The Sensory Neocortex and Associative Memory

Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 37)

Abstract

Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.

Keyword

Synaptic plasticity Structural plasticity Microcircuit Neuronal assembly Tonotopic map Auditory cortex Categorical perception Rodent 

Notes

Acknowledgments

The authors would like to thank Dr. A. Chambers, Dr. M. Stüttgen and Dr. M. Kaschube for comments on the manuscript.

References

  1. Aitkin L, Schuck D (1985) Low frequency neurons in the lateral central nucleus of the cat inferior colliculus receive their input predominantly from the medial superior olive. Hear Res 17(1):87–93PubMedCrossRefGoogle Scholar
  2. Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7(3):237–252PubMedCrossRefGoogle Scholar
  3. Anagnostaras SG et al (2001) Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11(1):8–17PubMedCrossRefGoogle Scholar
  4. Antunes R, Moita MA (2010) Discriminative auditory fear learning requires both tuned and nontuned auditory pathways to the amygdala. J Neurosci 30(29):9782–9787PubMedCrossRefGoogle Scholar
  5. Armony JL et al (1997) Stimulus generalization of fear responses: effects of auditory cortex lesions in a computational model and in rats. Cereb Cortex 7(2):157–165PubMedCrossRefGoogle Scholar
  6. Aschauer DF, Rumpel S (2014) Measuring the functional organization of the neocortex at large and small scales. Neuron 83(4):756–758PubMedCrossRefGoogle Scholar
  7. Ashby FG, O’Brien JB (2005) Category learning and multiple memory systems. Trends Cogn Sci 9(2):83–89PubMedCrossRefGoogle Scholar
  8. Bakin JS et al (1996) Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behav Neurosci 110(5):905–913PubMedCrossRefGoogle Scholar
  9. Bakin JS, Weinberger NM (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res 536(1–2):271–286PubMedCrossRefGoogle Scholar
  10. Bandyopadhyay S et al (2010) Dichotomy of functional organization in the mouse auditory cortex. Nat Neurosci 13(3):361–368PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bao S et al (2001) Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412(6842):79–83PubMedCrossRefGoogle Scholar
  12. Bao S et al (2004) Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nat Neurosci 7(9):974–981PubMedCrossRefGoogle Scholar
  13. Bar-Yosef O, Nelken I (2007) The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Front Comput Neurosci 1:3PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bathellier B et al (2013) A multiplicative reinforcement learning model capturing learning dynamics and interindividual variability in mice. Proc Natl Acad Sci U S A 110(49):19950–19955PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bathellier B et al (2012) Discrete neocortical dynamics predict behavioral categorization of sounds. Neuron 76(2):435–449PubMedCrossRefGoogle Scholar
  16. Bendor D, Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436(7054):1161–1165PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bhatt DH et al (2009) Dendritic spine dynamics. Annu Rev Physiol 71:261–282PubMedCrossRefGoogle Scholar
  18. Bieszczad KM, Weinberger NM (2010) Representational gain in cortical area underlies increase of memory strength. Proc Natl Acad Sci U S A 107(8):3793–3798PubMedPubMedCentralCrossRefGoogle Scholar
  19. Binder JR et al (1994) Functional magnetic resonance imaging of human auditory cortex. Ann Neurol 35(6):662–672PubMedCrossRefGoogle Scholar
  20. Bizley JK et al (2005) Functional organization of ferret auditory cortex. Cereb Cortex 15(10):1637–1653PubMedCrossRefGoogle Scholar
  21. Blake DT et al (2002) Neural correlates of instrumental learning in primary auditory cortex. Proc Natl Acad Sci U S A 99(15):10114–10119PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boatman JA, Kim JJ (2006) A thalamo-cortico-amygdala pathway mediates auditory fear conditioning in the intact brain. Eur J Neurosci 24(3):894–900PubMedCrossRefGoogle Scholar
  24. Borsook D et al (1998) Acute plasticity in the human somatosensory cortex following amputation. NeuroReport 9(6):1013–1017PubMedCrossRefGoogle Scholar
  25. Brainard MS, Knudsen EI (1993) Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. J Neurosci 13(11):4589–4608PubMedGoogle Scholar
