Advertisement

Cognitive Phenotypes for Biomarker Identification in Mental Illness: Forward and Reverse Translation

  • David A. MacQueen
  • Jared W. Young
  • Zackary A. Cope
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 40)

Abstract

Psychiatric illness has been acknowledged for as long as people were able to describe behavioral abnormalities in the general population. In modern times, these descriptions have been codified and continuously updated into manuals by which clinicians can diagnose patients. None of these diagnostic manuals have attempted to tie abnormalities to neural dysfunction however, nor do they necessitate the quantification of cognitive function despite common knowledge of its ties to functional outcome. In fact, in recent years the National Institute of Mental Health released a novel transdiagnostic classification, the Research Domain Criteria (RDoC), which utilizes quantifiable behavioral abnormalities linked to neurophysiological processes. This reclassification highlights the utility of RDoC constructs as potential cognitive biomarkers of disease state. In addition, with RDoC and cognitive biomarkers, the onus of researchers utilizing animal models no longer necessitates the recreation of an entire disease state, but distinct processes. Here, we describe the utilization of constructs from the RDoC initiative to forward animal research on these cognitive and behavioral processes, agnostic of disease. By linking neural processes to these constructs, identifying putative abnormalities in diseased patients, more targeted therapeutics can be developed.

Keywords

Cognition Cross-species Phenotypes RDoC Translational biomarkers 

Notes

Acknowledgements

The authors would like to thank Prof. Mark Geyer for the wonderful example he has provided as a translational researcher in the field of psychiatric research. We also thank Ms. Mahalah Buell and Mr. Richard Sharp for their assistance throughout our work. We acknowledge the funding support from NIMH grant R01MH104344-03, UH2MG109168, T32MH018399-30 as well as by the Veteran’s Administration VISN 22 Mental Illness Research, Education, and Clinical Center. The authors report no conflict of interest.

References

  1. Alain C, McNeely HE, He Y, Christensen BK, West R (2002) Neurophysiological evidence of error-monitoring deficits in patients with Schizophrenia. Cereb Cortex 12(8):840–846PubMedGoogle Scholar
  2. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders: DSM-5Google Scholar
  3. Amiez C, Joseph JP, Procyk E (2005) Anterior cingulate error-related activity is modulated by predicted reward. Eur J Neurosci 21(12):3447–3452PubMedPubMedCentralGoogle Scholar
  4. Amitai N, Young JW, Higa K, Sharp RF, Geyer MA, Powell SB (2014) Isolation rearing effects on probabilistic learning and cognitive flexibility in rats. Cogn Affect Behav Neurosci 14(1):388–406PubMedPubMedCentralGoogle Scholar
  5. Andre JM, Cordero KA, Gould TJ (2012) Comparison of the performance of DBA/2 and C57BL/6 mice in transitive inference and foreground and background contextual fear conditioning. Behav Neurosci 126(2):249–257PubMedPubMedCentralGoogle Scholar
  6. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110PubMedGoogle Scholar
  7. April LB, Bruce K, Galizio M (2013) The magic number 70 (plus or minus 20): variables determining performance in the rodent odor span task. Learn Motiv 44(3):143–158PubMedPubMedCentralGoogle Scholar
  8. Arce E, Leland DS, Miller DA, Simmons AN, Winternheimer KC, Paulus MP (2006) Individuals with schizophrenia present hypo- and hyperactivation during implicit cueing in an inhibitory task. NeuroImage 32(2):704–713PubMedGoogle Scholar
  9. Aron AR (2007) The neural basis of inhibition in cognitive control. Neuroscientist 13(3):214–228PubMedGoogle Scholar
  10. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177PubMedGoogle Scholar
  11. Asarnow RF, MacCrimmon DJ (1978) Residual performance deficit in clinically remitted schizophrenics: a marker of schizophrenia? J Abnorm Psychol 87(6):597–608PubMedGoogle Scholar
  12. Baddeley AD, Thomson N, Buchanan M (1975) Word length and the structure of short-term memory. J Verbal Learn Verbal Behav 14(6):575–589Google Scholar
  13. Badre D (2008) Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn Sci 12(5):193–200PubMedGoogle Scholar
  14. Badre D, D'Esposito M (2007) Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci 19(12):2082–2099PubMedGoogle Scholar
  15. Baker JT, Holmes AJ, Masters GA, Yeo BT, Krienen F, Buckner RL et al (2014) Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiat 71(2):109–118Google Scholar
  16. Barbalat G, Chambon V, Franck N, Koechlin E, Farrer C (2009) Organization of cognitive control within the lateral prefrontal cortex in schizophrenia. Arch Gen Psychiatry 66(4):377–386PubMedGoogle Scholar
  17. Barch DM, Dowd EC (2010) Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophr Bull 36(5):919–934PubMedPubMedCentralGoogle Scholar
  18. Barch DM, Smith E (2008) The cognitive neuroscience of working memory: relevance to CNTRICS and schizophrenia. Biol Psychiatry 64(1):11–17PubMedPubMedCentralGoogle Scholar
  19. Barch DM, Braver TS, Nystrom LE, Forman SD, Noll DC, Cohen JD (1997) Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia 35(10):1373–1380PubMedGoogle Scholar
  20. Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald A 3rd, Noll DC et al (2001) Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiatry 58(3):280–288PubMedGoogle Scholar
  21. Barch DM, Berman MG, Engle R, Jones JH, Jonides J, Macdonald A 3rd et al (2009) CNTRICS final task selection: working memory. Schizophr Bull 35(1):136–152PubMedPubMedCentralGoogle Scholar
  22. Barch DM, Carter CS, Dakin SC, Gold J, Luck SJ, Macdonald A 3rd et al (2012) The clinical translation of a measure of gain control: the contrast-contrast effect task. Schizophr Bull 38(1):135–143PubMedGoogle Scholar
  23. Barnes SA, Young JW, Bate ST, Neill JC (2016) Dopamine D1 receptor activation improves PCP-induced performance disruption in the 5C-CPT by reducing inappropriate responding. Behav Brain Res 300:45–55PubMedGoogle Scholar
  24. Baxter MG (2010) “I’ve seen it all before”: explaining age-related impairments in object recognition. Theoretical comment on Burke et al. (2010). Behav Neurosci 124(5):706–709PubMedGoogle Scholar
  25. Bearden CE, Rosso IM, Hollister JM, Sanchez LE, Hadley T, Cannon TD (2000) A prospective cohort study of childhood behavioral deviance and language abnormalities as predictors of adult schizophrenia. Schizophr Bull 26(2):395–410PubMedGoogle Scholar
  26. Bellgrove MA, Chambers CD, Vance A, Hall N, Karamitsios M, Bradshaw JL (2006) Lateralized deficit of response inhibition in early-onset schizophrenia. Psychol Med 36(4):495–505PubMedGoogle Scholar
  27. Benedict RH, Groninger L, Schretlen D, Dobraski M, Shpritz B (1996) Revision of the brief visuospatial memory test: studies of normal performance, reliability, and validity. Psychol Assess 8(2):145–153Google Scholar
