Advertisement

Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism

  • Paulette B. Goforth
  • Martin G. Myers
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 33)

Abstract

The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.

Keywords

Energy expenditure Food intake Glucose homeostasis Orexin/hypocretin 

References

  1. 1.
    Sakurai T et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(5):1 page following 696PubMedGoogle Scholar
  2. 2.
    Marcus JN et al (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435(1):6–25Google Scholar
  3. 3.
    Tsujino N, Sakurai T (2013) Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 7:28PubMedPubMedCentralGoogle Scholar
  4. 4.
    de Lecea L, Sutcliffe JG (1999) The hypocretins/orexins: novel hypothalamic neuropeptides involved in different physiological systems. Cell Mol Life Sci 56(5–6):473–480PubMedGoogle Scholar
  5. 5.
    Peyron C et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015PubMedPubMedCentralGoogle Scholar
  6. 6.
    Date Y et al (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci U S A 96(2):748–753PubMedPubMedCentralGoogle Scholar
  7. 7.
    Nambu T et al (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827(1–2):243–260PubMedPubMedCentralGoogle Scholar
  8. 8.
    Anand BK, Brobeck JR (1951) Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med 77(2):323–324PubMedGoogle Scholar
  9. 9.
    Delgado JM, Anand BK (1953) Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am J Physiol 172(1):162–168PubMedGoogle Scholar
  10. 10.
    Mogenson GJ, Stevenson JA (1967) Drinking induced by electrical stimulation of the lateral hypothalamus. Exp Neurol 17(2):119–127PubMedGoogle Scholar
  11. 11.
    Fulton S, Woodside B, Shizgal P (2000) Modulation of brain reward circuitry by leptin. Science 287(5450):125–128PubMedGoogle Scholar
  12. 12.
    Bittencourt JC et al (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319(2):218–245PubMedGoogle Scholar
  13. 13.
    Rosin DL et al (2003) Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J Comp Neurol 465(4):593–603PubMedPubMedCentralGoogle Scholar
  14. 14.
    Torrealba F, Yanagisawa M, Saper CB (2003) Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 119(4):1033–1044PubMedPubMedCentralGoogle Scholar
  15. 15.
    Meister B (2007) Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav 92(1–2):263–271PubMedGoogle Scholar
  16. 16.
    Qu D et al (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380(6571):243–247PubMedGoogle Scholar
  17. 17.
    Leinninger GM et al (2011) Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab 14(3):313–323PubMedPubMedCentralGoogle Scholar
  18. 18.
    Laque A et al (2013) Leptin receptor neurons in the mouse hypothalamus are colocalized with the neuropeptide galanin and mediate anorexigenic leptin action. Am J Physiol Endocrinol Metab 304(9):E999–E1011PubMedPubMedCentralGoogle Scholar
  19. 19.
    Allison MB et al (2015) TRAP-seq defines markers for novel populations of hypothalamic and brainstem LepRb neurons. Mol Metab 4(4):299–309PubMedPubMedCentralGoogle Scholar
  20. 20.
    Li Z et al (2015) Hypothalamic amylin acts in concert with leptin to regulate food intake. Cell Metab 22(6):1059–1067PubMedGoogle Scholar
  21. 21.
    Sakurai T et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585Google Scholar
  22. 22.
    Haynes AC et al (2000) A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul Pept 96(1–2):45–51PubMedPubMedCentralGoogle Scholar
  23. 23.
    Yamada H et al (2000) Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem Biophys Res Commun 267(2):527–531PubMedGoogle Scholar
  24. 24.
    Sharf R et al (2010) Orexin signaling via the orexin 1 receptor mediates operant responding for food reinforcement. Biol Psychiatry 67(8):753–760PubMedPubMedCentralGoogle Scholar
  25. 25.
    Yamanaka A et al (1999) Chronic intracerebroventricular administration of orexin-A to rats increases food intake in daytime, but has no effect on body weight. Brain Res 849(1–2):248–252PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lin L et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98(3):365–376Google Scholar
  27. 27.
    Nishino S et al (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355(9197):39–40PubMedPubMedCentralGoogle Scholar
  28. 28.
    Peyron C et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6(9):991–997PubMedPubMedCentralGoogle Scholar
  29. 29.
    Mignot E (2004) Sleep, sleep disorders and hypocretin (orexin). Sleep Med 5(Suppl 1):S2–S8PubMedGoogle Scholar
  30. 30.
    de Lecea L (2012) Hypocretins and the neurobiology of sleep-wake mechanisms. Prog Brain Res 198:15–24PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kotz CM et al (2002) Feeding and activity induced by orexin A in the lateral hypothalamus in rats. Regul Pept 104(1–3):27–32Google Scholar
  32. 32.
    Thorpe AJ et al (2003) Peptides that regulate food intake: regional, metabolic, and circadian specificity of lateral hypothalamic orexin A feeding stimulation. Am J Physiol Regul Integr Comp Physiol 284(6):R1409–R1417Google Scholar
  33. 33.
    Thorpe AJ, Teske JA, Kotz CM (2005) Orexin A-induced feeding is augmented by caloric challenge. Am J Physiol Regul Integr Comp Physiol 289(2):R367–R372PubMedPubMedCentralGoogle Scholar
  34. 34.
    Cai XJ et al (1999) Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 48(11):2132–2137Google Scholar
  35. 35.
    Griffond B et al (1999) Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci Lett 262(2):77–80PubMedPubMedCentralGoogle Scholar
  36. 36.
    Moriguchi T et al (1999) Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci Lett 264(1–3):101–104Google Scholar
  37. 37.
    Paranjape SA et al (2006) Habituation of insulin-induced hypoglycemic transcription activation of lateral hypothalamic orexin-A-containing neurons to recurring exposure. Regul Pept 135(1–2):1–6Google Scholar
  38. 38.
    Otlivanchik O, Le Foll C, Levin BE (2015) Perifornical hypothalamic orexin and serotonin modulate the counterregulatory response to hypoglycemic and glucoprivic stimuli. Diabetes 64(1):226–235PubMedPubMedCentralGoogle Scholar
  39. 39.
    Diano S et al (2003) Fasting activates the nonhuman primate hypocretin (orexin) system and its postsynaptic targets. Endocrinology 144(9):3774–3778PubMedPubMedCentralGoogle Scholar
  40. 40.
    Horvath TL, Gao XB (2005) Input organization and plasticity of hypocretin neurons: possible clues to obesity's association with insomnia. Cell Metab 1(4):279–286PubMedPubMedCentralGoogle Scholar
  41. 41.
    Myers MG Jr et al (2009) The geometry of leptin action in the brain: more complicated than a simple ARC. Cell Metab 9(2):117–23PubMedPubMedCentralGoogle Scholar
  42. 42.
    Flak JN, Myers MG Jr (2016) Minireview: CNS mechanisms of leptin action. Mol Endocrinol 30(1):3–12PubMedPubMedCentralGoogle Scholar
  43. 43.
    Friedman JM (2009) Obesity: causes and control of excess body fat. Nature 459(7245):340–342PubMedPubMedCentralGoogle Scholar
  44. 44.
    Williams KW et al (2011) The acute effects of leptin require PI3K signaling in the hypothalamic ventral premammillary nucleus. J Neurosci 31(37):13147–13156PubMedPubMedCentralGoogle Scholar
  45. 45.
    Goforth PB et al (2014) Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci 34(34):11405–11415PubMedPubMedCentralGoogle Scholar
  46. 46.
    Louis GW et al (2010) Direct innervation and modulation of orexin neurons by lateral hypothalamic LepRb neurons. J Neurosci 30(34):11278–11287PubMedPubMedCentralGoogle Scholar
  47. 47.
    Cui H et al (2012) Neuroanatomy of melanocortin-4 receptor pathway in the lateral hypothalamic area. J Comp Neurol 520(18):4168–4183PubMedPubMedCentralGoogle Scholar
  48. 48.
    Elias CF et al (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 402(4):442–459PubMedPubMedCentralGoogle Scholar
  49. 49.
    Laque A et al (2015) Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Mol Metab 4(10):706–717PubMedPubMedCentralGoogle Scholar
  50. 50.
    de Weille J et al (1988) ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sci U S A 85(4):1312–1316PubMedPubMedCentralGoogle Scholar
  51. 51.
    Dunne MJ et al (1989) Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein. EMBO J 8(2):413–420PubMedPubMedCentralGoogle Scholar
  52. 52.
    Zini S et al (1993) Galanin reduces release of endogenous excitatory amino acids in the rat hippocampus. Eur J Pharmacol 245(1):1–7PubMedPubMedCentralGoogle Scholar
  53. 53.
    Muller TD et al (2015) Ghrelin. Mol Metab 4(6):437–460PubMedPubMedCentralGoogle Scholar
  54. 54.
    Toshinai K et al (2003) Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology 144(4):1506–1512PubMedPubMedCentralGoogle Scholar
  55. 55.
    Yamanaka A et al (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38(5):701–713Google Scholar
  56. 56.
    Lopez M et al (2000) Leptin regulation of prepro-orexin and orexin receptor mRNA levels in the hypothalamus. Biochem Biophys Res Commun 269(1):41–45PubMedPubMedCentralGoogle Scholar
  57. 57.
    Stanley S et al (2010) Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci U S A 107(15):7024–7029PubMedPubMedCentralGoogle Scholar
  58. 58.
    Yamamoto Y et al (2000) Effects of food restriction on the hypothalamic prepro-orexin gene expression in genetically obese mice. Brain Res Bull 51(6):515–521PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ma X et al (2007) Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. J Neurosci 27(7):1529–1533PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kohno D et al (2003) Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes 52(4):948–956PubMedGoogle Scholar
  61. 61.
    Muroya S et al (2004) Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci 19(6):1524–1534Google Scholar
  62. 62.
    Jain MR et al (2000) Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats. Regul Pept 87(1–3):19–24PubMedGoogle Scholar
  63. 63.
    Morello G et al (2016) Orexin-A represses satiety-inducing POMC neurons and contributes to obesity via stimulation of endocannabinoid signaling. Proc Natl Acad Sci U S A 113(17):4759–4764PubMedPubMedCentralGoogle Scholar
  64. 64.
    Mieda M et al (2004) Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J Neurosci 24(46):10493–10501PubMedGoogle Scholar
  65. 65.
    Akiyama M et al (2004) Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur J Neurosci 20(11):3054–3062PubMedGoogle Scholar
  66. 66.
    Thorpe AJ et al (2005) Centrally administered orexin A increases motivation for sweet pellets in rats. Psychopharmacology (Berl) 182(1):75–83Google Scholar
  67. 67.
    Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437(7058):556–559Google Scholar
  68. 68.
    Zheng H, Patterson LM, Berthoud HR (2007) Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J Neurosci 27(41):11075–11082PubMedPubMedCentralGoogle Scholar
  69. 69.
    Nair SG, Golden SA, Shaham Y (2008) Differential effects of the hypocretin 1 receptor antagonist SB 334867 on high-fat food self-administration and reinstatement of food seeking in rats. Br J Pharmacol 154(2):406–416PubMedPubMedCentralGoogle Scholar
  70. 70.
    Richards JK et al (2008) Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long-Evans rats. Psychopharmacology (Berl) 199(1):109–117Google Scholar
  71. 71.
    Borgland SL et al (2009) Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 29(36):11215–11225PubMedPubMedCentralGoogle Scholar
  72. 72.
    Petrovich GD, Hobin MP, Reppucci CJ (2012) Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats. Neuroscience 224:70–80PubMedPubMedCentralGoogle Scholar
  73. 73.
    Piccoli L et al (2012) Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacology 37(9):1999–2011PubMedPubMedCentralGoogle Scholar
  74. 74.
    Kay K et al (2014) Hindbrain orexin 1 receptors influence palatable food intake, operant responding for food, and food-conditioned place preference in rats. Psychopharmacology (Berl) 231(2):419–427Google Scholar
  75. 75.
    DiLeone RJ, Georgescu D, Nestler EJ (2003) Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci 73(6):759–768PubMedPubMedCentralGoogle Scholar
  76. 76.
    Vittoz NM, Berridge CW (2006) Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology 31(2):384–395PubMedPubMedCentralGoogle Scholar
  77. 77.
    Vittoz NM, Schmeichel B, Berridge CW (2008) Hypocretin/orexin preferentially activates caudomedial ventral tegmental area dopamine neurons. Eur J Neurosci 28(8):1629–1640PubMedPubMedCentralGoogle Scholar
  78. 78.
    Korotkova TM et al (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23(1):7–11PubMedPubMedCentralGoogle Scholar
  79. 79.
    Srinivasan S et al (2012) The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration. PLoS One 7(9):e44726PubMedPubMedCentralGoogle Scholar
  80. 80.
    Borgland SL et al (2006) Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49(4):589–601Google Scholar
  81. 81.
    Wang B, You ZB, Wise RA (2009) Reinstatement of cocaine seeking by hypocretin (orexin) in the ventral tegmental area: independence from the local corticotropin-releasing factor network. Biol Psychiatry 65(10):857–862PubMedPubMedCentralGoogle Scholar
  82. 82.
    Perello M et al (2010) Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry 67(9):880–886PubMedGoogle Scholar
  83. 83.
    Bonnavion P et al (2015) Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 6:6266PubMedPubMedCentralGoogle Scholar
  84. 84.
    Hara J et al (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30(2):345–354PubMedPubMedCentralGoogle Scholar
  85. 85.
    Hara J, Yanagisawa M, Sakurai T (2005) Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci Lett 380(3):239–242PubMedGoogle Scholar
  86. 86.
    Funato H et al (2009) Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab 9(1):64–76PubMedPubMedCentralGoogle Scholar
  87. 87.
    Hagan JJ et al (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A 96(19):10911–10916PubMedPubMedCentralGoogle Scholar
  88. 88.
    Kiwaki K et al (2004) Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats. Am J Physiol Endocrinol Metab 286(4):E551–E559PubMedPubMedCentralGoogle Scholar
  89. 89.
    Novak CM, Kotz CM, Levine JA (2006) Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. Am J Physiol Endocrinol Metab 290(2):E396–E403PubMedGoogle Scholar
  90. 90.
    Teske JA et al (2006) Elevated hypothalamic orexin signaling, sensitivity to orexin A, and spontaneous physical activity in obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol 291(4):R889–R899PubMedGoogle Scholar
  91. 91.
    Lubkin M, Stricker-Krongrad A (1998) Independent feeding and metabolic actions of orexins in mice. Biochem Biophys Res Commun 253(2):241–245PubMedGoogle Scholar
  92. 92.
    Jones DN et al (2001) Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology (Berl) 153(2):210–218Google Scholar
  93. 93.
    Perez-Leighton CE et al. (2012) Behavioral responses to orexin, orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. Am J Physiol Endocrinol Metab 303(7):E865–E874PubMedPubMedCentralGoogle Scholar
  94. 94.
    Samson WK et al (1999) Cardiovascular regulatory actions of the hypocretins in brain. Brain Res 831(1–2):248–253Google Scholar
  95. 95.
    Matsumura K, Tsuchihashi T, Abe I (2001) Central orexin-A augments sympathoadrenal outflow in conscious rabbits. Hypertension 37(6):1382–1387PubMedGoogle Scholar
  96. 96.
    Shirasaka T et al (1999) Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol 277(6 Pt 2):R1780–R1785Google Scholar
  97. 97.
    Dun NJ et al (2000) Orexins: a role in medullary sympathetic outflow. Regul Pept 96(1–2):65–70PubMedGoogle Scholar
  98. 98.
    Zheng H, Patterson LM, Berthoud HR (2005) Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function. J Comp Neurol 485(2):127–142PubMedPubMedCentralGoogle Scholar
  99. 99.
    Yasuda T et al (2005) Dual regulatory effects of orexins on sympathetic nerve activity innervating brown adipose tissue in rats. Endocrinology 146(6):2744–2748PubMedGoogle Scholar
  100. 100.
    Monda M et al (2007) Sympathetic and hyperthermic reactions by orexin A: role of cerebral catecholaminergic neurons. Regul Pept 139(1–3):39–44PubMedGoogle Scholar
  101. 101.
    Verty AN, Allen AM, Oldfield BJ (2010) The endogenous actions of hypothalamic peptides on brown adipose tissue thermogenesis in the rat. Endocrinology 151(9):4236–4246PubMedGoogle Scholar
  102. 102.
    Madden CJ, Tupone D, Morrison SF (2012) Orexin modulates brown adipose tissue thermogenesis. Biomol Concepts 3(4):381–386PubMedPubMedCentralGoogle Scholar
  103. 103.
    Morrison SF, Madden CJ, Tupone D (2012) An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. Adipocytes 1(2):116–120Google Scholar
  104. 104.
    Sellayah D, Sikder D (2012) Orexin receptor-1 mediates brown fat developmental differentiation. Adipocytes 1(1):58–63Google Scholar
  105. 105.
    Donadio V et al (2014) Lower wake resting sympathetic and cardiovascular activities in narcolepsy with cataplexy. Neurology 83(12):1080–1086PubMedGoogle Scholar
  106. 106.
    Oldfield BJ et al (2002) The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110(3):515–526PubMedGoogle Scholar
  107. 107.
    Korim WS et al (2014) Orexinergic activation of medullary premotor neurons modulates the adrenal sympathoexcitation to hypothalamic glucoprivation. Diabetes 63(6):1895–1906PubMedGoogle Scholar
  108. 108.
    Machado BH et al (2002) Pressor response to microinjection of orexin/hypocretin into rostral ventrolateral medulla of awake rats. Regul Pept 104(1–3):75–81PubMedPubMedCentralGoogle Scholar
  109. 109.
    Antunes VR et al (2001) Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro. Am J Physiol Regul Integr Comp Physiol 281(6):R1801–R1807PubMedGoogle Scholar
  110. 110.
    de Lecea L, Huerta R (2014) Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol 5:16PubMedPubMedCentralGoogle Scholar
  111. 111.
    Parsons MP, Hirasawa M (2010) ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal. J Neurosci 30(24):8061–8070PubMedGoogle Scholar
  112. 112.
    Venner A et al (2011) Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. J Physiol 589(Pt 23):5701–5708PubMedPubMedCentralGoogle Scholar
  113. 113.
    Burdakov D, Gerasimenko O, Verkhratsky A (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25(9):2429–2433Google Scholar
  114. 114.
    Karnani MM et al (2011) Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron 72(4):616–629Google Scholar
  115. 115.
    Burdakov D et al (2006) Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50(5):711–722Google Scholar
  116. 116.
    Gonzalez JA et al (2008) Metabolism-independent sugar sensing in central orexin neurons. Diabetes 57(10):2569–2576PubMedPubMedCentralGoogle Scholar
  117. 117.
    Gonzalez JA et al (2009) Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons. Eur J Neurosci 30(1):57–64PubMedPubMedCentralGoogle Scholar
  118. 118.
    Guyon A et al (2009) Glucose inhibition persists in hypothalamic neurons lacking tandem-pore K+ channels. J Neurosci 29(8):2528–2533PubMedGoogle Scholar
  119. 119.
    Liu ZW et al (2011) Intracellular energy status regulates activity in hypocretin/orexin neurones: a link between energy and behavioural states. J Physiol 589(Pt 17):4157–4166PubMedPubMedCentralGoogle Scholar
  120. 120.
    Venner A et al (2011) Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. J Physiol 589(Pt 23):5701–5708PubMedPubMedCentralGoogle Scholar
  121. 121.
    Sheng Z et al (2014) Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry. Mol Cell Neurosci 62:30–41PubMedGoogle Scholar
  122. 122.
    Goforth PB et al (2011) Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons. J Neurophysiol 105(5):2350–2363PubMedPubMedCentralGoogle Scholar
  123. 123.
    Tsuneki H, Wada T, Sasaoka T (2012) Role of orexin in the central regulation of glucose and energy homeostasis. Endocr J 59(5):365–374PubMedGoogle Scholar
  124. 124.
    Yoshimichi G et al (2001) Orexin-A regulates body temperature in coordination with arousal status. Exp Biol Med (Maywood) 226(5):468–476Google Scholar
  125. 125.
    Yi CX et al (2009) A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 58(9):1998–2005PubMedPubMedCentralGoogle Scholar
  126. 126.
    Nowak KW et al (2000) Acute orexin effects on insulin secretion in the rat: in vivo and in vitro studies. Life Sci 66(5):449–454PubMedGoogle Scholar
  127. 127.
    Inutsuka A et al (2014) Concurrent and robust regulation of feeding behaviors and metabolism by orexin neurons. Neuropharmacology 85:451–460PubMedGoogle Scholar
  128. 128.
    Tsuneki H et al (2002) Reduction of blood glucose level by orexins in fasting normal and streptozotocin-diabetic mice. Eur J Pharmacol 448(2–3):245–252PubMedGoogle Scholar
  129. 129.
    Shiuchi T et al (2009) Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab 10(6):466–480PubMedGoogle Scholar
  130. 130.
    Tsuneki H et al (2015) Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Diabetes 64(2):459–470PubMedGoogle Scholar
  131. 131.
    Ramadori G et al (2011) SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab 14(3):301–312PubMedPubMedCentralGoogle Scholar
  132. 132.
    Wu X et al (2004) Hypothalamus-brain stem circuitry responsible for vagal efferent signaling to the pancreas evoked by hypoglycemia in rat. J Neurophysiol 91(4):1734–1747PubMedPubMedCentralGoogle Scholar
  133. 133.
    Tsuneki H et al (2013) Hypothalamic orexin prevents hepatic insulin resistance induced by social defeat stress in mice. Neuropeptides 47(3):213–219PubMedPubMedCentralGoogle Scholar
  134. 134.
    McCrimmon RJ, Sherwin RS (2010) Hypoglycemia in type 1 diabetes. Diabetes 59(10):2333–2339PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of MichiganAnn ArborUSA
  2. 2.Departments of Internal Medicine, and Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations