Advertisement

Cross-Species Translational Findings in the Discriminative Stimulus Effects of Ethanol

  • Daicia C. Allen
  • Matthew M. Ford
  • Kathleen A. Grant
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 39)

Abstract

The progress on understanding the pharmacological basis of ethanol’s discriminative stimulus effects has been substantial, but appears to have plateaued in the past decade. Further, the cross-species translational efforts are clear in laboratory animals, but have been minimal in human subject studies. Research findings clearly demonstrate that ethanol produces a compound stimulus with primary activity through GABA and glutamate receptor systems, particularly ionotropic receptors, with additional contribution from serotonergic mechanisms. Further progress should capitalize on chemogenetic and optogenetic techniques in laboratory animals to identify the neural circuitry involved in mediating the discriminative stimulus effects of ethanol. These infrahuman studies can be guided by in vivo imaging of human brain circuitry mediating ethanol’s subjective effects. Ultimately, identifying receptors systems, as well as where they are located within brain circuitry, will transform the use of drug discrimination procedures to help identify possible treatment or prevention strategies for alcohol use disorder.

Keywords

Alcohol Drug discrimination Ethanol Interspecies Translational 

References

  1. 1.
    Conger JJ (1956) Alcoholism: theory, problem and challenge. II. Reinforcement theory and the dynamics of alcoholism. Q J Stud Alcohol 17:296–305PubMedGoogle Scholar
  2. 2.
    Bolin BL, Alcorn JL, Reynolds AR, Lile JA, Rush CR (2016) Human drug discrimination: a primer and methodological review. Exp Clin Psychopharmacol 24:214–228PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Barry H (1991) Distinctive discriminative effects of ethanol. NIDA Res Monogr 116:131–144Google Scholar
  4. 4.
    Grant KA (1994) Emerging neurochemical concepts in the actions of ethanol at ligand-gated ion channels. Behav Pharmacol 5:383–404PubMedCrossRefGoogle Scholar
  5. 5.
    Hodge CW, Grant KA, Becker HC, Besheer J, Crissman AM, Platt DM, Shannon EE, Shelton KL (2006) Understanding how the brain perceives alcohol: neurobiological basis of ethanol discrimination. Alcohol Clin Exp Res 30:203–213PubMedCrossRefGoogle Scholar
  6. 6.
    Stolerman IP, Childs E, Ford MM, Grant KA (2011) Role of training dose in drug discrimination: a review. Behav Pharmacol 22:415–429PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mhatre M, Holloway F (2003) Micro1-opioid antagonist naloxonazine alters ethanol discrimination and consumption. Alcohol 29:109–116PubMedCrossRefGoogle Scholar
  8. 8.
    Middaugh LD, Kelley BM, Cuison ER Jr, Groseclose CH (1999) Naltrexone effects on ethanol reward and discrimination in C57BL/6 mice. Alcohol Clin Exp Res 23:456–464PubMedCrossRefGoogle Scholar
  9. 9.
    Middaugh LD, Kelley BM, Groseclose CH, Cuison ER Jr (2000) Delta-opioid and 5-HT3 receptor antagonist effects on ethanol reward and discrimination in C57BL/6 mice. Pharmacol Biochem Behav 65:145–154PubMedCrossRefGoogle Scholar
  10. 10.
    Shippenberg TS, Altshuler HL (1985) A drug discrimination analysis of ethanol-induced behavioral excitation and sedation: the role of endogenous opiate pathways. Alcohol 2:197–201PubMedCrossRefGoogle Scholar
  11. 11.
    Winter JC (1975) The stimulus properties of morphine and ethanol. Psychopharmacologia 44:209–214PubMedCrossRefGoogle Scholar
  12. 12.
    Bienkowski P, Kostowski W (1998) Discrimination of ethanol in rats: effects of nicotine, diazepam, CGP 40116, and 1-(m-chlorophenyl)-biguanide. Pharmacol Biochem Behav 60:61–69PubMedCrossRefGoogle Scholar
  13. 13.