  26. Branco T, Hausser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20(4):494–502PubMedCrossRefGoogle Scholar
  27. Brosch M et al (2015) Neuronal activity in primate auditory cortex during the performance of audiovisual tasks. Eur J Neurosci 41(5):603–614PubMedCrossRefGoogle Scholar
  28. Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312(5780):1622–1627PubMedCrossRefGoogle Scholar
  29. Buchwald JS et al (1966) Changes in Cortical and Subcortical Unit Activity during Behavioral Conditioning. Physiol Behav 1(1):11CrossRefGoogle Scholar
  30. Butt AE et al (2009) Association learning-dependent increases in acetylcholine release in the rat auditory cortex during auditory classical conditioning. Neurobiol Learn Mem 92(3):400–409PubMedCrossRefGoogle Scholar
  31. Butt AE, Hodge GK (1997) Simple and configural association learning in rats with bilateral quisqualic acid lesions of the nucleus basalis magnocellularis. Behav Brain Res 89(1–2):71–85PubMedCrossRefGoogle Scholar
  32. Buzsaki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68(3):362–385PubMedPubMedCentralCrossRefGoogle Scholar
  33. Campeau S, Davis M (1995) Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci 15(3 Pt 2):2312–2327PubMedGoogle Scholar
  34. Caroni P et al (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13(7):478–490PubMedCrossRefGoogle Scholar
  35. Chen QC, Jen PH (2000) Bicuculline application affects discharge patterns, rate-intensity functions, and frequency tuning characteristics of bat auditory cortical neurons. Hear Res 150(1–2):161–174PubMedCrossRefGoogle Scholar
  36. Chen X et al (2011) Functional mapping of single spines in cortical neurons in vivo. Nature 475(7357):501–505PubMedCrossRefGoogle Scholar
  37. Cheung SW et al (2005) Plasticity in primary auditory cortex of monkeys with altered vocal production. J Neurosci 25(10):2490–2503PubMedPubMedCentralCrossRefGoogle Scholar
  38. Chowdhury SA, Suga N (2000) Reorganization of the frequency map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat. J Neurophysiol 83(4):1856–1863PubMedCrossRefGoogle Scholar
  39. Ciocchi S et al (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468(7321):277–282PubMedCrossRefGoogle Scholar
  40. Cossell L et al (2015) Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518(7539):399–403PubMedPubMedCentralCrossRefGoogle Scholar
  41. Courtney SM et al (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386(6625):608–611PubMedCrossRefGoogle Scholar
  42. Cui G et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494(7436):238–242PubMedPubMedCentralCrossRefGoogle Scholar
  43. D’Amour JA, Froemke RC (2015) Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron 86(2):514–528PubMedPubMedCentralCrossRefGoogle Scholar
  44. De Baene W et al (2008) Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. Learn Mem 15(9):717–727PubMedCrossRefGoogle Scholar
  45. deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381(6583):610–613PubMedCrossRefGoogle Scholar
  46. DeFelipe J, Farinas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39(6):563–607PubMedCrossRefGoogle Scholar
  47. Dekker AJ et al (1991) The role of cholinergic projections from the nucleus basalis in memory. Neurosci Biobehav Rev 15(2):299–317PubMedCrossRefGoogle Scholar
  48. Delacour J et al (1987) “Learned” changes in the responses of the rat barrel field neurons. Neuroscience 23(1):63–71PubMedCrossRefGoogle Scholar
  49. Deliano M et al (2009) Auditory cortical activity after intracortical microstimulation and its role for sensory processing and learning. J Neurosci 29(50):15898–15909PubMedCrossRefGoogle Scholar
  50. Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci U S A 93(24):13494–13499PubMedPubMedCentralCrossRefGoogle Scholar
  51. Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174(4011):788–794PubMedCrossRefGoogle Scholar
  52. DeWeese MR et al (2003) Binary spiking in auditory cortex. J Neurosci 23(21):7940–7949PubMedGoogle Scholar
  53. Diamond ME et al (1993) Experience-dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci U S A 90(5):2082–2086PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dick AO (1974) Iconic Memory and Its Relation to Perceptual Processing and Other Memory Mechanisms. Percept Psychophys 16(3):575–596CrossRefGoogle Scholar
  55. Ding L, Gold JI (2010) Caudate encodes multiple computations for perceptual decisions. J Neurosci 30(47):15747–15759PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dinse HR et al (2003) Pharmacological modulation of perceptual learning and associated cortical reorganization. Science 301(5629):91–94PubMedCrossRefGoogle Scholar
  57. Donato F et al (2013) Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504(7479):272–276PubMedCrossRefGoogle Scholar
  58. Doron NN et al (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. J Comp Neurol 453(4):345–360PubMedCrossRefGoogle Scholar
  59. Dorrn AL et al (2010) Developmental sensory experience balances cortical excitation and inhibition. Nature 465(7300):932–936PubMedPubMedCentralCrossRefGoogle Scholar
  60. Douglas RJ, Martin KA (2007) Recurrent neuronal circuits in the neocortex. Curr Biol 17(13):R496–500PubMedCrossRefGoogle Scholar
  61. Ecker AS et al (2010) Decorrelated neuronal firing in cortical microcircuits. Science 327(5965):584–587PubMedCrossRefGoogle Scholar
  62. Edeline JM (1990) Frequency-specific plasticity of single unit discharges in the rat medial geniculate body. Brain Res 529(1–2):109–119PubMedCrossRefGoogle Scholar
  63. Edeline JM et al (2011) Induction of selective plasticity in the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hear Res 274(1–2):75–84PubMedCrossRefGoogle Scholar
  64. Edeline JM et al (1993) Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav Neurosci 107(4):539–551PubMedCrossRefGoogle Scholar
  65. Ehret G, Schreiner CE (2005) Spectral and intensity coding in the auditory midbrain. In: Winer JA, Schreiner CE (eds)The inferior colliculus. Springer New York, New York, pp 312–345Google Scholar
  66. Engineer ND et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470(7332):101–104PubMedPubMedCentralCrossRefGoogle Scholar
  67. Esser KH, Eiermann A (1999) Tonotopic organization and parcellation of auditory cortex in the FM-bat Carollia perspicillata. Eur J Neurosci 11(10):3669–3682PubMedCrossRefGoogle Scholar
  68. Feldman DE, Brecht M (2005) Map plasticity in somatosensory cortex. Science 310(5749):810–815PubMedCrossRefGoogle Scholar
  69. Flor H et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375(6531):482–484PubMedCrossRefGoogle Scholar
  70. Freedman DJ, Miller EK (2008) Neural mechanisms of visual categorization: insights from neurophysiology. Neurosci Biobehav Rev 32(2):311–329PubMedCrossRefGoogle Scholar
  71. Freiwald WA et al (2001) Synchronization and assembly formation in the visual cortex. Prog Brain Res 130:111–140PubMedCrossRefGoogle Scholar
  72. Frisina RD (2001) Subcortical neural coding mechanisms for auditory temporal processing. Hear Res 158(1–2):1–27PubMedCrossRefGoogle Scholar
  73. Fritz J et al (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6(11):1216–1223PubMedCrossRefGoogle Scholar
  74. Fritz JB et al (2007) Auditory attention–focusing the searchlight on sound. Curr Opin Neurobiol 17(4):437–455PubMedCrossRefGoogle Scholar
  75. Froemke RC et al (2013) Long-term modification of cortical synapses improves sensory perception. Nat Neurosci 16(1):79–88PubMedCrossRefGoogle Scholar
  76. Froemke RC et al (2007) A synaptic memory trace for cortical receptive field plasticity. Nature 450(7168):425–429PubMedCrossRefGoogle Scholar
  77. Fu Y et al (2014) A cortical circuit for gain control by behavioral state. Cell 156(6):1139–1152PubMedPubMedCentralCrossRefGoogle Scholar
  78. Galambos R et al (1956) Electrophysiological correlates of a conditioned response in cats. Science 123(3192):376–377PubMedCrossRefGoogle Scholar
  79. Galvan VV, Weinberger NM (2002) Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiol Learn Mem 77(1):78–108PubMedCrossRefGoogle Scholar
  80. Gao E, Suga N (1998) Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc Natl Acad Sci U S A 95(21):12663–12670 CrossRefGoogle Scholar
  81. Gao E, Suga N (2000) Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc Natl Acad Sci U S A 97(14):8081–8086PubMedPubMedCentralCrossRefGoogle Scholar
  82. Gdalyahu A et al (2012) Associative fear learning enhances sparse network coding in primary sensory cortex. Neuron 75(1):121–132PubMedPubMedCentralCrossRefGoogle Scholar
  83. Geva-Sagiv M et al (2015) Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nat Rev Neurosci 16(2):94–108PubMedCrossRefGoogle Scholar
  84. Gilbert CD, Li W (2013) Top-down influences on visual processing. Nat Rev Neurosci 14(5):350–363PubMedCrossRefGoogle Scholar
  85. Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54(5):677–696PubMedCrossRefGoogle Scholar
  86. Gleich O, Strutz J (2012) The Mongolian Gerbil as a Model for the Analysis of Peripheral and Central Age-Dependent Hearing Loss. Hearing Loss. S, Naz, InTechGoogle Scholar
  87. Gonzalez-Lima F, Scheich H (1986) Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. II. Auditory cortex plasticity. Behav Brain Res 20(3):281–293PubMedCrossRefGoogle Scholar
  88. Guillery RW, Sherman SM (2011) Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res Rev 66(1–2):205–219PubMedCrossRefGoogle Scholar
  89. Guo F et al (2012a) Auditory discrimination training rescues developmentally degraded directional selectivity and restores mature expression of GABA(A) and AMPA receptor subunits in rat auditory cortex. Behav Brain Res 229(2):301–307PubMedCrossRefGoogle Scholar
  90. Guo W et al (2012b) Robustness of cortical topography across fields, laminae, anesthetic states, and neurophysiological signal types. J Neurosci 32(27):9159–9172PubMedPubMedCentralCrossRefGoogle Scholar
  91. Guo F et al (2013) Tone-detection training enhances spectral integration mediated by intracortical pathways in primary auditory cortex. Neurobiol Learn Mem 101:75–84PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hackett TA et al (2011) Linking topography to tonotopy in the mouse auditory thalamocortical circuit. J Neurosci 31(8):2983–2995PubMedPubMedCentralCrossRefGoogle Scholar
  93. Harel N et al (2000) Three distinct auditory areas of cortex (AI, AII, and AAF) defined by optical imaging of intrinsic signals. Neuroimage 11(4):302–312PubMedCrossRefGoogle Scholar
  94. Harris KD et al (2003) Organization of cell assemblies in the hippocampus. Nature 424(6948):552–556PubMedCrossRefGoogle Scholar
  95. Harris KD, Mrsic-Flogel TD (2013) Cortical connectivity and sensory coding. Nature 503(7474):51–58PubMedCrossRefGoogle Scholar
  96. Hars B et al (1993) Basal forebrain stimulation facilitates tone-evoked responses in the auditory cortex of awake rat. Neuroscience 56(1):61–74PubMedCrossRefGoogle Scholar
  97. Hartley T et al (2014) Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc Lond B Biol Sci 369(1635):20120510PubMedPubMedCentralCrossRefGoogle Scholar
  98. Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67(1):1–27PubMedCrossRefGoogle Scholar
  99. Hebb DO (1949) The organization of behavior. Wiley & Sons, New YorkGoogle Scholar
  100. Hensch TK (2005a) Critical period mechanisms in developing visual cortex. Curr Top Dev Biol 69:215–237PubMedCrossRefGoogle Scholar
  101. Hensch TK (2005b) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6(11):877–888PubMedCrossRefGoogle Scholar
  102. Herry C et al (2008) Switching on and off fear by distinct neuronal circuits. Nature 454(7204):600–606PubMedCrossRefGoogle Scholar
  103. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658PubMedCrossRefGoogle Scholar
  104. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79(8):2554–2558PubMedPubMedCentralCrossRefGoogle Scholar
  105. Hromadka T et al (2008) Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol 6(1):e16PubMedPubMedCentralCrossRefGoogle Scholar
  106. Hromadka T, Zador AM (2009) Representations in auditory cortex. Curr Opin Neurobiol 19(4):430–433PubMedPubMedCentralCrossRefGoogle Scholar
  107. Hubener M, Bonhoeffer T (2010) Searching for engrams. Neuron 67(3):363–371PubMedCrossRefGoogle Scholar
  108. Huber D et al (2012) Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484(7395):473–478PubMedPubMedCentralCrossRefGoogle Scholar
  109. Imig TJ, Adrian HO (1977) Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res 138(2):241–257PubMedCrossRefGoogle Scholar
  110. Insabato A et al (2014) The influence of spatiotemporal structure of noisy stimuli in decision making. PLoS Comput Biol 10(4):e1003492PubMedPubMedCentralCrossRefGoogle Scholar
  111. Irvine DR et al (2000) Specificity of perceptual learning in a frequency discrimination task. J Acoust Soc Am 108(6):2964–2968PubMedCrossRefGoogle Scholar
  112. Issa JB et al (2014) Multiscale optical Ca2 + imaging of tonal organization in mouse auditory cortex. Neuron 83(4):944–959PubMedPubMedCentralCrossRefGoogle Scholar
  113. Jaramillo S, Zador AM (2011) The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nat Neurosci 14(2):246–251PubMedCrossRefGoogle Scholar
  114. Jarrell TW et al (1987) Involvement of cortical and thalamic auditory regions in retention of differential bradycardiac conditioning to acoustic conditioned stimuli in rabbits. Brain Res 412(2):285–294PubMedCrossRefGoogle Scholar
  115. Jeanne JM et al (2013) Associative learning enhances population coding by inverting interneuronal correlation patterns. Neuron 78(2):352–363PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ji W et al (2001) Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats. J Neurophysiol 86(1):211–225PubMedCrossRefGoogle Scholar
  117. Joachimsthaler B et al (2014) Quantitative analysis of neuronal response properties in primary and higher-order auditory cortical fields of awake house mice (Mus musculus). Eur J Neurosci 39(6):904–918PubMedPubMedCentralCrossRefGoogle Scholar
  118. Johansen JP et al (2011) Molecular mechanisms of fear learning and memory. Cell 147(3):509–524PubMedPubMedCentralCrossRefGoogle Scholar
  119. Josselyn SA (2010) Continuing the search for the engram: examining the mechanism of fear memories. J Psychiatry Neurosci 35(4):221–228PubMedPubMedCentralCrossRefGoogle Scholar
  120. Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44(2):107–112PubMedCrossRefGoogle Scholar
  121. Kandel ER (1991) Learning and memory. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science. Elsevier, New York, pp 1009–1031Google Scholar
  122. Kanold PO et al (2014) Local versus global scales of organization in auditory cortex. Trends Neurosci 37(9):502–510PubMedPubMedCentralCrossRefGoogle Scholar
  123. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274(5290):1133–1138PubMedCrossRefGoogle Scholar
  124. Kentridge RW et al (1999) Attention without awareness in blindsight. Proc Biol Sci 266(1430):1805–1811PubMedPubMedCentralCrossRefGoogle Scholar
  125. Keri S (2003) The cognitive neuroscience of category learning. Brain Res Brain Res Rev 43(1):85–109PubMedCrossRefGoogle Scholar
  126. Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96(3):417–431CrossRefPubMedGoogle Scholar
  127. Kholodar-Smith DB et al (2008) Fear conditioning to discontinuous auditory cues requires perirhinal cortical function. Behav Neurosci 122(5):1178–1185PubMedCrossRefGoogle Scholar
  128. Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279(5357):1714–1718PubMedCrossRefGoogle Scholar
  129. Kilgard MP, Merzenich MM (1999) Distributed representation of spectral and temporal information in rat primary auditory cortex. Hear Res 134(1–2):16–28PubMedPubMedCentralCrossRefGoogle Scholar
  130. Kimchi EY, Laubach M (2009) Dynamic encoding of action selection by the medial striatum. J Neurosci 29(10):3148–3159PubMedPubMedCentralCrossRefGoogle Scholar
  131. Ko H et al (2011) Functional specificity of local synaptic connections in neocortical networks. Nature 473(7345):87–91PubMedPubMedCentralCrossRefGoogle Scholar
  132. Kobayashi Y, Isa T (2002) Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15(4–6):731–741PubMedCrossRefGoogle Scholar
  133. Kurt S et al (2006) Differential effects of iontophoretic in vivo application of the GABA(A)-antagonists bicuculline and gabazine in sensory cortex. Hear Res 212(1–2):224–235PubMedCrossRefGoogle Scholar
  134. LaBar KS et al (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20(5):937–945PubMedCrossRefGoogle Scholar
  135. Lai CS et al (2012) Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483(7387):87–91PubMedCrossRefGoogle Scholar
  136. Lamberts K (2002) Feature sampling in categorization and recognition of objects. Q J Exp Psychol A 55(1):141–154PubMedCrossRefGoogle Scholar
  137. Langers DR, van Dijk P (2012) Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cereb Cortex 22(9):2024–2038PubMedCrossRefGoogle Scholar
  138. Lansner A (2009) Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci 32(3):178–186PubMedCrossRefGoogle Scholar
  139. Laudanski J et al (2012) Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex. PLoS ONE 7(11):e50539PubMedPubMedCentralCrossRefGoogle Scholar
  140. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184PubMedCrossRefGoogle Scholar
  141. LeDoux JE (2014) Coming to terms with fear. Proc Natl Acad Sci U S A 111(8):2871–2878PubMedPubMedCentralCrossRefGoogle Scholar
  142. LeDoux JE et al (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4(3):683–698PubMedGoogle Scholar
  143. Lee AM et al (2014) Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83(2):455–466PubMedPubMedCentralCrossRefGoogle Scholar
  144. Lee CC et al (2004) Concurrent tonotopic processing streams in auditory cortex. Cereb Cortex 14(4):441–451PubMedCrossRefGoogle Scholar
  145. Letzkus JJ et al (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480(7377):331–335PubMedCrossRefGoogle Scholar
  146. Levy RB, Reyes AD (2012) Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. J Neurosci 32(16):5609–5619PubMedPubMedCentralCrossRefGoogle Scholar
  147. Liberman AM et al (1967) Perception of the speech code. Psychol Rev 74(6):431–461PubMedCrossRefGoogle Scholar
  148. Lipton PA et al (1999) Crossmodal associative memory representations in rodent orbitofrontal cortex. Neuron 22(2):349–359CrossRefPubMedGoogle Scholar
  149. Loewenstein Y et al (2011) Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo. J Neurosci 31(26):9481–9488PubMedCrossRefGoogle Scholar
  150. Loewenstein Y et al (2015) Predicting the Dynamics of Network Connectivity in the Neocortex. J Neurosci 35(36):12535–12544PubMedCrossRefGoogle Scholar
  151. Lumani A, Zhang H (2010) Responses of neurons in the rat’s dorsal cortex of the inferior colliculus to monaural tone bursts. Brain Res 1351:115–129PubMedCrossRefGoogle Scholar
  152. Lutcke H et al (2013) Steady or changing? Long-term monitoring of neuronal population activity. Trends Neurosci 36(7):375–384PubMedCrossRefGoogle Scholar
  153. Ma X, Suga N (2005) Long-term cortical plasticity evoked by electric stimulation and acetylcholine applied to the auditory cortex. Proc Natl Acad Sci U S A 102(26):9335–9340PubMedPubMedCentralCrossRefGoogle Scholar
  154. Ma X, Suga N (2009) Specific and nonspecific plasticity of the primary auditory cortex elicited by thalamic auditory neurons. J Neurosci 29(15):4888–4896PubMedPubMedCentralCrossRefGoogle Scholar
  155. Maass W et al (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol 3(1):e165PubMedPubMedCentralCrossRefGoogle Scholar
  156. Maass W, Zador AM (1999) Dynamic stochastic synapses as computational units. Neural Comput 11(4):903–917PubMedCrossRefGoogle Scholar
  157. Machens CK et al (2004) Linearity of cortical receptive fields measured with natural sounds. J Neurosci 24(5):1089–1100PubMedCrossRefGoogle Scholar
  158. Macphail EM (1982) Brain and intelligence in vertebrates. Clarendon Press, OxfordGoogle Scholar
  159. Magnussen S (2000) Low-level memory processes in vision. Trends Neurosci 23(6):247–251PubMedCrossRefGoogle Scholar
  160. Manita S et al (2015) A Top-Down Cortical Circuit for Accurate Sensory Perception. Neuron 86(5):1304–1316PubMedCrossRefGoogle Scholar
  161. Maren S et al (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14(6):417–428PubMedPubMedCentralCrossRefGoogle Scholar
  162. Maren S et al (2001) The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J Neurosci 21(6):RC135Google Scholar
  163. Margolis DJ et al (2014) Microcircuit dynamics of map plasticity in barrel cortex. Curr Opin Neurobiol 24(1):76–81PubMedCrossRefGoogle Scholar
  164. Markovitz CD et al (2013) Tonotopic and localized pathways from primary auditory cortex to the central nucleus of the inferior colliculus. Front Neural Circuits 7:77PubMedPubMedCentralCrossRefGoogle Scholar
  165. Markram H et al (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807PubMedCrossRefGoogle Scholar
  166. Marr D (1970) A theory for cerebral neocortex. Proc R Soc Ser B-Biol Sci 176(1043):161– + CrossRefGoogle Scholar
  167. McKenna TM et al (1989) Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists. Synapse 4(1):30–43PubMedCrossRefGoogle Scholar
