010.12.003CrossRefGoogle Scholar
  158. Spector SA, Singh KK, Gupta S, Cystique LA, Jin H, Letendre S, Schrier R, Wu Z, Hong KX, Yu X, Shi C, Heaton RK, The HNRC Group (2010) APOE epsilon4 and MBL-2 O/O genotypes are associated with neurocognitive impairment in HIV-infected plasma donors. AIDS 24(10):1471–1479.  https://doi.org/10.1097/QAD.0b013e328339e25cCrossRefGoogle Scholar
  159. Stauch KL, Emanuel K, Lamberty BG, Morsey B, Fox HS (2017) Central nervous system-penetrating antiretrovirals impair energetic reserve in striatal nerve terminals. J Neurovirol 23(6):795–807.  https://doi.org/10.1007/s13365-017-0573-5CrossRefGoogle Scholar
  160. Stein JY, Levin Y, Uziel O, Abumock H, Solomon Z (2018) Traumatic stress and cellular senescence: the role of war-captivity and homecoming stressors in later life telomere length. J Affect Disord 238:129–135.  https://doi.org/10.1016/j.jad.2018.05.037CrossRefGoogle Scholar
  161. Suchy-Dicey AM, Muller CJ, Madhyastha TM, Shibata D, Cole SA, Zhao J, Longstreth WTJ, Buchwald D (2018) Telomere length and magnetic resonance imaging findings of vascular brain injury and central brain atrophy: the Strong Heart Study. Am J Epidemiol 187(6):1231–1239.  https://doi.org/10.1093/aje/kwx368CrossRefGoogle Scholar
  162. Sun B, Abadjian L, Rempel H, Calosing C, Rothlind J, Pulliam L (2010) Peripheral biomarkers do not correlate with cognitive impairment in highly active antiretroviral therapy-treated subjects with human immunodeficiency virus type 1 infection. J Neurovirol 16(2):115–124.  https://doi.org/10.3109/13550280903559789CrossRefGoogle Scholar
  163. Sundermann EE, Bishop JR, Rubin LH, Little DM, Meyer VJ, Martin E, Weber K, Cohen M, Maki PM (2015) Genetic predictor of working memory and prefrontal function in women with HIV. J Neurovirol 21(1):81–91.  https://doi.org/10.1007/s13365-014-0305-zCrossRefGoogle Scholar
  164. Telenti A (2005) Adaptation, co-evolution, and human susceptibility to HIV-1 infection. Infect Genet Evol 5(4):327–334.  https://doi.org/10.1016/j.meegid.2004.11.001CrossRefGoogle Scholar
  165. Thames AD, Briones MS, Magpantay LI, Martinez-Maza O, Singer EJ, Hinkin CH, Morgello S, Gelman BB, Moore DJ, Heizerling K, Levine AJ (2015) The role of chemokine C-C motif ligand 2 genotype and cerebrospinal fluid chemokine C-C motif ligand 2 in neurocognition among HIV-infected patients. AIDS 29(12):1483–1491.  https://doi.org/10.1097/QAD.0000000000000706CrossRefGoogle Scholar
  166. Tierney SM, Sheppard DP, Kordovski VM, Faytell MP, Avci G, Woods SP (2017) A comparison of the sensitivity, stability, and reliability of three diagnostic schemes for HIV-associated neurocognitive disorders. J Neurovirol 23(3):404–421.  https://doi.org/10.1007/s13365-016-0510-zCrossRefGoogle Scholar
  167. Vaidya SA, Korner C, Sirignano MN, Amero M, Bazner S, Rychert J, Allen TM, Rosenberg ES, Bosch RJ, Altfeld M (2014) Tumor necrosis factor alpha is associated with viral control and early disease progression in patients with HIV type 1 infection. J Infect Dis 210(7):1042–1046.  https://doi.org/10.1093/infdis/jiu206CrossRefGoogle Scholar
  168. Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes OA, Grove J, Liu Y, Abdul-Majid KB, Gartner S, Sacktor N (2004) Age, apolipoprotein E4, and the risk of HIV dementia: the Hawaii Aging with HIV Cohort. J Neuroimmunol 157(1–2):197–202.  https://doi.org/10.1016/j.jneuroim.2004.08.029CrossRefGoogle Scholar
  169. van Rij RP, Portegies P, Hallaby T, Lange JM, Visser J, de Roda Husman AM, van’t Wout AB, Schuitemaker H (1999) Reduced prevalence of the CCR5 delta32 heterozygous genotype in human immunodeficiency virus-infected individuals with AIDS dementia complex. J Infect Dis 180(3):854–857.  https://doi.org/10.1086/314940CrossRefGoogle Scholar
  170. Vassallo M, Durant J, Biscay V, Lebrun-Frenay C, Dunais B, Laffon M, Harvey-Langton A, Cottalorda J, Ticchioni M, Carsenti H, Pradier C, Dellamonica P (2014) Can high central nervous system penetrating antiretroviral regimens protect against the onset of HIV-associated neurocognitive disorders? AIDS 28(4):493–501.  https://doi.org/10.1097/QAD.0000000000000096CrossRefGoogle Scholar
  171. Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough CB, Brindle PK, Abel T, Wood MA (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci 27(23):6128–6140.  https://doi.org/10.1523/JNEUROSCI.0296-07.2007CrossRefGoogle Scholar
  172. Villalba K, Devieux JG, Rosenberg R, Cadet JL (2015) DRD2 and DRD4 genes related to cognitive deficits in HIV-infected adults who abuse alcohol. Behav Brain Funct 11:25.  https://doi.org/10.1186/s12993-015-0072-xCrossRefGoogle Scholar
  173. Wanders RJ, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332.  https://doi.org/10.1146/annurev.biochem.74.082803.133329CrossRefGoogle Scholar