  28. Berg EL, Copping NA, Rivera JK, Pride MC, Careaga M, Bauman MD et al (2018) Developmental social communication deficits in the Shank3 rat model of phelan-mcdermid syndrome and autism spectrum disorder. Autism Res.  https://doi.org/10.1002/aur.1925 PubMedGoogle Scholar
  29. Bhakta SG, Young JW (2017) The 5 choice continuous performance test (5C-CPT): a novel tool to assess cognitive control across species. J Neurosci Methods 292:53–60PubMedPubMedCentralGoogle Scholar
  30. Binder JR, Desai RH (2011) The neurobiology of semantic memory. Trends Cogn Sci 15(11):527–536PubMedPubMedCentralGoogle Scholar
  31. Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796PubMedPubMedCentralGoogle Scholar
  32. Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20(11):4320–4324PubMedGoogle Scholar
  33. Bismark AW, Thomas ML, Tarasenko M, Shiluk AL, Rackelmann SY, Young JW, Light GA. Transl Psychiatry. 2018 Apr 12;8(1):80Google Scholar
  34. Blackwell AD, Sahakian BJ, Vesey R, Semple JM, Robbins TW, Hodges JR (2004) Detecting dementia: novel neuropsychological markers of preclinical Alzheimer’s disease. Dement Geriatr Cogn Disord 17(1–2):42–48PubMedGoogle Scholar
  35. Bonkalo A (1956) Emil Kraepelin; 1856–1926. Can Med Assoc J 74(10):835PubMedPubMedCentralGoogle Scholar
  36. Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8(12):539–546PubMedGoogle Scholar
  37. Boucher L, Palmeri TJ, Logan GD, Schall JD (2007) Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev 114(2):376–397PubMedGoogle Scholar
  38. Boulay D, Ho-Van S, Bergis O, Avenet P, Griebel G (2013) Phencyclidine decreases tickling-induced 50-kHz ultrasound vocalizations in juvenile rats: a putative model of the negative symptoms of schizophrenia? Behav Pharmacol 24(7):543–551PubMedGoogle Scholar
  39. Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15(4):339–343PubMedGoogle Scholar
  40. Broadbent DE, Broadbent MH (1987) From detection to identification: response to multiple targets in rapid serial visual presentation. Percept Psychophys 42(2):105–113PubMedGoogle Scholar
  41. Brown MF, Moore JA (1997) In the dark II: spatial choice when access to extrinsic spatial cues is eliminated. Anim Learn Behav 25(3):335–346Google Scholar
  42. Bunge SA, Ochsner KN, Desmond JE, Glover GH, Gabrieli JD (2001) Prefrontal regions involved in keeping information in and out of mind. Brain 124(Pt 10):2074–2086PubMedGoogle Scholar
  43. Bussey TJ, Padain TL, Skillings EA, Winters BD, Morton AJ, Saksida LM (2008) The touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learn Mem 15(7):516–523PubMedPubMedCentralGoogle Scholar
  44. Bussey TJ, Holmes A, Lyon L, Mar AC, McAllister KA, Nithianantharajah J et al (2012) New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62(3):1191–1203Google Scholar
  45. Cagniard B, Balsam PD, Brunner D, Zhuang X (2006) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31(7):1362–1370PubMedGoogle Scholar
  46. Cannon TD, van Erp TG, Huttunen M, Lonnqvist J, Salonen O, Valanne L et al (1998) Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 55(12):1084–1091PubMedGoogle Scholar
  47. Cambridge Cognition (2017) CANTAB® [cognitive assessment software]. www.cantab.com
  48. Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9(3):361–380PubMedGoogle Scholar
  49. Carlson ET, Simpson MM (1964) The definition of mental illness: Benjamin Rush (1745–1813). Am J Psychiatry 121:209–214PubMedGoogle Scholar
  50. Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN et al (1997) A developmental functional MRI study of prefrontal activation during performance of a Go-No-Go task. J Cogn Neurosci 9(6):835–847PubMedGoogle Scholar
  51. Cashdollar N, Malecki U, Rugg-Gunn FJ, Duncan JS, Lavie N, Duzel E (2009) Hippocampus-dependent and -independent theta-networks of active maintenance. Proc Natl Acad Sci U S A 106(48):20493–20498PubMedPubMedCentralGoogle Scholar
  52. Cervellione KL, Burdick KE, Cottone JG, Rhinewine JP, Kumra S (2007) Neurocognitive deficits in adolescents with schizophrenia: longitudinal stability and predictive utility for short-term functional outcome. J Am Acad Child Adolesc Psychiatry 46(7):867–878PubMedGoogle Scholar
  53. Chen WJ, Liu SK, Chang CJ, Lien YJ, Chang YH, Hwu HG (1998) Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry 155(9):1214–1220PubMedGoogle Scholar
  54. Chen WJ, Chang CH, Liu SK, Hwang TJ, Hwu HG, Multidimensional Psychopathology Group Research Project (2004) Sustained attention deficits in nonpsychotic relatives of schizophrenic patients: a recurrence risk ratio analysis. Biol Psychiatry 55(10):995–1000PubMedGoogle Scholar
  55. Cheung V, Chen EY, Chen RY, Woo MF, Yee BK (2002) A comparison between schizophrenia patients and healthy controls on the expression of attentional blink in a rapid serial visual presentation (RSVP) paradigm. Schizophr Bull 28(3):443–458PubMedGoogle Scholar
  56. Clayton NS, Griffiths DP, Emery NJ, Dickinson A (2001) Elements of episodic-like memory in animals. Philos Trans R Soc Lond Ser B Biol Sci 356(1413):1483–1491Google Scholar
  57. Cohen NJ, Squire LR (1980) Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210(4466):207–210PubMedGoogle Scholar
  58. Coles MG (1989) Modern mind-brain reading: psychophysiology, physiology, and cognition. Psychophysiology 26(3):251–269PubMedGoogle Scholar
  59. Colzato LS, Jongkees BJ, Sellaro R, Hommel B (2013) Working memory reloaded: tyrosine repletes updating in the N-back task. Front Behav Neurosci 7:200PubMedPubMedCentralGoogle Scholar
  60. Cope ZA, Young JW (2017) The five-choice continuous performance task (5C-CPT): a cross-species relevant paradigm for assessment of vigilance and response inhibition in rodents. Curr Protoc Neurosci 78:9.56.1–9.56.18.  https://doi.org/10.1002/cpns.20 CrossRefGoogle Scholar
  61. Cope ZA, Powell SB, Young JW (2016) Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. Genes Brain Behav 15(1):27–44PubMedPubMedCentralGoogle Scholar
  62. Coull JT, Nobre AC, Frith CD (2001) The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb Cortex 11(1):73–84PubMedGoogle Scholar
  63. Coyle JT (2012) NMDA receptor and schizophrenia: a brief history. Schizophr Bull 38(5):920–926PubMedPubMedCentralGoogle Scholar
  64. Cui Y, Jin J, Zhang X, Xu H, Yang L, Du D et al (2011) Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice. PLoS One 6(5):e20312PubMedPubMedCentralGoogle Scholar
  65. Darrah JM, Stefani MR, Moghaddam B (2008) Interaction of N-methyl-D-aspartate and group 5 metabotropic glutamate receptors on behavioral flexibility using a novel operant set-shift paradigm. Behav Pharmacol 19(3):225–234PubMedPubMedCentralGoogle Scholar
  66. Daselaar SM, Fleck MS, Dobbins IG, Madden DJ, Cabeza R (2006) Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cereb Cortex 16(12):1771–1782PubMedPubMedCentralGoogle Scholar
  67. Davies DA, Greba Q, Howland JG (2013a) GluN2B-containing NMDA receptors and AMPA receptors in medial prefrontal cortex are necessary for odor span in rats. Front Behav Neurosci 7:183PubMedPubMedCentralGoogle Scholar
  68. Davies DA, Molder JJ, Greba Q, Howland JG (2013b) Inactivation of medial prefrontal cortex or acute stress impairs odor span in rats. Learn Mem 20(12):665–669PubMedPubMedCentralGoogle Scholar
  69. Davies DA, Greba Q, Selk JC, Catton JK, Baillie LD, Mulligan SJ et al (2017) Interactions between medial prefrontal cortex and dorsomedial striatum are necessary for odor span capacity in rats: role of GluN2B-containing NMDA receptors. Learn Mem 24(10):524–531PubMedPubMedCentralGoogle Scholar
  70. Davis H (1992) Transitive inference in rats (Rattus norvegicus). J Comp Psychol 106(4):342–349PubMedGoogle Scholar
  71. Davis KE, Eacott MJ, Easton A, Gigg J (2013a) Episodic-like memory is sensitive to both Alzheimer’s-like pathological accumulation and normal ageing processes in mice. Behav Brain Res 254:73–82PubMedGoogle Scholar
  72. Davis KE, Easton A, Eacott MJ, Gigg J (2013b) Episodic-like memory for what-where-which occasion is selectively impaired in the 3xTgAD mouse model of Alzheimer’s disease. J Alzheimers Dis 33(3):681–698PubMedGoogle Scholar
  73. Delis DC, Cullum CM, Butters N, Cairns P, Prifitera A (1988) Wechsler memory scale-revised and California verbal learning test: convergence and divergence. Clin Neuropsychol 2(2):188–196Google Scholar
  74. Der-Avakian A, D’Souza MS, Pizzagalli DA, Markou A (2013) Assessment of reward responsiveness in the response bias probabilistic reward task in rats: implications for cross-species translational research. Transl Psychiatry 3:e297PubMedPubMedCentralGoogle Scholar
  75. Dere E, Huston JP, De Souza Silva MA (2005) Integrated memory for objects, places, and temporal order: evidence for episodic-like memory in mice. Neurobiol Learn Mem 84(3):214–221PubMedGoogle Scholar
  76. Derrfuss J, Brass M, von Cramon DY (2004) Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory. NeuroImage 23(2):604–612PubMedGoogle Scholar
  77. Devito LM, Kanter BR, Eichenbaum H (2010) The hippocampus contributes to memory expression during transitive inference in mice. Hippocampus 20(1):208–217PubMedPubMedCentralGoogle Scholar
  78. Di Paola M, Caltagirone C, Fadda L, Sabatini U, Serra L, Carlesimo GA (2008) Hippocampal atrophy is the critical brain change in patients with hypoxic amnesia. Hippocampus 18(7):719–728PubMedGoogle Scholar
  79. Dudchenko PA (2004) An overview of the tasks used to test working memory in rodents. Neurosci Biobehav Rev 28(7):699–709PubMedGoogle Scholar
  80. Dudchenko PA, Wood ER, Eichenbaum H (2000) Neurotoxic hippocampal lesions have no effect on odor span and little effect on odor recognition memory but produce significant impairments on spatial span, recognition, and alternation. J Neurosci 20(8):2964–2977PubMedGoogle Scholar
  81. Dusek JA, Eichenbaum H (1997) The hippocampus and memory for orderly stimulus relations. Proc Natl Acad Sci U S A 94(13):7109–7114PubMedPubMedCentralGoogle Scholar
  82. Dux PE, Marois R (2009) The attentional blink: a review of data and theory. Atten Percept Psychophys 71(8):1683–1700PubMedPubMedCentralGoogle Scholar
  83. Eacott MJ, Easton A, Zinkivskay A (2005) Recollection in an episodic-like memory task in the rat. Learn Mem 12(3):221–223PubMedGoogle Scholar
  84. Eagle DM, Bari A, Robbins TW (2008) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology 199(3):439–456Google Scholar
  85. Elvevag B, Cohen AS, Wolters MK, Whalley HC, Gountouna VE, Kuznetsova KA et al (2016) An examination of the language construct in NIMH’s research domain criteria: time for reconceptualization! Am J Med Genet B Neuropsychiatr Genet 171(6):904–919PubMedPubMedCentralGoogle Scholar
  86. Elwood RW (1995) The California verbal learning test: psychometric characteristics and clinical application. Neuropsychol Rev 5(3):173–201PubMedGoogle Scholar
  87. Emeric EE, Brown JW, Leslie M, Pouget P, Stuphorn V, Schall JD (2008) Performance monitoring local field potentials in the medial frontal cortex of primates: anterior cingulate cortex. J Neurophysiol 99(2):759–772PubMedGoogle Scholar
  88. Engelhardt KA, Fuchs E, Schwarting RKW, Wohr M (2017) Effects of amphetamine on pro-social ultrasonic communication in juvenile rats: implications for mania models. Eur Neuropsychopharmacol 27(3):261–273PubMedGoogle Scholar
  89. Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113(3):509–519PubMedGoogle Scholar
  90. Ergorul C, Eichenbaum H (2004) The hippocampus and memory for “what,” “where,” and “when”. Learn Mem 11(4):397–405PubMedPubMedCentralGoogle Scholar
  91. Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a non-search task. Percept Psychophys 16:143–149Google Scholar
  92. Fallgatter AJ, Bartsch AJ, Zielasek J, Herrmann MJ (2003) Brain electrical dysfunction of the anterior cingulate in schizophrenic patients. Psychiatry Res 124(1):37–48PubMedGoogle Scholar
  93. Fama R, Pitel AL, Sullivan EV (2012) Anterograde episodic memory in Korsakoff syndrome. Neuropsychol Rev 22(2):93–104PubMedPubMedCentralGoogle Scholar
  94. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency and independence of attentional networks. J Cogn Neurosci 14(3):340–347PubMedGoogle Scholar
  95. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. NeuroImage 26(2):471–479PubMedGoogle Scholar
  96. Fellini L, Morellini F (2013) Mice create what-where-when hippocampus-dependent memories of unique experiences. J Neurosci 33(3):1038–1043PubMedGoogle Scholar
  97. Fijal K, Popik P (2011) Phencyclidine disturbs relational memory in the transitive inference task. Behav Pharmacol 22(3):262–265PubMedGoogle Scholar
  98. Finlayson K, Lampe JF, Hintze S, Wurbel H, Melotti L (2016) Facial indicators of positive emotions in rats. PLoS One 11(11):e0166446PubMedPubMedCentralGoogle Scholar
  99. Floresco SB, Block AE, Tse MT (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190(1):85–96PubMedGoogle Scholar
  100. Ford JM, Gray M, Whitfield SL, Turken AU, Glover G, Faustman WO et al (2004) Acquiring and inhibiting prepotent responses in schizophrenia: event-related brain potentials and functional magnetic resonance imaging. Arch Gen Psychiatry 61(2):119–129PubMedGoogle Scholar
  101. Fornito A, Zalesky A, Pantelis C, Bullmore ET (2012) Schizophrenia, neuroimaging and connectomics. NeuroImage 62(4):2296–2314PubMedGoogle Scholar
  102. Fortin NJ, Agster KL, Eichenbaum HB (2002) Critical role of the hippocampus in memory for sequences of events. Nat Neurosci 5(5):458–462PubMedPubMedCentralGoogle Scholar
  103. Frith C (1996) The role of the prefrontal cortex in self-consciousness: the case of auditory hallucinations. Philos Trans R Soc Lond Ser B Biol Sci 351(1346):1505–1512Google Scholar
  104. Gabrieli JD, Brewer JB, Desmond JE, Glover GH (1997) Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science 276(5310):264–266PubMedGoogle Scholar
  105. Galizio M, Deal M, Hawkey A, April B (2013) Working memory in the odor span task: effects of chlordiazepoxide, dizocilpine (MK801), morphine, and scopolamine. Psychopharmacology 225(2):397–406PubMedGoogle Scholar
  106. Galizio M, April B, Deal M, Hawkey A, Panoz-Brown D, Prichard A et al (2016) Behavioral pharmacology of the odor span task: effects of flunitrazepam, ketamine, methamphetamine and methylphenidate. J Exp Anal Behav 106(3):173–194PubMedPubMedCentralGoogle Scholar
  107. Gardiner JM, Ramponi C, Richardson-Klavehn A (1998) Experiences of remembering, knowing, and guessing. Conscious Cogn 7(1):1–26PubMedGoogle Scholar
  108. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156(2–3):117–154PubMedGoogle Scholar
  109. Gil JM, Mohapel P, Araujo IM, Popovic N, Li JY, Brundin P et al (2005) Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol Dis 20(3):744–751PubMedGoogle Scholar
  110. Giovanello KS, Schnyer DM, Verfaellie M (2004) A critical role for the anterior hippocampus in relational memory: evidence from an fMRI study comparing associative and item recognition. Hippocampus 14(1):5–8PubMedGoogle Scholar
  111. Giralt A, Saavedra A, Alberch J, Perez-Navarro E (2012) Cognitive dysfunction in Huntington’s disease: humans, mouse models and molecular mechanisms. J Huntingtons Dis 1(2):155–173PubMedGoogle Scholar
  112. Glahn DC, Knowles EE, Pearlson GD (2016) Genetics of cognitive control: implications for Nimh’s research domain criteria initiative. Am J Med Genet B Neuropsychiatr Genet 171B(1):111–120PubMedGoogle Scholar
  113. Gold JM, Fuller RL, Robinson BM, Braun EL, Luck SJ (2007) Impaired top-down control of visual search in schizophrenia. Schizophr Res 94(1–3):148–155PubMedPubMedCentralGoogle Scholar
  114. Gold JM, Barch DM, Carter CS, Dakin S, Luck SJ, MacDonald AW 3rd et al (2012) Clinical, functional, and intertask correlations of measures developed by the cognitive neuroscience test reliability and clinical applications for schizophrenia consortium. Schizophr Bull 38(1):144–152PubMedGoogle Scholar
  115. Gooding DC, Braun JG, Studer JA (2006) Attentional network task performance in patients with schizophrenia-spectrum disorders: evidence of a specific deficit. Schizophr Res 88(1–3):169–178PubMedGoogle Scholar
  116. Graf P, Schacter DL (1985) Implicit and explicit memory for new associations in normal and amnesic subjects. J Exp Psychol Learn Mem Cogn 11(3):501–518PubMedGoogle Scholar
  117. Granholm E, Asarnow RF, Marder SR (1996) Dual-task performance operating characteristics, resource limitations, and automatic processing in schizophrenia. Neuropsychology 10(1):11–21Google Scholar
  118. Gray JR, Chabris CF, Braver TS (2003) Neural mechanisms of general fluid intelligence. Nat Neurosci 6(3):316–322PubMedGoogle Scholar
  119. Greenwood TA, Braff DL, Light GA, Cadenhead KS, Calkins ME, Dobie DJ et al (2007) Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch Gen Psychiatry 64(11):1242–1250PubMedGoogle Scholar
  120. Grove WM, Lebow BS, Clementz BA, Cerri A, Medus C, Iacono WG (1991) Familial prevalence and coaggregation of schizotypy indicators: a multitrait family study. J Abnorm Psychol 100(2):115–121PubMedGoogle Scholar
  121. Haggard P, Eimer M (1999) On the relation between brain potentials and the awareness of voluntary movements. Exp Brain Res 126(1):128–133PubMedGoogle Scholar
  122. Hampton RR, Schwartz BL (2004) Episodic memory in nonhumans: what, and where, is when? Curr Opin Neurobiol 14(2):192–197PubMedGoogle Scholar
  123. Heaton RK, Gladsjo JA, Palmer BW, Kuck J, Marcotte TD, Jeste DV (2001) Stability and course of neuropsychological deficits in schizophrenia. Arch Gen Psychiatry 58(1):24–32PubMedGoogle Scholar
  124. Heinrichs RW, Goldberg JO, Miles AA, McDermid Vaz S (2008) Predictors of medication competence in schizophrenia patients. Psychiatry Res 157(1–3):47–52PubMedGoogle Scholar
  125. Hess JL, Kawaguchi DM, Wagner KE, Faraone SV, Glatt SJ (2016) The influence of genes on “positive valence systems” constructs: a systematic review. Am J Med Genet B Neuropsychiatr Genet 171B(1):92–110PubMedGoogle Scholar
  126. Higa KK, Grim A, Kamenski ME, van Enkhuizen J, Zhou X, Li K et al (2017) Nicotine withdrawal-induced inattention is absent in alpha7 nAChR knockout mice. Psychopharmacology 234(9–10):1573–1586PubMedPubMedCentralGoogle Scholar
  127. Holmes AJ, MacDonald A 3rd, Carter CS, Barch DM, Andrew Stenger V, Cohen JD (2005) Prefrontal functioning during context processing in schizophrenia and major depression: an event-related fMRI study. Schizophr Res 76(2–3):199–206PubMedGoogle Scholar
  128. Horner AJ, Gadian DG, Fuentemilla L, Jentschke S, Vargha-Khadem F, Duzel E (2012) A rapid, hippocampus-dependent, item-memory signal that initiates context memory in humans. Curr Biol 22(24):2369–2374PubMedPubMedCentralGoogle Scholar
  129. Hughes ME, Fulham WR, Johnston PJ, Michie PT (2012) Stop-signal response inhibition in schizophrenia: behavioural, event-related potential and functional neuroimaging data. Biol Psychol 89(1):220–231PubMedGoogle Scholar
  130. Huntley JD, Howard RJ (2010) Working memory in early Alzheimer’s disease: a neuropsychological review. Int J Geriatr Psychiatry 25(2):121–132PubMedGoogle Scholar
  131. Hutton SB, Puri BK, Duncan LJ, Robbins TW, Barnes TR, Joyce EM (1998) Executive function in first-episode schizophrenia. Psychol Med 28(2):463–473PubMedGoogle Scholar
  132. Ito S, Stuphorn V, Brown JW, Schall JD (2003) Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302(5642):120–122PubMedGoogle Scholar
  133. Javitt DC, Spencer KM, Thaker GK, Winterer G, Hajos M (2008) Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov 7(1):68–83PubMedPubMedCentralGoogle Scholar
  134. Jonides J, Nee DE (2006) Brain mechanisms of proactive interference in working memory. Neuroscience 139(1):181–193PubMedGoogle Scholar
  135. Jonides J, Smith EE, Marshuetz C, Koeppe RA, Reuter-Lorenz PA (1998) Inhibition in verbal working memory revealed by brain activation. Proc Natl Acad Sci U S A 95(14):8410–8413PubMedPubMedCentralGoogle Scholar
  136. Kane MJ, Meier ME, Smeekens BA, Gross GM, Chun CA, Silvia PJ et al (2016) Individual differences in the executive control of attention, memory, and thought, and their associations with schizotypy. J Exp Psychol Gen 145(8):1017–1048PubMedPubMedCentralGoogle Scholar
  137. Karayanidis F, Nicholson R, Schall U, Meem L, Fulham R, Michie PT (2006) Switching between univalent task-sets in schizophrenia: ERP evidence of an anticipatory task-set reconfiguration deficit. Clin Neurophysiol 117(10):2172–2190PubMedGoogle Scholar
  138. Kerns JG, Cohen JD, MacDonald AW 3rd, Johnson MK, Stenger VA, Aizenstein H et al (2005) Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. Am J Psychiatry 162(10):1833–1839PubMedGoogle Scholar
  139. Kieffaber PD, O’Donnell BF, Shekhar A, Hetrick WP (2007) Event related brain potential evidence for preserved attentional set switching in schizophrenia. Schizophr Res 93(1–3):355–365PubMedPubMedCentralGoogle Scholar
  140. Kiehl KA, Smith AM, Hare RD, Liddle PF (2000) An event-related potential investigation of response inhibition in schizophrenia and psychopathy. Biol Psychiatry 48(3):210–221PubMedGoogle Scholar
  141. King J, Insanally M, Jin M, Martins AR, D’Amour JA, Froemke RC (2015) Rodent auditory perception: critical band limitations and plasticity. Neuroscience 296:55–65PubMedPubMedCentralGoogle Scholar
  142. Kirchner WK (1958) Age differences in short-term retention of rapidly changing information. J Exp Psychol 55(4):352–358PubMedGoogle Scholar
  143. Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302(5648):1181–1185PubMedGoogle Scholar
  144. Kolodziejczyk K, Parsons MP, Southwell AL, Hayden MR, Raymond LA (2014) Striatal synaptic dysfunction and hippocampal plasticity deficits in the Hu97/18 mouse model of Huntington disease. PLoS One 9(4):e94562PubMedPubMedCentralGoogle Scholar
  145. Kumano H, Uka T (2013) Neuronal mechanisms of visual perceptual learning. Behav Brain Res 249:75–80PubMedGoogle Scholar
  146. Larson MJ, Clayson PE, Clawson A (2014) Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. Int J Psychophysiol 93(3):283–297PubMedGoogle Scholar
  147. Lee J, Park S (2005) Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol 114(4):599–611PubMedGoogle Scholar
  148. Lennane KJ (1986) Management of moderate to severe alcohol-related brain damage (Korsakoff’s syndrome). Med J Aust 145(3–4):136. 141–133PubMedGoogle Scholar
  149. Lesh TA, Westphal AJ, Niendam TA, Yoon JH, Minzenberg MJ, Ragland JD et al (2013) Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. Neuroimage Clin 2:590–599PubMedPubMedCentralGoogle Scholar
  150. Levin ED, Conners CK, Silva D, Hinton SC, Meck WH, March J et al (1998) Transdermal nicotine effects on attention. Psychopharmacology 140(2):135–141PubMedGoogle Scholar
  151. Licata AM, Kaufman MT, Raposo D, Ryan MB, Sheppard JP, Churchland AK (2017) Posterior parietal cortex guides visual decisions in rats. J Neurosci 37(19):4954–4966PubMedPubMedCentralGoogle Scholar
  152. Lin P, Wang X, Zhang B, Kirkpatrick B, Ongur D, Levitt JJ et al (2017) Functional dysconnectivity of the limbic loop of frontostriatal circuits in first-episode, treatment-naive schizophrenia. Hum Brain Mapp 39(2):747–757PubMedGoogle Scholar
  153. Linden DE, Bittner RA, Muckli L, Waltz JA, Kriegeskorte N, Goebel R et al (2003) Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. NeuroImage 20(3):1518–1530PubMedGoogle Scholar
  154. Lopez-Garcia P, Lesh TA, Salo T, Barch DM, MacDonald AW 3rd, Gold JM et al (2016) The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms. Cogn Affect Behav Neurosci 16(1):164–175PubMedPubMedCentralGoogle Scholar
  155. Luck SJ, Gold JM (2008) The construct of attention in schizophrenia. Biol Psychiatry 64(1):34–39PubMedPubMedCentralGoogle Scholar
  156. Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390(6657):279–281PubMedGoogle Scholar
  157. Luck SJ, Kappenman ES, Fuller RL, Robinson B, Summerfelt A, Gold JM (2009) Impaired response selection in schizophrenia: evidence from the P3 wave and the lateralized readiness potential. Psychophysiology 46(4):776–786PubMedPubMedCentralGoogle Scholar
  158. Luck SJ, Mathalon DH, O’Donnell BF, Hamalainen MS, Spencer KM, Javitt DC et al (2011) A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research. Biol Psychiatry 70(1):28–34PubMedGoogle Scholar
  159. Lustig C, Kozak R, Sarter M, Young JW, Robbins TW (2013) CNTRICS final animal model task selection: control of attention. Neurosci Biobehav Rev 37(9 Pt B):2099–2110PubMedPubMedCentralGoogle Scholar
  160. MacDonald AW 3rd (2008) Building a clinically relevant cognitive task: case study of the AX paradigm. Schizophr Bull 34(4):619–628PubMedPubMedCentralGoogle Scholar
  161. MacDonald AW 3rd, Carter CS, Kerns JG, Ursu S, Barch DM, Holmes AJ et al (2005) Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am J Psychiatry 162(3):475–484PubMedGoogle Scholar
  162. MacQueen DA, Drobes DJ (2017) Validation of the human odor span task: effects of nicotine. Psychopharmacology 234(19):2871–2882PubMedPubMedCentralGoogle Scholar
  163. MacQueen DA, Bullard L, Galizio M (2011) Effects of dizocilpine (MK801) on olfactory span in rats. Neurobiol Learn Mem 95(1):57–63PubMedGoogle Scholar
  164. MacQueen DA, Dalrymple SR, Drobes DJ, Diamond DM (2016) Influence of pharmacological manipulations of NMDA and cholinergic receptors on working versus reference memory in a dual component odor span task. Learn Mem 23(6):270–277PubMedPubMedCentralGoogle Scholar
  165. MacQueen DA, Minassian A, Henry BL, Geyer MA, Young JW, Perry W (2018) Amphetamine modestly improves Conners’ continuous performance test performance in healthy adults. J Int Neuropsychol Soc 24:283–293PubMedGoogle Scholar
  166. Magliero A, Bashore TR, Coles MG, Donchin E (1984) On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology 21(2):171–186PubMedGoogle Scholar
  167. Maguire EA, Vargha-Khadem F, Mishkin M (2001) The effects of bilateral hippocampal damage on fMRI regional activations and interactions during memory retrieval. Brain 124(Pt 6):1156–1170PubMedGoogle Scholar
  168. Maier W, Franke P, Hain C, Kopp B, Rist F (1992) Neuropsychological indicators of the vulnerability to schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 16(5):703–715Google Scholar
  169. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315(5810):393–395PubMedPubMedCentralGoogle Scholar
  170. Mathalon DH, Fedor M, Faustman WO, Gray M, Askari N, Ford JM (2002) Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. J Abnorm Psychol 111(1):22–41PubMedGoogle Scholar
  171. Mathis KI, Wynn JK, Breitmeyer B, Nuechterlein KH, Green MF (2011) The attentional blink in schizophrenia: isolating the perception/attention interface. J Psychiatr Res 45(10):1346–1351PubMedPubMedCentralGoogle Scholar
  172. Mayr U, Keele SW (2000) Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen 129(1):4–26PubMedGoogle Scholar
  173. McGaughy J, Ross RS, Eichenbaum H (2008) Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience 153(1):63–71PubMedPubMedCentralGoogle Scholar
  174. Milienne-Petiot M, Kesby JP, Graves M, van Enkhuizen J, Semenova S, Minassian A et al (2017) The effects of reduced dopamine transporter function and chronic lithium on motivation, probabilistic learning, and neurochemistry in mice: modeling bipolar mania. Neuropharmacology 113(Pt A):260–270PubMedGoogle Scholar
  175. Miller GA (1956) The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol Rev 63(2):81–97Google Scholar
  176. Miller GA, Galanter E, Pribram KH (1960) Plans and the structure of behavior. Holt, New York, p 226Google Scholar
  177. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC (2009) Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66(8):811–822PubMedPubMedCentralGoogle Scholar
  178. Mitchell JB, Laiacona J (1998) The medial frontal cortex and temporal memory: tests using spontaneous exploratory behaviour in the rat. Behav Brain Res 97(1–2):107–113PubMedGoogle Scholar
  179. Monsell S (1978) Recency, immediate recognition memory, and reaction time. Cogn Psychol 10(4):465–501Google Scholar
  180. Montoya A, Pelletier M, Menear M, Duplessis E, Richer F, Lepage M (2006) Episodic memory impairment in Huntington’s disease: a meta-analysis. Neuropsychologia 44(10):1984–1994PubMedGoogle Scholar
  181. Morris RG (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12(2):239–260Google Scholar
  182. Morris RG, Hagan JJ, Rawlins JN (1986) Allocentric spatial learning by hippocampectomised rats: a further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q J Exp Psychol B 38(4):365–395PubMedGoogle Scholar
  183. Morris SE, Yee CM, Nuechterlein KH (2006) Electrophysiological analysis of error monitoring in schizophrenia. J Abnorm Psychol 115(2):239–250PubMedGoogle Scholar
  184. Moustafa AA, Sherman SJ, Frank MJ (2008) A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia 46(13):3144–3156PubMedGoogle Scholar
  185. Murray BG, Davies DA, Molder JJ, Howland JG (2017) Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring. Neurobiol Learn Mem 141:150–156PubMedGoogle Scholar
  186. Myroshnychenko M, Seamans JK, Phillips AG, Lapish CC (2017) Temporal dynamics of hippocampal and medial prefrontal cortex interactions during the delay period of a working memory-guided foraging task. Cereb Cortex 27(11):5331–5342PubMedPubMedCentralGoogle Scholar
  187. Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T et al (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20(2):106–118PubMedGoogle Scholar
  188. Newman LA, Darling J, McGaughy J (2008) Atomoxetine reverses attentional deficits produced by noradrenergic deafferentation of medial prefrontal cortex. Psychopharmacology 200(1):39–50PubMedGoogle Scholar
  189. Niendam TA, Bearden CE, Rosso IM, Sanchez LE, Hadley T, Nuechterlein KH et al (2003) A prospective study of childhood neurocognitive functioning in schizophrenic patients and their siblings. Am J Psychiatry 160(11):2060–2062PubMedGoogle Scholar
  190. Nieuwenstein M, Wyble B (2014) Beyond a mask and against the bottleneck: retroactive dual-task interference during working memory consolidation of a masked visual target. J Exp Psychol Gen 143(3):1409–1427PubMedGoogle Scholar
  191. NIH (2011) Cognitive systems: workshop proceedings. National Institute of Mental Health, Rockville, pp 1–19Google Scholar
  192. NIH (2016) Behavioral assessment methods for RDoC constructs. National Institute of Mental Health, Rockville, pp 1–168Google Scholar
  193. Ninio A, Kahneman D (1974) Reaction time in focused and in divided attention. J Exp Psychol 103(3):394–399PubMedGoogle Scholar
  194. Nuechterlein KH, Dawson ME, Gitlin M, Ventura J, Goldstein MJ, Snyder KS et al (1992) Developmental processes in schizophrenic disorders: longitudinal studies of vulnerability and stress. Schizophr Bull 18(3):387–425PubMedGoogle Scholar
  195. Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72(1):29–39PubMedGoogle Scholar
  196. Nuechterlein KH, Pashler HE, Subotnik KL (2006) Translating basic attentional paradigms to schizophrenia research: reconsidering the nature of the deficits. Dev Psychopathol 18(3):831–851PubMedGoogle Scholar
  197. Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD et al (2008) The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity. Am J Psychiatry 165(2):203–213PubMedGoogle Scholar
  198. Nuechterlein KH, Subotnik KL, Green MF, Ventura J, Asarnow RF, Gitlin MJ et al (2011) Neurocognitive predictors of work outcome in recent-onset schizophrenia. Schizophr Bull 37(Suppl 2):S33–S40PubMedPubMedCentralGoogle Scholar
  199. Nuechterlein KH, Green MF, Calkins ME, Greenwood TA, Gur RE, Gur RC et al (2015) Attention/vigilance in schizophrenia: performance results from a large multi-site study of the consortium on the genetics of schizophrenia (COGS). Schizophr Res 163(1–3):38–46PubMedPubMedCentralGoogle Scholar
  200. Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process 2:97–116Google Scholar
  201. Olvet DM, Hajcak G (2008) The error-related negativity (ERN) and psychopathology: toward an endophenotype. Clin Psychol Rev 28(8):1343–1354PubMedPubMedCentralGoogle Scholar
  202. Orellana G, Slachevsky A, Pena M (2012) Executive attention impairment in first-episode schizophrenia. BMC Psychiatry 12:154PubMedPubMedCentralGoogle Scholar
  203. Pashler H (1994a) Dual-task interference in simple tasks: data and theory. Psychol Bull 116(2):220–244PubMedGoogle Scholar
  204. Pashler H (1994b) Graded capacity-sharing in dual-task interference? J Exp Psychol Hum Percept Perform 20(2):330–342PubMedGoogle Scholar
  205. Paxton JL, Barch DM, Racine CA, Braver TS (2008) Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cereb Cortex 18(5):1010–1028PubMedGoogle Scholar
  206. Pelisson D, Alahyane N, Panouilleres M, Tilikete C (2010) Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev 34(8):1103–1120PubMedGoogle Scholar
  207. Pergadia ML, Der-Avakian A, D’Souza MS, Madden PAF, Heath AC, Shiffman S et al (2014) Association between nicotine withdrawal and reward responsiveness in humans and rats. JAMA Psychiat 71(11):1238–1245Google Scholar
  208. Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89PubMedPubMedCentralGoogle Scholar
  209. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42PubMedGoogle Scholar
  210. Potkin SG, Turner JA, Brown GG, McCarthy G, Greve DN, Glover GH et al (2009) Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull 35(1):19–31PubMedPubMedCentralGoogle Scholar
  211. Powell SB, Weber M, Geyer MA (2012) Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci 12:251–318PubMedPubMedCentralGoogle Scholar
  212. Psychological Corporation (2002) WAIS III/WMS III technical manual update. Psychological Corporation, San AntonioGoogle Scholar
  213. Quillian MR (1967) Word concepts: a theory and simulation of some basic semantic capabilities. Behav Sci 12(5):410–430PubMedGoogle Scholar
  214. Ragland JD, Yoon J, Minzenberg MJ, Carter CS (2007) Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. Int Rev Psychiatry 19(4):417–427PubMedPubMedCentralGoogle Scholar
  215. Raymond JE, Shapiro KL, Arnell KM (1992) Temporary suppression of visual processing in an RSVP task: an attentional blink? J Exp Psychol Hum Percept Perform 18(3):849–860PubMedGoogle Scholar
  216. Rendall AR, Perrino PA, LoTurco JJ, Fitch RH (2017) Evaluation of visual motion perception ability in mice with knockout of the dyslexia candidate susceptibility gene Dcdc2. Genes Brain Behav.  https://doi.org/10.1111/gbb.12450
  217. Richardson JT (2007) Measures of short-term memory: a historical review. Cortex 43(5):635–650PubMedGoogle Scholar
  218. Rippberger H, van Gaalen MM, Schwarting RK, Wohr M (2015) Environmental and pharmacological modulation of amphetamine-induced 50-kHz ultrasonic vocalizations in rats. Curr Neuropharmacol 13(2):220–232PubMedPubMedCentralGoogle Scholar
  219. Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163(3–4):362–380Google Scholar
  220. Rosenberg A, Angelaki DE (2014) Reliability-dependent contributions of visual orientation cues in parietal cortex. Proc Natl Acad Sci U S A 111(50):18043–18048PubMedPubMedCentralGoogle Scholar
  221. Rugg MD, Vilberg KL, Mattson JT, Yu SS, Johnson JD, Suzuki M (2012) Item memory, context memory and the hippocampus: fMRI evidence. Neuropsychologia 50(13):3070–3079PubMedPubMedCentralGoogle Scholar
  222. Sambeth A, Maes JH, Van Luijtelaar G, Molenkamp IB, Jongsma ML, Van Rijn CM (2003) Auditory event-related potentials in humans and rats: effects of task manipulation. Psychophysiology 40(1):60–68PubMedGoogle Scholar
  223. Saoud M, d'Amato T, Gutknecht C, Triboulet P, Bertaud JP, Marie-Cardine M et al (2000) Neuropsychological deficit in siblings discordant for schizophrenia. Schizophr Bull 26(4):893–902PubMedGoogle Scholar
  224. Schneider M, Koch M (2003) Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 28(10):1760–1769PubMedGoogle Scholar
  225. Schumacher EH, Elston PA, D’Esposito M (2003) Neural evidence for representation-specific response selection. J Cogn Neurosci 15(8):1111–1121PubMedGoogle Scholar
  226. Seli P, Risko EF, Smilek D, Schacter DL (2016) Mind-wandering with and without intention. Trends Cogn Sci 20(8):605–617PubMedPubMedCentralGoogle Scholar
  227. Servan-Schreiber D, Cohen JD, Steingard S (1996) Schizophrenic deficits in the processing of context. A test of a theoretical model. Arch Gen Psychiatry 53(12):1105–1112PubMedGoogle Scholar
  228. Shin DJ, Lee TY, Jung WH, Kim SN, Jang JH, Kwon JS (2015) Away from home: the brain of the wandering mind as a model for schizophrenia. Schizophr Res 165(1):83–89PubMedGoogle Scholar
  229. Shinba T (1999) Neuronal firing activity in the dorsal hippocampus during the auditory discrimination oddball task in awake rats: relation to event-related potential generation. Brain Res Cogn Brain Res 8(3):241–250PubMedGoogle Scholar
  230. Siegel SJ, Connolly P, Liang Y, Lenox RH, Gur RE, Bilker WB et al (2003) Effects of strain, novelty, and NMDA blockade on auditory-evoked potentials in mice. Neuropsychopharmacology 28(4):675–682PubMedGoogle Scholar
  231. Silverman JL, Gastrell PT, Karras MN, Solomon M, Crawley JN (2015) Cognitive abilities on transitive inference using a novel touchscreen technology for mice. Cereb Cortex 25(5):1133–1142PubMedGoogle Scholar
  232. Simmonds DJ, Pekar JJ, Mostofsky SH (2008) Meta-analysis of Go/No-Go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46(1):224–232PubMedGoogle Scholar
  233. Simola N (2015) Rat ultrasonic vocalizations and behavioral neuropharmacology: from the screening of drugs to the study of disease. Curr Neuropharmacol 13(2):164–179PubMedPubMedCentralGoogle Scholar
  234. Simon JR, Berbaum K (1990) Effect of conflicting cues on information processing: the ‘Stroop effect’ vs. the ‘Simon effect’. Acta Psychol 73(2):159–170Google Scholar
  235. Singh N, Albert FW, Plyusnina I, Trut L, Pbo S, Harvati K (2017) Facial shape differences between rats selected for tame and aggressive behaviors. PLoS One 12(4):e0175043PubMedPubMedCentralGoogle Scholar
  236. Smallwood J, Schooler JW (2015) The science of mind wandering: empirically navigating the stream of consciousness. Annu Rev Psychol 66:487–518PubMedGoogle Scholar
  237. Smith C, Squire LR (2005) Declarative memory, awareness, and transitive inference. J Neurosci 25(44):10138–10146PubMedPubMedCentralGoogle Scholar
  238. Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82(3):171–177PubMedGoogle Scholar
  239. Squire LR, Zola SM (1998) Episodic memory, semantic memory, and amnesia. Hippocampus 8(3):205–211PubMedGoogle Scholar
  240. Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11(4):170–175PubMedGoogle Scholar
  241. Stirman J, Townsend LB, Smith S (2016) A touchscreen based global motion perception task for mice. Vis Res 127:74–83PubMedPubMedCentralGoogle Scholar
  242. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol Gen 18:643–662Google Scholar
  243. Subramaniam K, Vinogradov S (2013) Cognitive training for psychiatric disorders. Neuropsychopharmacology 38(1):242–243PubMedGoogle Scholar
  244. Sullivan EV, Marsh L (2003) Hippocampal volume deficits in alcoholic Korsakoff’s syndrome. Neurology 61(12):1716–1719PubMedGoogle Scholar
  245. Sumner JA, Powers A, Jovanovic T, Koenen KC (2016) Genetic influences on the neural and physiological bases of acute threat: a research domain criteria (RDoC) perspective. Am J Med Genet B Neuropsychiatr Genet 171B(1):44–64PubMedGoogle Scholar
  246. Swerdlow NR (2011) Are we studying and treating schizophrenia correctly? Schizophr Res 130(1–3):1–10PubMedPubMedCentralGoogle Scholar
  247. Swerdlow NR, Caine SB, Braff DL, Geyer MA (1992) The neural substrates of sensorimotor gating of the startle reflex: a review of recent findings and their implications. J Psychopharmacol 6(2):176–190PubMedGoogle Scholar
  248. Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51(2):139–154PubMedGoogle Scholar
  249. Swerdlow NR, Braff DL, Geyer MA (1999) Cross-species studies of sensorimotor gating of the startle reflex. Ann N Y Acad Sci 877:202–216PubMedGoogle Scholar
  250. Swerdlow NR, Tarasenko M, Bhakta SG, Talledo J, Alvarez AI, Hughes EL et al (2017) Amphetamine enhances gains in auditory discrimination training in adult schizophrenia patients. Schizophr Bull 43(4):872–880PubMedGoogle Scholar
  251. Tait D, Brown V, Farovik A, Theobald D, Dalley J, Robbins T (2007) Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat. Eur J Neurosci 25(12):3719–3724PubMedGoogle Scholar
  252. Talland GA (1960) Psychological studies of Korsakoff’s psychosis. VI. Memory and learning. J Nerv Ment Dis 130:366–385PubMedGoogle Scholar
  253. Talpos JC, de-Wit L, Olley J, Riordan J, Steckler T (2016) Do wholes become more than the sum of their parts in the rodent (Rattus Norvegicus) visual system? A test case with the configural superiority effect. Eur J Neurosci 44(8):2593–2599PubMedGoogle Scholar
  254. Thakkar KN, Schall JD, Boucher L, Logan GD, Park S (2011) Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia. Biol Psychiatry 69(1):55–62PubMedGoogle Scholar
  255. Thermenos HW, Seidman LJ, Breiter H, Goldstein JM, Goodman JM, Poldrack R et al (2004) Functional magnetic resonance imaging during auditory verbal working memory in nonpsychotic relatives of persons with schizophrenia: a pilot study. Biol Psychiatry 55(5):490–500PubMedGoogle Scholar
  256. Thompson-Schill SL, Jonides J, Marshuetz C, Smith EE, D’Esposito M, Kan IP et al (2002) Effects of frontal lobe damage on interference effects in working memory. Cogn Affect Behav Neurosci 2(2):109–120PubMedGoogle Scholar
  257. Treisman A, Sato S (1990) Conjunction search revisited. J Exp Psychol Hum Percept Perform 16(3):459–478PubMedGoogle Scholar
  258. Troster AI, Butters N, Salmon DP, Cullum CM, Jacobs D, Brandt J et al (1993) The diagnostic utility of savings scores: differentiating Alzheimer’s and Huntington’s diseases with the logical memory and visual reproduction tests. J Clin Exp Neuropsychol 15(5):773–788PubMedGoogle Scholar
  259. Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of memory. Academic Press, New York, pp 381–402Google Scholar
  260. Tulving E, Markowitsch HJ (1998) Episodic and declarative memory: role of the hippocampus. Hippocampus 8(3):198–204PubMedGoogle Scholar
  261. Van der Jeugd A, Goddyn H, Laeremans A, Arckens L, D’Hooge R, Verguts T (2009) Hippocampal involvement in the acquisition of relational associations, but not in the expression of a transitive inference task in mice. Behav Neurosci 123(1):109–114PubMedGoogle Scholar
  262. van Enkhuizen J, Young JW (2016) Nicotine withdrawal and attentional deficit studies across species: conflation with attentional dysfunction in patients. In: Hall FS, Young JW, Der Avakian A (eds) Negative affective states in cognitive impairments in nicotine dependence. Elsevier, New YorkGoogle Scholar
  263. van Schouwenburg M, Aarts E, Cools R (2010) Dopaminergic modulation of cognitive control: distinct roles for the prefrontal cortex and the basal ganglia. Curr Pharm Des 16(18):2026–2032PubMedGoogle Scholar
  264. Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W, Mishkin M (1997) Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277(5324):376–380PubMedGoogle Scholar
  265. Verleger R, Talamo S, Simmer J, Smigasiewicz K, Lencer R (2013) Neurophysiological sensitivity to attentional overload in patients with psychotic disorders. Clin Neurophysiol 124(5):881–892PubMedGoogle Scholar
  266. Vetreno RP, Ramos RL, Anzalone S, Savage LM (2012) Brain and behavioral pathology in an animal model of Wernicke’s encephalopathy and Wernicke-Korsakoff syndrome. Brain Res 1436:178–192PubMedGoogle Scholar
  267. Vogel EK, Machizawa MG (2004) Neural activity predicts individual differences in visual working memory capacity. Nature 428(6984):748–751PubMedGoogle Scholar
  268. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858PubMedPubMedCentralGoogle Scholar
  269. Warren CM, Hyman JM, Seamans JK, Holroyd CB (2015) Feedback-related negativity observed in rodent anterior cingulate cortex. J Physiol Paris 109(1–3):87–94PubMedGoogle Scholar
  270. Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ (2014) Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5:88PubMedPubMedCentralGoogle Scholar
  271. Wechsler D, Psychological Corp (2004) WISC-IV: Wechsler Intelligence Scale for Children: technical and interpretive manual. Psychological Corporation, San AntonioGoogle Scholar
  272. Wechsler D, Psychological C, PsychCorp (2008) WAIS-IV technical and interpretive manual. Pearson, San AntonioGoogle Scholar
  273. Wechsler D, Pearson Education I, PsychCorp (2009) WMS-IV technical and interpretive manual. Pearson, San AntonioGoogle Scholar
  274. Wickens CD, Kessel C (1980) Processing resource demands of failure detection in dynamic systems. J Exp Psychol Hum Percept Perform 6(3):564–577PubMedGoogle Scholar
  275. Wickens CD, Kramer AF, Donchin E (1984) The event-related potential as an index of the processing demands of a complex target acquisition task. Ann N Y Acad Sci 425:295–299PubMedGoogle Scholar
  276. Willott JF (2007) Factors affecting hearing in mice, rats, and other laboratory animals. J Am Assoc Lab Anim Sci 46(1):23–27PubMedGoogle Scholar
  277. Wohlberg GW, Kornetsky C (1973) Sustained attention in remitted schizophrenics. Arch Gen Psychiatry 28(4):533–537PubMedGoogle Scholar
  278. Wohr M, Engelhardt KA, Seffer D, Sungur AO, Schwarting RK (2017) Acoustic communication in rats: effects of social experiences on ultrasonic vocalizations as socio-affective signals. Curr Top Behav Neurosci 30:67–89PubMedGoogle Scholar
  279. Wolfe JM (1994) Visual search in continuous, naturalistic stimuli. Vis Res 34(9):1187–1195PubMedGoogle Scholar
  280. Woodman GF, Luck SJ (1999) Electrophysiological measurement of rapid shifts of attention during visual search. Nature 400(6747):867–869PubMedGoogle Scholar
  281. Woodman GF, Luck SJ (2003) Serial deployment of attention during visual search. J Exp Psychol Hum Percept Perform 29(1):121–138PubMedGoogle Scholar
  282. World Health Organization (1993) ICD-10 classification of mental and behavioural disorders (the): diagnostic criteria for research. World Health Organization, GenevaGoogle Scholar
  283. Wynn JK, Breitmeyer B, Nuechterlein KH, Green MF (2006) Exploring the short term visual store in schizophrenia using the attentional blink. J Psychiatr Res 40(7):599–605PubMedGoogle Scholar
  284. Yeung N, Botvinick MM, Cohen JD (2004) The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev 111(4):931–959PubMedGoogle Scholar
  285. Yonelinas AP, Hopfinger JB, Buonocore MH, Kroll NE, Baynes K (2001) Hippocampal, parahippocampal and occipital-temporal contributions to associative and item recognition memory: an fMRI study. Neuroreport 12(2):359–363PubMedGoogle Scholar
  286. Young JW, Finlayson K, Spratt C, Marston HM, Crawford N, Kelly JS et al (2004) Nicotine improves sustained attention in mice: evidence for involvement of the alpha7 nicotinic acetylcholine receptor. Neuropsychopharmacology 29(5):891–900PubMedGoogle Scholar
  287. Young JW, Light GA, Marston HM, Sharp R, Geyer MA (2009a) The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. PLoS One 4(1):e4227PubMedPubMedCentralGoogle Scholar
  288. Young JW, Powell SB, Risbrough V, Marston HM, Geyer MA (2009b) Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 122(2):150–202PubMedPubMedCentralGoogle Scholar
  289. Young JW, Meves JM, Geyer MA (2010) The alpha-7 nicotinic acetylcholine receptor agonist PNU 282987 does not improve vigilance in mice as assessed in the 5-choice continuous performance test: contrasting results with nicotine. J Psychopharmacol 24:A15–A15Google Scholar
  290. Young JW, Powell SB, Scott CN, Zhou X, Geyer MA (2011) The effect of reduced dopamine D4 receptor expression in the 5-choice continuous performance task: separating response inhibition from premature responding. Behav Brain Res 222(1):183–192PubMedPubMedCentralGoogle Scholar
  291. Young JW, Geyer MA, Rissling AJ, Sharp RF, Eyler LT, Asgaard GL et al (2013a) Reverse translation of the rodent 5C-CPT reveals that the impaired attention of people with schizophrenia is similar to scopolamine-induced deficits in mice. Transl Psychiatry 3:e324PubMedPubMedCentralGoogle Scholar
  292. Young JW, Meves JM, Geyer MA (2013b) Nicotinic agonist-induced improvement of vigilance in mice in the 5-choice continuous performance test. Behav Brain Res 240:119–133PubMedGoogle Scholar
  293. Young J, Kamenski M, Higa K, Light G, Geyer M, Zhou X (2015) GlyT-1 inhibition attenuates the attentional but not learning or motivational deficits of the Sp4 hypomorphic mouse model relevant to psychiatric disorders. Neuropsychopharmacology 40(12):2715–2726.  https://doi.org/10.1038/npp.2015.120 CrossRefPubMedPubMedCentralGoogle Scholar
  294. Young JW, Cope ZA, Romoli B, Schrurs E, Aniek J, van Enkhuizen J, Sharp RF, Dulcis D (2018) Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder. Neuropsychopharmacology.  https://doi.org/10.1038/s41386-018-0031-y PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David A. MacQueen
    • 1
    • 2
  • Jared W. Young
    • 1
    • 2
  • Zackary A. Cope
    • 1
  1. 1.Department of PsychiatryUniversity of California San DiegoLa JollaUSA
  2. 2.Research ServiceVA San Diego Healthcare SystemSan DiegoUSA

Personalised recommendations