    Ford MM, McCracken AD, Davis NL, Ryabinin AE, Grant KA (2012) Discrimination of ethanol-nicotine drug mixtures in mice: dual interactive mechanisms of overshadowing and potentiation. Psychopharmacology (Berl) 224:537–548CrossRefGoogle Scholar
  14. 14.
    Ford MM, Davis NL, McCracken AD, Grant KA (2013) Contribution of NMDA glutamate and nicotinic acetylcholine receptor mechanisms in the discrimination of ethanol-nicotine mixtures. Behav Pharmacol 24:617–622PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Korkosz A, Taracha E, Plaznik A, Wrobel E, Kostowski W, Bienkowski P (2005) Extended blockade of the discriminative stimulus effects of nicotine with low doses of ethanol. Eur J Pharmacol 512:165–172PubMedCrossRefGoogle Scholar
  16. 16.
    Le Foll B, Goldberg SR (2005) Ethanol does not affect discriminative-stimulus effects of nicotine in rats. Eur J Pharmacol 519:96–102PubMedCrossRefGoogle Scholar
  17. 17.
    Lovinger DM, Roberto M (2013) Synaptic effects induced by alcohol. Curr Top Behav Neurosci 13:31–86PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Stolerman IP, Mariathasan EA, White JA, Olufsen KS (1999) Drug mixtures and ethanol as compound internal stimuli. Pharmacol Biochem Behav 64:221–228PubMedCrossRefGoogle Scholar
  19. 19.
    Grant KA, Colombo G (1993) Discriminative stimulus effects of ethanol: effect of training dose on the substitution of N-methyl-D-aspartate antagonists. J Pharmacol Exp Ther 264:1241–1247PubMedGoogle Scholar
  20. 20.
    Colombo G, Grant KA (1992) NMDA receptor complex antagonists have ethanol-like discriminative stimulus effects. Ann N Y Acad Sci 654:421–423PubMedCrossRefGoogle Scholar
  21. 21.
    Grant KA, Colombo G (1993) Substitution of the 5-HT1 agonist trifluoromethylphenylpiperazine (TFMPP) for the discriminative stimulus effects of ethanol: effect of training dose. Psychopharmacology (Berl) 113:26–30CrossRefGoogle Scholar
  22. 22.
    Breese GR, Criswell HE, Carta M, Dodson PD, Hanchar HJ, Khisti RT, Mameli M, Ming Z, Morrow AL, Olsen RW, Otis TS, Parsons LH, Penland SN, Roberto M, Siggins GR, Valenzuela CF, Wallner M (2006) Basis of the gabamimetic profile of ethanol. Alcohol Clin Exp Res 30:731–744PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bienkowski P, Iwinska K, Stefanski R, Kostowski W (1997) Discriminative stimulus properties of ethanol in the rat: differential effects of selective and nonselective benzodiazepine receptor agonists. Pharmacol Biochem Behav 58:969–973PubMedCrossRefGoogle Scholar
  24. 24.
    Shannon EE, Shelton KL, Vivian JA, Yount I, Morgan AR, Homanics GE, Grant KA (2004) Discriminative stimulus effects of ethanol in mice lacking the gamma-aminobutyric acid type A receptor delta subunit. Alcohol Clin Exp Res 28:906–913PubMedCrossRefGoogle Scholar
  25. 25.
    Rees DC, Balster RL (1988) Attenuation of the discriminative stimulus properties of ethanol and oxazepam, but not of pentobarbital, by Ro 15-4513 in mice. J Pharmacol Exp Ther 244:592–598PubMedGoogle Scholar
  26. 26.
    Gatto GJ, Grant KA (1997) Attenuation of the discriminative stimulus effects of ethanol by the benzodiazepine partial inverse agonist Ro 15-4513. Behav Pharmacol 8:139–146PubMedGoogle Scholar
  27. 27.
    Hiltunen AJ, Järbe TUC (1988) Effects of Ro 15-4513, alone or in combination with ethanol, Ro 15-1788, diazepam, and pentobarbital on instrumental behaviors of rats. Pharmacol Biochem Behav 31:597–603PubMedCrossRefGoogle Scholar
  28. 28.
    Middaugh LD, Bao K, Becker HC, Daniel SS (1991) Effects of Ro 15-4513 on ethanol discrimination in C57BL/6 mice. Pharmacol Biochem Behav 38:763–767PubMedCrossRefGoogle Scholar
  29. 29.
    Carver CM, Reddy DS (2016) Neurosteroid structure-activity relationships for functional activation of extrasynaptic δGABA(A) receptors. J Pharmacol Exp Ther 357:188–204PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229PubMedCrossRefGoogle Scholar
  31. 31.
    Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322PubMedCrossRefGoogle Scholar
  32. 32.
    Chen ZW, Manion B, Townsend RR, Reichert DE, Covey DF, Steinbach JH, Sieghart W, Fuchs K, Evers AS (2012) Neurosteroid analog photolabeling of a site in the third transmembrane domain of the β3 subunit of the GABAA receptor. Mol Pharmacol 82:408–419PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ator NA, Grant KA, Purdy RH, Paul SM, Griffiths RR (1993) Drug discrimination analysis of endogenous neuroactive steroids in rats. Eur J Pharmacol 241:237–243PubMedCrossRefGoogle Scholar
  34. 34.
    Bowen CA, Purdy RH, Grant KA (1999) Ethanol-like discriminative stimulus effects of endogenous neuroactive steroids: effect of ethanol training dose and dosing procedure. J Pharmacol Exp Ther 289:405–411PubMedGoogle Scholar
  35. 35.
    Ginsburg BC, Lamb RJ (2005) Alphaxalone and epiallopregnanolone in rats trained to discriminate ethanol. Alcohol Clin Exp Res 29:1621–1629PubMedCrossRefGoogle Scholar
  36. 36.
    Helms CM, McCracken AD, Heichman SL, Moschak TM (2013) Ovarian hormones and the heterogeneous receptor mechanisms mediating the discriminative stimulus effects of ethanol in female rats. Behav Pharmacol 24:95–104PubMedCrossRefGoogle Scholar
  37. 37.
    Finn DA, Beckley EH, Kaufman KR, Ford MM (2010) Manipulation of GABAergic steroids: sex differences in the effects on alcohol drinking- and withdrawal-related behaviors. Horm Behav 57:12–22PubMedCrossRefGoogle Scholar
  38. 38.
    Bienkowski P, Kostowski W (1997) Discriminative stimulus properties of ethanol in the rat: effects of neurosteroids and picrotoxin. Brain Res 753:348–352PubMedCrossRefGoogle Scholar
  39. 39.
    Engel SR, Purdy RH, Grant KA (2001) Characterization of discriminative stimulus effects of the neuroactive steroid pregnanolone. J Pharmacol Exp Ther 297:489–495PubMedGoogle Scholar
  40. 40.
    Gerak LR, Moerschbaecher JM, Winsauer PJ (2008) Overlapping, but not identical, discriminative stimulus effects of the neuroactive steroid pregnanolone and ethanol. Pharmacol Biochem Behav 89:473–479PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Vanover KE (2000) Effects of benzodiazepine receptor ligands and ethanol in rats trained to discriminate pregnanolone. Pharmacol Biochem Behav 67:483–487PubMedCrossRefGoogle Scholar
  42. 42.
    Shannon EE, Porcu P, Purdy RH, Grant KA (2005) Characterization of the discriminative stimulus effects of the neuroactive steroid pregnanolone in DBA/2J and C57BL/6J inbred mice. J Pharmacol Exp Ther 314:675–685PubMedCrossRefGoogle Scholar
  43. 43.
    Grant KA, Knisely JS, Tabakoff B, Barrett JE, Balster RL (1991) Ethanol-like discriminative stimulus effects of non-competitive n-methyl-d-aspartate antagonists. Behav Pharmacol 2:87–95PubMedCrossRefGoogle Scholar
  44. 44.
    Shelton KL, Balster RL (1994) Ethanol drug discrimination in rats: substitution with GABA agonists and NMDA antagonists. Behav Pharmacol 5:441–451PubMedGoogle Scholar
  45. 45.
    Hundt W, Danysz W, Hölter SM, Spanagel R (1998) Ethanol and N-methyl-D-aspartate receptor complex interactions: a detailed drug discrimination study in the rat. Psychopharmacology (Berl) 135:44–51CrossRefGoogle Scholar
  46. 46.
    Kotlinska J, Liljequist S (1997) The NMDA/glycine receptor antagonist, L-701,324, produces discriminative stimuli similar to those of ethanol. Eur J Pharmacol 332:1–8PubMedCrossRefGoogle Scholar
  47. 47.
    Sanger DJ (1993) Substitution by NMDA antagonists and other drugs in rats trained to discriminate ethanol. Behav Pharmacol 4:523–528PubMedCrossRefGoogle Scholar
  48. 48.
    Schechter MD, Meehan SM, Gordon TL, McBurney DM (1993) The NMDA receptor antagonist MK-801 produces ethanol-like discrimination in the rat. Alcohol 10:197–201PubMedCrossRefGoogle Scholar
  49. 49.
    Shelton KL, Grant KA (2002) Discriminative stimulus effects of ethanol in C57BL/6J and DBA/2J inbred mice. Alcohol Clin Exp Res 26:747–757PubMedCrossRefGoogle Scholar
  50. 50.
    Bienkowski P, Danysz W, Kostowski W (1998) Study on the role of glycine, strychnine-insensitive receptors (glycineB sites) in the discriminative stimulus effects of ethanol in the rat. Alcohol 15:87–91PubMedCrossRefGoogle Scholar
  51. 51.
    Shelton KL (2004) Substitution profiles of N-methyl-D-aspartate antagonists in ethanol-discriminating inbred mice. Alcohol 34:165–175PubMedCrossRefGoogle Scholar
  52. 52.
    Grant KA, Colombo G (1993) Pharmacological analysis of the mixed discriminative stimulus effects of ethanol. Alcohol Alcohol Suppl 2:445–449PubMedGoogle Scholar
  53. 53.
    Besheer J, Hodge CW (2005) Pharmacological and anatomical evidence for an interaction between mGluR5- and GABA(A) alpha1-containing receptors in the discriminative stimulus effects of ethanol. Neuropsychopharmacology 30:747–757PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Besheer J, Grondin JJ, Salling MC, Spanos M, Stevenson RA, Hodge CW (2009) Interoceptive effects of alcohol require mGlu5 receptor activity in the nucleus accumbens. J Neurosci 29:9582–9591PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Besheer J, Stevenson RA, Hodge CW (2006) mGlu5 receptors are involved in the discriminative stimulus effects of self-administered ethanol in rats. Eur J Pharmacol 551:71–75PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Cannady R, Grondin JJ, Fisher KR, Hodge CW, Besheer J (2011) Activation of group II metabotropic glutamate receptors inhibits the discriminative stimulus effects of alcohol via selective activity within the amygdala. Neuropsychopharmacology 36:2328–2338PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Schechter MD (1973) Ethanol as a discriminative cue: reduction following depletion of brain serotonin. Eur J Pharmacol 24:278–281PubMedCrossRefGoogle Scholar
  58. 58.
    Maurel S, Schreiber R, De Vry J (1997) Substitution of the selective serotonin reuptake inhibitors fluoxetine and paroxetine for the discriminative stimulus effects of ethanol in rats. Psychopharmacology (Berl) 130:404–406CrossRefGoogle Scholar
  59. 59.
    Pinna G, Costa E, Guidotti A (2006) Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology (Berl) 186:362–372CrossRefGoogle Scholar
  60. 60.
    Lovinger DM (1991) Ethanol potentiation of 5-HT3 receptor-mediated ion current in NCB-20 neuroblastoma cells. Neurosci Lett 122:57–60PubMedCrossRefGoogle Scholar
  61. 61.
    Mhatre MC, Garrett KM, Holloway FA (2001) 5-HT 3 receptor antagonist ICS 205-930 alters the discriminative effects of ethanol. Pharmacol Biochem Behav 68:163–170PubMedCrossRefGoogle Scholar
  62. 62.
    Stefanski R, Bienkowski P, Kostowski W (1996) Studies on the role of 5-HT3 receptors in the mediation of the ethanol interoceptive cue. Eur J Pharmacol 309:141–147PubMedCrossRefGoogle Scholar
  63. 63.
    Grant KA, Barrett JE (1991) Blockade of the discriminative stimulus effects of ethanol with 5-HT3 receptor antagonists. Psychopharmacology (Berl) 104:451–456CrossRefGoogle Scholar
  64. 64.
    Shelton KL, Dukat M, Allan AM (2004) Effect of 5-HT3 receptor over-expression on the discriminative stimulus effects of ethanol. Alcohol Clin Exp Res 28:1161–1171PubMedCrossRefGoogle Scholar
  65. 65.
    Signs SA, Schechter MD (1986) Nicotine-induced potentiation of ethanol discrimination. Pharmacol Biochem Behav 24:769–771PubMedCrossRefGoogle Scholar
  66. 66.
    Grant KA, Colombo G, Gatto GJ (1997) Characterization of the ethanol-like discriminative stimulus effects of 5-HT receptor agonists as a function of ethanol training dose. Psychopharmacology (Berl) 133:133–141CrossRefGoogle Scholar
  67. 67.
    Maurel S, Schreiber R, De Vry J (1998) Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in the generalization of 5-HT receptor agonists to the ethanol cue in the rat. Behav Pharmacol 9:337–343PubMedCrossRefGoogle Scholar
  68. 68.
    Szeliga KT, Grant KA (1998) Analysis of the 5-HT2 receptor ligands dimethoxy-4-indophenyl-2-aminopropane and ketanserin in ethanol discriminations. Alcohol Clin Exp Res 22:646–651PubMedCrossRefGoogle Scholar
  69. 69.
    Gupta S, Villalón CM (2010) The relevance of preclinical research models for the development of antimigraine drugs: focus on 5-HT(1B/1D) and CGRP receptors. Pharmacol Ther 128:170–190PubMedCrossRefGoogle Scholar
  70. 70.
    Jensen NH, Cremers TI, Sotty F (2010) Therapeutic potential of 5-HT2C receptor ligands. ScientificWorldJournal 10:1870–1885PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bureau R, Boulouard M, Dauphin F, Lezoualc’h F, Rault S (2010) Review of 5-HT4R ligands: state of art and clinical applications. Curr Top Med Chem 10:527–553PubMedCrossRefGoogle Scholar
  72. 72.
    Fink KB, Göthert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59:360–417PubMedCrossRefGoogle Scholar
  73. 73.
    Grant KA, Waters CA, Green-Jordan K, Azarov A, Szeliga KT (2000) Characterization of the discriminative stimulus effects of GABA A receptor ligands in Macaca fascicularis monkeys under different ethanol training conditions. Psychopharmacology (Berl) 152:181–188CrossRefGoogle Scholar
  74. 74.
    Grant KA, Helms CM, Rogers LSM, Purdy RH (2008) Neuroactive steroid stereospecificity of ethanol-like discriminative stimulus effects in monkeys. J Pharmacol Exp Ther 326:354–361PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Helms CM, Rogers LSM, Grant KA (2009) Antagonism of the ethanol-like discriminative stimulus effects of ethanol, pentobarbital, and midazolam in cynomolgus monkeys reveals involvement of specific GABA(A) receptor subtypes. J Pharmacol Exp Ther 331:142–152PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Vivian JA, Waters CA, Szeliga KT, Jordan K, Grant KA (2002) Characterization of the discriminative stimulus effects of N-methyl-D-aspartate ligands under different ethanol training conditions in the cynomolgus monkey (Macaca fascicularis). Psychopharmacology (Berl) 162:273–281CrossRefGoogle Scholar
  77. 77.
    Helms CM, Grant KA (2011) The effect of age on the discriminative stimulus effects of ethanol and its GABA(A) receptor mediation in cynomolgus monkeys. Psychopharmacology (Berl) 216:333–343CrossRefGoogle Scholar
  78. 78.
    Green KL, Azarov AV, Szeliga KT, Purdy RH, Grant KA (1999) The influence of menstrual cycle phase on sensitivity to ethanol-like discriminative stimulus effects of GABA(A)-positive modulators. Pharmacol Biochem Behav 64:379–383PubMedCrossRefGoogle Scholar
  79. 79.
    Licata SC, Platt DM, Rüedi-Bettschen D, Atack JR, Dawson GR, Van Linn ML, Cook JM, Rowlett JK (2010) Discriminative stimulus effects of L-838,417 (7-tert-butyl-3-(2,5-difluoro-phenyl)-6-(2-methyl-2H-[1,2,4]triazol-3-ylmethoxy)-[1,2,4]triazolo[4,3-b]pyridazine): role of GABA(A) receptor subtypes. Neuropharmacology 58:357–364PubMedCrossRefGoogle Scholar
  80. 80.
    Platt DM, Duggan A, Spealman RD, Cook JM, Li X, Yin W, Rowlett JK (2005) Contribution of alpha 1GABAA and alpha 5GABAA receptor subtypes to the discriminative stimulus effects of ethanol in squirrel monkeys. J Pharmacol Exp Ther 313:658–667PubMedCrossRefGoogle Scholar
  81. 81.
    Helms CM, Rogers LS, Waters CA, Grant KA (2008) Zolpidem generalization and antagonism in male and female cynomolgus monkeys trained to discriminate 1.0 or 2.0 g/kg ethanol. Alcohol Clin Exp Res 32:1197–1206PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Grant KA, Azarov A, Bowen CA, Mirkis S, Purdy RH (1996) Ethanol-like discriminative stimulus effects of the neurosteroid 3 alpha-hydroxy-5 alpha-pregnan-20-one in female Macaca fascicularis monkeys. Psychopharmacology (Berl) 124:340–346CrossRefGoogle Scholar
  83. 83.
    Grant KA, Azarov A, Shively CA, Purdy RH (1997) Discriminative stimulus effects of ethanol and 3 alpha-hydroxy-5 alpha-pregnan-20-one in relation to menstrual cycle phase in cynomolgus monkeys (Macaca fascicularis). Psychopharmacology (Berl) 130:59–68CrossRefGoogle Scholar
  84. 84.
    Ator NA, Griffiths RR (1997) Selectivity in the generalization profile in baboons trained to discriminate lorazepam: benzodiazepines, barbiturates and other sedative/anxiolytics. J Pharmacol Exp Ther 282:1442–1457PubMedGoogle Scholar
  85. 85.
    Massey BW, Woolverton WL (1994) Discriminative stimulus effects of combinations of pentobarbital and ethanol in rhesus monkeys. Drug Alcohol Depend 35:37–43PubMedCrossRefGoogle Scholar
  86. 86.
    McMahon LR, France CP (2005) Combined discriminative stimulus effects of midazolam with other positive GABAA modulators and GABAA receptor agonists in rhesus monkeys. Psychopharmacology (Berl) 178:400–409CrossRefGoogle Scholar
  87. 87.
    Platt DM, Bano KM (2011) Opioid receptors and the discriminative stimulus effects of ethanol in squirrel monkeys: mu and delta opioid receptor mechanisms. Eur J Pharmacol 650:233–239PubMedCrossRefGoogle Scholar
  88. 88.
    Duka T, Stephens DN, Russel C, Tasker R (1998) Discriminative stimulus properties of low doses of ethanol in humans. Psychopharmacology (Berl) 136:379–389CrossRefGoogle Scholar
  89. 89.
    Duka T, Jackson A, Smith DC, Stephens DN (1999) Relationship of components of an alcohol interoceptive stimulus to induction of desire for alcohol in social drinkers. Pharmacol Biochem Behav 64:301–309PubMedCrossRefGoogle Scholar
  90. 90.
    Jackson A, Stephens D, Duka T (2001) A low dose alcohol drug discrimination in social drinkers: relationship with subjective effects. Psychopharmacology (Berl) 157:411–420CrossRefGoogle Scholar
  91. 91.
    Jackson A, Stephens D, Duka T (2005) Gender differences in response to lorazepam in a human drug discrimination study. J Psychopharmacol 19:614–619PubMedCrossRefGoogle Scholar
  92. 92.
    Kelly TH, Stoops TH, Perry AS, Prendergast MA, Rush CR (1997) Clinical neuropharmacology of drugs of abuse: a comparison of drug-discrimination and subject-report measures. Behav Cogn Neurosci Rev 2:227–260CrossRefGoogle Scholar
  93. 93.
    Perkins K (2009) Discriminative stimulus effects of nicotine in humans. Handb Exp Pharmacol 192:369–400CrossRefGoogle Scholar
  94. 94.
    Hodge CW, Aiken AS (1996) Discriminative stimulus function of ethanol: role of GABAA receptors in the nucleus accumbens. Alcohol Clin Exp Res 20:1221–1228PubMedCrossRefGoogle Scholar
  95. 95.
    Hodge CW, Nannini MA, Olive MF, Kelley SP, Mehmert KK (2001) Allopregnanolone and pentobarbital infused into the nucleus accumbens substitute for the discriminative stimulus effects of ethanol. Alcohol Clin Exp Res 25:1441–1447PubMedCrossRefGoogle Scholar
  96. 96.
    Hodge CW, Cox AA (1998) The discriminative stimulus effects of ethanol are mediated by NMDA and GABA(A) receptors in specific limbic brain regions. Psychopharmacology (Berl) 139:95–107CrossRefGoogle Scholar
  97. 97.
    Nie Z, Madamba SG, Siggins GR (1994) Ethanol inhibits glutamatergic neurotransmission in nucleus accumbens neurons by multiple mechanisms. J Pharmacol Exp Ther 271:1566–1573PubMedGoogle Scholar
  98. 98.
    Nie Z, Madamba SG, Siggins GR (2000) Ethanol enhances gamma-aminobutyric acid responses in a subpopulation of nucleus accumbens neurons: role of metabotropic glutamate receptors. J Pharmacol Exp Ther 293:654–661PubMedGoogle Scholar
  99. 99.
    Besheer J, Schroeder JP, Stevenson RA, Hodge CW (2008) Ethanol-induced alterations of c-Fos immunoreactivity in specific limbic brain regions following ethanol discrimination training. Brain Res 1232:124–131PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Jaramillo AA, Randall PA, Frisbee S, Besheer J (2016) Modulation of sensitivity to alcohol by cortical and thalamic brain regions. Eur J Neurosci 44:2569–2580PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Besheer J, Cox AA, Hodge CW (2003) Coregulation of ethanol discrimination by the nucleus accumbens and amygdala. Alcohol Clin Exp Res 27:450–456PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daicia C. Allen
    • 1
  • Matthew M. Ford
    • 1
    • 2
  • Kathleen A. Grant
    • 1
    • 2
  1. 1.Department of Behavioral NeurosciencesOregon Health & Science UniversityPortlandUSA
  2. 2.Division of NeuroscienceOregon National Primate Research CenterBeavertonUSA

Personalised recommendations