  174. Wendelken LA, Jahanshad N, Rosen HJ, Busovaca E, Allen I, Coppola G, Adams C, Rankin KP, Milanini B, Clifford K, Wojta K, Nir TM, Gutman BA, Thompson PM, Valcour V (2016) ApoE epsilon4 is associated with cognition, brain integrity, and atrophy in HIV over age 60. J Acquir Immune Defic Syndr 73(4):426–432.  https://doi.org/10.1097/QAI.0000000000001091CrossRefGoogle Scholar
  175. Wesselingh SL, Power C, Glass JD, Tyor WR, McArthur JC, Farber JM, Griffin JW, Griffin DE (1993) Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol 33(6):576–582.  https://doi.org/10.1002/ana.410330604CrossRefGoogle Scholar
  176. Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE (1997) Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol 74(1–2):1–8.  https://doi.org/10.1016/S0165-5728(96)00160-9CrossRefGoogle Scholar
  177. Winkler C, Modi W, Smith MW, Nelson GW, Wu X, Carrington M, Dean M, Honjo T, Tashiro K, Yabe D, Buchbinder S, Vittinghoff E, Goedert JJ, O’Brien TR, Jacobson LP, Detels R, Donfield S, Willoughby A, Gomperts E, Vlahov D, Phair J, ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), O’Brien SJ (1998) Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. Science 279(5349):389–393.  https://doi.org/10.1126/science.279.5349.389CrossRefGoogle Scholar
  178. Winston A, Arenas-Pinto A, Stohr W, Fisher M, Orkin CM, Aderogba K, de Burgh-Thomas A, O’Farrell N, Lacey CJ, Leen C, Dunn D, Paton NI, Pivot Trial Team (2013) Neurocognitive function in HIV infected patients on antiretroviral therapy. PLoS One 8(4):e61949.  https://doi.org/10.1371/journal.pone.0061949CrossRefGoogle Scholar
  179. Wolkowitz OM, Jeste DV, Martin AS, Lin J, Daly RE, Reuter C, Kraemer H (2017) Leukocyte telomere length: effects of schizophrenia, age, and gender. J Psychiatr Res 85:42–48.  https://doi.org/10.1016/j.jpsychires.2016.10.015CrossRefGoogle Scholar
  180. Wong JY, de Vivo I, Lin X, Grashow R, Cavallari J, Christiani DC (2014) The association between global DNA methylation and telomere length in a longitudinal study of boilermakers. Genet Epidemiol 38(3):254–264.  https://doi.org/10.1002/gepi.21796CrossRefGoogle Scholar
  181. Wright EJ, Grund B, Robertson K, Brew BJ, Roediger M, Bain MP, Drummond F, Vjecha MJ, Hoy J, Miller C, Penalva de Oliveira AC, Pumpradit W, Shlay JC, El-Sadr W, Price RW, INSIGH SMART Study Group (2010) Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons. Neurology 75(10):864–873.  https://doi.org/10.1212/WNL.0b013e3181f11bd8CrossRefGoogle Scholar
  182. Wright EJ, Grund B, Cysique LA, Robertson KR, Brew BJ, Collins G, Shlay JC, Winston A, Read TR, Price RW, INSIGHT START Study Group (2015) Factors associated with neurocognitive test performance at baseline: a substudy of the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. HIV Med 16(Suppl 1):97–108.  https://doi.org/10.1111/hiv.12238CrossRefGoogle Scholar
  183. Wyczechowska D, Lin HY, LaPlante A, Jeansonne D, Lassak A, Parsons CH, Molina PE, Peruzzi F (2017) A miRNA signature for cognitive deficits and alcohol use disorder in persons living with HIV/AIDS. Front Mol Neurosci 10:385.  https://doi.org/10.3389/fnmol.2017.00385CrossRefGoogle Scholar
  184. Xu Z, Asahchop EL, Branton WG, Gelman BB, Power C, Hobman TC (2017) MicroRNAs upregulated during HIV infection target peroxisome biogenesis factors: implications for virus biology, disease mechanisms and neuropathology. PLoS Pathog 13(6):e1006360.  https://doi.org/10.1371/journal.ppat.1006360CrossRefGoogle Scholar
  185. Yang OO, Garcia-Zepeda EA, Walker BD, Luster AD (2002) Monocyte chemoattractant protein-2 (CC chemokine ligand 8) inhibits replication of human immunodeficiency virus type 1 via CC chemokine receptor 5. J Infect Dis 185(8):1174–1178.  https://doi.org/10.1086/339678CrossRefGoogle Scholar
  186. Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS (2010) MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death Dis 1:e77.  https://doi.org/10.1038/cddis.2010.56CrossRefGoogle Scholar
  187. Zhang Z, Liu J, Wang H, Wu H, Wu X, Dong J, Liao L (2015) Association between chemokine receptor 5 (CCR5) delta32 gene variant and atherosclerosis: a meta-analysis of 13 studies. Int J Clin Exp Med 8(1):658–665Google Scholar
  188. Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C, Weissman D, Cohen O, Rubbert A, Lam G, Vaccarezza M, Kennedy PE, Kumaraswami V, Giorgi JV, Detels R, Hunter J, Chopek M, Berger EA, Fauci AS, Nutman TB, Murphy PM (1997) Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 3(1):23–36Google Scholar
  189. Zwergel C, Stazi G, Valente S, Mai A (2016) Histone deacetylase inhibitors: updated studies in various epigenetic-related diseases. J Clin Epigenetics 2(1):7Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Daniela Gomez
    • 1
  • Christopher Power
    • 2
  • Esther Fujiwara
    • 1
  1. 1.Department of PsychiatryUniversity of AlbertaEdmontonCanada
  2. 2.Departments of Psychiatry and MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations