Advertisement

Hypocretins and Arousal

Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 33)

Abstract

How the brain controls vigilance state transitions remains to be fully understood. The discovery of hypocretins, also known as orexins, and their link to narcolepsy has undoubtedly allowed us to advance our knowledge on key mechanisms controlling the boundaries and transitions between sleep and wakefulness. Lack of function of hypocretin neurons (a relatively simple and non-redundant neuronal system) results in inappropriate control of sleep states without affecting the total amount of sleep or homeostatic mechanisms. Anatomical and functional evidence shows that the hypothalamic neurons that produce hypocretins/orexins project widely throughout the entire brain and interact with major neuromodulator systems in order to regulate physiological processes underlying wakefulness, attention, and emotions. Here, we review the role of hypocretins/orexins in arousal state transitions, and discuss possible mechanisms by which such a relatively small population of neurons controls fundamental brain state dynamics.

Keywords

Hypocretin Narcolepsy Outputs of hypocretin neurons Probabilistic model of sleep and wake Sleep-arousal transition 

References

  1. 1.
    de Lecea L et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327. doi: 10.1073/Pnas.95.1.322CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sakurai T et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–85CrossRefGoogle Scholar
  3. 3.
    Nambu T et al (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827:243–260CrossRefGoogle Scholar
  4. 4.
    Peyron C et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015CrossRefGoogle Scholar
  5. 5.
    Sakurai T et al (2005) Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46:297–308. doi: 10.1016/j.neuron.2005.03.010CrossRefPubMedGoogle Scholar
  6. 6.
    Marcus JN et al (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25CrossRefGoogle Scholar
  7. 7.
    Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438:71–75CrossRefGoogle Scholar
  8. 8.
    Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424. doi: 10.1038/nature06310CrossRefGoogle Scholar
  9. 9.
    Brisbare-Roch C et al (2007) Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med 13:150–155. doi: 10.1038/nm1544CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chemelli RM et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451CrossRefGoogle Scholar
  11. 11.
    Vassalli A et al (2013) Electroencephalogram paroxysmal theta characterizes cataplexy in mice and children. Brain 136:1592–1608. doi: 10.1093/brain/awt069CrossRefPubMedGoogle Scholar
  12. 12.
    Hara J et al (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354. doi: 10.1016/S0896-6273(01)00293-8CrossRefGoogle Scholar
  13. 13.
    Liu M et al (2011) Orexin gene transfer into zona incerta neurons suppresses muscle paralysis in narcoleptic mice. J Neurosci 31:6028–6040. doi: 10.1523/Jneurosci.6069-10.2011CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mieda M et al (2011) Differential roles of orexin receptor-1 and-2 in the regulation of non-REM and REM sleep. J Neurosci 31:6518–6526. doi: 10.1523/Jneurosci.6506-10.2011CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Burgess CR, Oishi Y, Mochizuki T, Peever JH, Scammell TE (2013) Amygdala lesions reduce cataplexy in orexin knock-out mice. J Neurosci 33:9734–9742. doi: 10.1523/JNEUROSCI.5632-12.2013CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798. doi: 10.1016/j.neuron.2005.04.035CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720. doi: 10.1523/JNEUROSCI.1887-05.2005CrossRefGoogle Scholar
  18. 18.
    Takahashi K, Lin JS, Sakai K (2008) Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153:860–870. doi: 10.1016/j.neuroscience.2008.02.058CrossRefPubMedGoogle Scholar
  19. 19.
    Burdakov D, Karnani MM, Gonzalez A (2013) Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 121:117–124. doi: 10.1016/j.physbeh.2013.03.023CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181. doi: 10.1038/nrn2092CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yamanaka A et al (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701–713CrossRefGoogle Scholar
  22. 22.
    Mochizuki T et al (2011) Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci U S A 108:4471–4476. doi: 10.1073/pnas.1012456108CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mochizuki T et al (2004) Behavioral state instability in orexin knock-out mice. J Neurosci 24:6291–6300. doi: 10.1523/JNEUROSCI.0586-04.2004CrossRefGoogle Scholar
  24. 24.
    Li SB, Jones JR, de Lecea L (2016) Hypocretins, neural systems, physiology, and psychiatric disorders. Curr Psychiatry Rep 18:7. doi: 10.1007/s11920-015-0639-0CrossRefPubMedGoogle Scholar
  25. 25.
    de Lecea L, Huerta R (2014) Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol 5:16. doi: 10.3389/fphar.2014.00016CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carter ME et al (2012) Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 109:E2635–E2644. doi: 10.1073/Pnas.1202526109CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Carter ME et al (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1533. doi: 10.1038/Nn.2682CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dahan L et al (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32:1232–1241. doi: 10.1038/sj.npp.1301251CrossRefPubMedGoogle Scholar
  29. 29.
    Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26:193–202. doi: 10.1523/JNEUROSCI.2244-05.2006CrossRefPubMedGoogle Scholar
  30. 30.
    Wisor J (2013) Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Front Neurol 4. doi: 10.3389/Fneur.2013.00139. Artn 139
  31. 31.
    Wisor JP et al (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21:1787–1794CrossRefGoogle Scholar
  32. 32.
    Lazarus M, Chen JF, Urade Y, Huang ZL (2013) Role of the basal ganglia in the control of sleep and wakefulness. Curr Opin Neurobiol 23:780–785. doi: 10.1016/j.conb.2013.02.001CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Torrealba F, Yanagisawa M, Saper CB (2003) Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 119:1033–1044CrossRefGoogle Scholar
  34. 34.
    Eriksson KS, Sergeeva O, Brown RE, Haas HL (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 21:9273–9279CrossRefGoogle Scholar
  35. 35.
    Schöne C et al (2012) Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J Neurosci 32:12437–12443. doi: 10.1523/JNEUROSCI.0706-12.2012CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schone C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D (2014) Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep 7:697–704. doi: 10.1016/j.celrep.2014.03.055CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Eggermann E et al (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108:177–181CrossRefGoogle Scholar
  38. 38.
    Fadel J, Burk JA (2010) Orexin/hypocretin modulation of the basal forebrain cholinergic system: role in attention. Brain Res 1314:112–123. doi: 10.1016/j.brainres.2009.08.046CrossRefPubMedGoogle Scholar
  39. 39.
    Fadel J, Deutch AY (2002) Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111:379–387Google Scholar
  40. 40.
    Ishibashi M et al (2015) Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca(2+)-dependent resonance in LDT and PPT cholinergic neurons. Front Neurol 6:120. doi: 10.3389/fneur.2015.00120CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Irmak SO, de Lecea L (2014) Basal forebrain cholinergic modulation of sleep transitions. Sleep 37:1941–1951. doi: 10.5665/sleep.4246CrossRefPubMedGoogle Scholar
  42. 42.
    Xu M et al (2015) Basal forebrain circuit for sleep-wake control. Nat Neurosci 18:1641–1647. doi: 10.1038/nn.4143CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kohlmeier KA et al (2013) Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy. Front Neurosci 7:246. doi: 10.3389/fnins.2013.00246CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Alam MN et al (2010) GABAergic regulation of the perifornical-lateral hypothalamic neurons during non-rapid eye movement sleep in rats. Neuroscience 167:920–928. doi: 10.1016/j.neuroscience.2010.02.038CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Balcita-Pedicino JJ, Sesack SR (2007) Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma-aminobutyric acid neurons. J Comp Neurol 503:668–684. doi: 10.1002/cne.21420CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Liu RJ, van den Pol AN, Aghajanian GK (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci 22:9453–9464CrossRefGoogle Scholar
  47. 47.
    Vazquez-DeRose J et al (2014) Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain. Brain Struct Funct. doi: 10.1007/s00429-014-0946-yCrossRefPubMedGoogle Scholar
  48. 48.
    Avolio E, Alo R, Carelli A, Canonaco M (2011) Amygdalar orexinergic-GABAergic interactions regulate anxiety behaviors of the Syrian golden hamster. Behav Brain Res 218:288–295. doi: 10.1016/J.Bbr.2010.11.014CrossRefPubMedGoogle Scholar
  49. 49.
    Gottesmann C (2002) GABA mechanisms and sleep. Neuroscience 111:231–239CrossRefGoogle Scholar
  50. 50.
    Harrison NL (2007) Mechanisms of sleep induction by GABA(A) receptor agonists. J Clin Psychiatry 68(Suppl 5):6–12PubMedGoogle Scholar
  51. 51.
    Matsuki T et al (2009) Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A 106:4459–4464. doi: 10.1073/pnas.0811126106CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Apergis-Schoute J et al (2015) Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci 35:5435–5441. doi: 10.1523/JNEUROSCI.5269-14.2015CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li Y, van den Pol AN (2005) Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons. J Neurosci 25:173–183. doi: 10.1523/JNEUROSCI.4015-04.2005CrossRefPubMedGoogle Scholar
  54. 54.
    Gotter AL et al (2014) Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators. BMC Neurosci 15:109. doi: 10.1186/1471-2202-15-109CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lin L et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376. doi: 10.1016/S0092-8674(00)81965-0CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Willie JT et al (2003) Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38:715–730CrossRefGoogle Scholar
  57. 57.
    Tsujino N et al (2013) Chronic alterations in monoaminergic cells in the locus coeruleus in orexin neuron-ablated narcoleptic mice. PLoS One 8:e70012. doi: 10.1371/journal.pone.0070012CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hasegawa E, Yanagisawa M, Sakurai T, Mieda M (2014) Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest 124:604–616. doi: 10.1172/Jci71017CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22:8850–8859CrossRefGoogle Scholar
  60. 60.
    Muraki Y et al (2004) Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci 24:7159–7166. doi: 10.1523/Jneurosci.1027-04.2004CrossRefPubMedGoogle Scholar
  61. 61.
    Bassetti CL et al (2010) Cerebrospinal fluid histamine levels are decreased in patients with narcolepsy and excessive daytime sleepiness of other origin. J Sleep Res 19:620–623. doi: 10.1111/j.1365-2869.2010.00819.xCrossRefPubMedGoogle Scholar
  62. 62.
    Valko PO et al (2015) Damage to histaminergic tuberomammillary neurons and other hypothalamic neurons with traumatic brain injury. Ann Neurol 77:177–182. doi: 10.1002/ana.24298CrossRefPubMedGoogle Scholar
  63. 63.
    Valko PO et al (2013) Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann Neurol 74:794–804. doi: 10.1002/ana.24019CrossRefPubMedGoogle Scholar
  64. 64.
    Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023–1042. doi: 10.1016/j.neuron.2010.11.032CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sorooshyari S, Huerta R, de Lecea L (2015) A framework for quantitative modeling of neural circuits involved in sleep-to-wake transition. Front Neurol 6:32. doi: 10.3389/fneur.2015.00032CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rolls A et al (2011) Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci U S A 108:13305–13310. doi: 10.1073/pnas.1015633108CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mosqueiro T, de Lecea L, Huerta R (2014) Control of sleep-to-wake transitions via fast aminoacid and slow neuropeptide transmission. New J Phys 16. doi: 10.1088/1367-2630/16/11/115010CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81:12–34. doi: 10.1016/j.neuron.2013.12.025CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

<SimplePara><Emphasis Type="Bold">Open Access</Emphasis> This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. </SimplePara> <SimplePara>The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.</SimplePara>

Authors and Affiliations

  • Shi-Bin Li
    • 1
  • William J. Giardino
    • 1
  • Luis de Lecea
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordUSA

Personalised recommendations