Advertisement

Active Inference, Novelty and Neglect

  • Thomas ParrEmail author
  • Karl J. Friston
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 41)

Abstract

In this chapter, we provide an overview of the principles of active inference. We illustrate how different forms of short-term memory are expressed formally (mathematically) through appealing to beliefs about the causes of our sensations and about the actions we pursue. This is used to motivate an approach to active vision that depends upon inferences about the causes of ‘what I have seen’ and learning about ‘what I would see if I were to look there’. The former could manifest as persistent ‘delay-period’ activity – of the sort associated with working memory, while the latter is better suited to changes in synaptic efficacy – of the sort that underlies short-term learning and adaptation. We review formulations of these ideas in terms of active inference, their role in directing visual exploration and the consequences – for active vision – of their failures. To illustrate the latter, we draw upon some of our recent work on the computational anatomy of visual neglect.

Keywords

Active inference Active vision Markov decision process Novelty Saccades Visual neglect 

Notes

Acknowledgements

TP is supported by the Rosetrees Trust (Award Number 173346). KJF is a Wellcome Principal Research Fellow (Ref: 088130/Z/09/Z).

Disclosure Statement

The authors have no disclosures or conflict of interest.

References

  1. Albert ML (1973) A simple test of visual neglect. Neurology 23(6):658Google Scholar
  2. Andreopoulos A, Tsotsos J (2013) A computational learning theory of active object recognition under uncertainty. Int J Comput Vis 101(1):95–142Google Scholar
  3. Bartolomeo P, Thiebaut de Schotten M, Doricchi F (2007) Left unilateral neglect as a disconnection syndrome. Cereb Cortex 17(11):2479–2490Google Scholar
  4. Bartolomeo P, Thiebaut de Schotten M, Chica AB (2012) Brain networks of visuospatial attention and their disruption in visual neglect. Front Hum Neurosci 6:110PubMedPubMedCentralGoogle Scholar
  5. Beal MJ (2003) Variational algorithms for approximate Bayesian inference. University of London, London, UKGoogle Scholar
  6. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757Google Scholar
  7. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022Google Scholar
  8. Brown TH, Zhao Y, Leung V (2009) Hebbian plasticity A2 – squire, Larry R. Encyclopedia of neuroscience. Academic Press, Oxford, pp 1049–1056Google Scholar
  9. Catani M, ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128(10):2224–2239Google Scholar
  10. Dayan P, Yu AJ (2006) Phasic norepinephrine: a neural interrupt signal for unexpected events. Netw Comput Neural Syst 17(4):335–350Google Scholar
  11. Doricchi F, Tomaiuolo F (2003) The anatomy of neglect without hemianopia: a key role for parietal-frontal disconnection? Neuroreport 14(17):2239–2243Google Scholar
  12. Ferber S, Karnath H-O (2001) How to assess spatial neglect-line bisection or cancellation tasks? J Clin Exp Neuropsychol 23(5):599–607Google Scholar
  13. Feynman RP (1998) Statistical mechanics: a set of lectures. Avalon Publishing, New YorkGoogle Scholar
  14. Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010) Action and behavior: a free-energy formulation. Biol Cybern 102(3):227–260Google Scholar
  15. Friston K, Adams RA, Perrinet L, Breakspear M (2012) Perceptions as hypotheses: saccades as experiments. Front Psychol 3:151PubMedPubMedCentralGoogle Scholar
  16. Friston K, Rigoli F, Ognibene D, Mathys C, Fitzgerald T, Pezzulo G (2015) Active inference and epistemic value. Cognit Neurosci 6(4):187–214Google Scholar
  17. Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, O’Doherty J, Pezzulo G (2016) Active inference and learning. Neurosci Biobehav Rev 68:862–879PubMedPubMedCentralGoogle Scholar
  18. Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, Pezzulo G (2017a) Active inference: a process theory. Neural Comput 29(1):1–49Google Scholar
  19. Friston KJ, Rosch R, Parr T, Price C, Bowman H (2017b) Deep temporal models and active inference. Neurosci Biobehav Rev 77:388–402PubMedPubMedCentralGoogle Scholar
  20. Fruhmann Berger M, Johannsen L, Karnath H-O (2008) Time course of eye and head deviation in spatial neglect. Neuropsychology 22(6):697–702Google Scholar
  21. Fullerton KJ, McSherry D, Stout RW (1986) Albert’s test: a neglected test of perceptual neglect. Lancet 327(8478):430–432Google Scholar
  22. Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61(2):331Google Scholar
  23. Geschwind N (1965) Disconnexion syndromes in animals and Man1. Brain 88(2):237–237Google Scholar
  24. Gregory RL (1980) Perceptions as hypotheses. Phil Trans Roy Soc Lond B Biol Sci 290(1038):181Google Scholar
  25. Halligan PW, Marshall JC (1998) Neglect of awareness. Conscious Cogn 7(3):356–380Google Scholar
  26. He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53(6):905–918Google Scholar
  27. Hebb DO (1949) The first stage of perception: growth of the assembly. The organization of behavior. Wiley, New York, pp 60–78Google Scholar
  28. Hempel CM, Hartman KH, Wang XJ, Turrigiano GG, Nelson SB (2000) Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. J Neurophysiol 83(5):3031Google Scholar
  29. Hikosaka O, Wurtz RH (1985) Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J Neurophysiol 53(1):266Google Scholar
  30. Hohwy J (2016) The self-evidencing brain. Noûs 50(2):259–285Google Scholar
  31. Husain M, Mannan S, Hodgson T, Wojciulik E, Driver J, Kennard C (2001) Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. Brain 124(5):941–952Google Scholar
  32. Karnath H-O, Rorden C (2012) The anatomy of spatial neglect. Neuropsychologia 50(6):1010–1017Google Scholar
  33. Karnath HO, Himmelbach M, Rorden C (2002) The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125(2):350–360Google Scholar
  34. Klein RM (2000) Inhibition of return. Trends Cogn Sci 4(4):138–147Google Scholar
  35. Kojima S, Goldman-Rakic PS (1982) Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res 248(1):43–49Google Scholar
  36. Loeliger HA, Dauwels J, Hu J, Korl S, Ping L, Kschischang FR (2007) The factor graph approach to model-based signal processing. Proc IEEE 95(6):1295–1322Google Scholar
  37. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness JVS, Pandya DN (2004) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15(6):854–869Google Scholar
  38. Mannan SK, Mort DJ, Hodgson TL, Driver J, Kennard C, Husain M (2005) Revisiting previously searched locations in visual neglect: role of right parietal and frontal lesions in misjudging old locations as new. J Cogn Neurosci 17(2):340–354Google Scholar
  39. Marshall L, Mathys C, Ruge D, de Berker AO, Dayan P, Stephan KE, Bestmann S (2016) Pharmacological fingerprints of contextual uncertainty. PLoS Biol 14(11):e1002575PubMedPubMedCentralGoogle Scholar
  40. Mirza MB, Adams RA, Mathys CD, Friston KJ (2016) Scene construction, visual foraging, and active inference. Front Comput Neurosci 10:56PubMedPubMedCentralGoogle Scholar
  41. Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science 319(5869):1543–1546Google Scholar
  42. Ognibene D, Baldassarre G (2014) Ecological active vision: four bio-inspired principles to integrate bottom-up and adaptive top-down attention tested with a simple camera-arm robot. IEEE transactions on autonomous mental development 7(1):3–25Google Scholar
  43. Parr T, Friston KJ (2017a) The active construction of the visual world. Neuropsychologia 104:92–101PubMedPubMedCentralGoogle Scholar
  44. Parr T, Friston KJ (2017b) The computational anatomy of visual neglect. Cereb Cortex 1–14Google Scholar
  45. Parr T, Friston KJ (2017c) Uncertainty, epistemics and active inference. J R Soc Interface 14(136)PubMedCentralGoogle Scholar
  46. Parr T, Friston KJ (2017d) Working memory, attention, and salience in active inference. Sci Rep 7(1):14678PubMedPubMedCentralGoogle Scholar
  47. Parr T, Friston KJ (2018) The discrete and continuous brain: from decisions to movement—and back again. Neural Comput (Early Access):1–29Google Scholar
  48. Parr T, Rees G, Friston KJ (2018) Computational neuropsychology and Bayesian inference. Front Hum Neurosci 12(61)Google Scholar
  49. Posner MI, Rafal RD, Choate LS, Vaughan J (1985) Inhibition of return: neural basis and function. Cogn Neuropsychol 2(3):211–228Google Scholar
  50. Rudrauf D, Bennequin D, Granic I, Landini G, Friston K, Williford K (2017) A mathematical model of embodied consciousness. J Theor Biol 428:106–131Google Scholar
  51. Schiller PH, True SD, Conway JL (1980) Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol 44(6):1175Google Scholar
  52. Schiller PH, Sandell JH, Maunsell JH (1987) The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol 57(4):1033Google Scholar
  53. Schwartenbeck P, FitzGerald T, Dolan RJ, Friston K (2013) Exploration, novelty, surprise, and free energy minimization. Front Psychol 4:710PubMedPubMedCentralGoogle Scholar
  54. Thiebaut de Schotten M, Urbanski M, Duffau H (2005) Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309Google Scholar
  55. Ungerleider LG, Christensen CA (1979) Pulvinar lesions in monkeys produce abnormal scanning of a complex visual array. Neuropsychologia 17(5):493–501Google Scholar
  56. Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS (2006) Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci 9(4):534–542Google Scholar
  57. Weller RE, Steele GE, Kaas JH (2002) Pulvinar and other subcortical connections of dorsolateral visual cortex in monkeys. J Comp Neurol 450(3):215–240Google Scholar
  58. Wurtz RH, McAlonan K, Cavanaugh J, Berman RA (2011) Thalamic pathways for active vision. Trends Cogn Sci 5(4):177–184Google Scholar
  59. Zimmermann E, Lappe M (2016) Visual space constructed by saccade motor maps. Front Hum Neurosci 10(225)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Wellcome Centre for Human Neuroimaging, Institute of NeurologyUniversity College LondonLondonUK

Personalised recommendations