  168. McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390(6660):607–611PubMedCrossRefGoogle Scholar
  169. Mendez MF, Geehan GR Jr (1988) Cortical auditory disorders: clinical and psychoacoustic features. J Neurol Neurosurg Psychiatry 51(1):1–9PubMedPubMedCentralCrossRefGoogle Scholar
  170. Merzenich MM, Brugge JF (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res 50(2):275–296PubMedCrossRefGoogle Scholar
  171. Merzenich MM et al (1976) Auditory cortex in the grey squirrel: tonotopic organization and architectonic fields. J Comp Neurol 166(4):387–401PubMedCrossRefGoogle Scholar
  172. Merzenich MM et al (1983) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 8(1):33–55PubMedCrossRefGoogle Scholar
  173. Merzenich MM et al (1973) Cochleotopic organization of primary auditory cortex in the cat. Brain Res 63:343–346PubMedCrossRefGoogle Scholar
  174. Mesulam MM et al (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214(2):170–197PubMedCrossRefGoogle Scholar
  175. Metzger CD et al (2013) Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging-from animal anatomy to in vivo imaging in humans. Front Neurosci 7:24PubMedPubMedCentralCrossRefGoogle Scholar
  176. Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4(10):2621–2634PubMedGoogle Scholar
  177. Miller EK et al (2003) Neural correlates of categories and concepts. Curr Opin Neurobiol 13(2):198–203PubMedCrossRefGoogle Scholar
  178. Mitz AR et al (1991) Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations. J Neurosci 11(6):1855–1872PubMedGoogle Scholar
  179. Miyashita Y (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335(6193):817–820PubMedCrossRefGoogle Scholar
  180. Mizrahi A et al (2014) Single neuron and population coding of natural sounds in auditory cortex. Curr Opin Neurobiol 24(1):103–110PubMedCrossRefGoogle Scholar
  181. Moczulska KE et al (2013) Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall. Proc Natl Acad Sci U S A 110(45):18315–18320PubMedPubMedCentralCrossRefGoogle Scholar
  182. Mogilner A et al (1993) Somatosensory Cortical Plasticity in Adult Humans Revealed by Magnetoencephalography. Proc Natl Acad Sci U S A 90(8):3593–3597PubMedPubMedCentralCrossRefGoogle Scholar
  183. Mongillo G et al (2008) Synaptic theory of working memory. Science 319(5869):1543–1546PubMedCrossRefGoogle Scholar
  184. Morel A, Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318(1):27–63PubMedCrossRefGoogle Scholar
  185. Morosan P et al (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13(4):684–701PubMedCrossRefGoogle Scholar
  186. Morrell F et al (1983) Conditioning of single units in visual association cortex: cell-specific behavior within a small population. Exp Neurol 80(1):111–146PubMedCrossRefGoogle Scholar
  187. Morris RG et al (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319(6056):774–776PubMedCrossRefGoogle Scholar
  188. Nabavi S et al (2014) Engineering a memory with LTD and LTP. Nature 511(7509):348–352PubMedPubMedCentralCrossRefGoogle Scholar
  189. Nader K et al (2001) Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learn Mem 8(3):156–163PubMedPubMedCentralCrossRefGoogle Scholar
  190. Narayan SS et al (1998) Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282(5395):1882–1884PubMedPubMedCentralCrossRefGoogle Scholar
  191. Nelken I et al (2003) Primary auditory cortex of cats: feature detection or something else? Biol Cybern 89(5):397–406PubMedCrossRefGoogle Scholar
  192. O’Keefe J (1979) A review of the hippocampal place cells. Prog Neurobiol 13(4):419–439PubMedCrossRefGoogle Scholar
  193. Ohl FW (2015) Role of cortical neurodynamics for understanding the neural basis of motivated behavior—lessons from auditory category learning. Curr Opin Neurobiol 31:88–94PubMedCrossRefGoogle Scholar
  194. Ohl FW et al (2003) Early and late patterns of stimulus-related activity in auditory cortex of trained animals. Biol Cybern 88(5):374–379PubMedCrossRefGoogle Scholar
  195. Ohl FW, Scheich H (2005) Learning-induced plasticity in animal and human auditory cortex. Curr Opin Neurobiol 15(4):470–477PubMedCrossRefGoogle Scholar
  196. Ohl FW et al (2001) Change in pattern of ongoing cortical activity with auditory category learning. Nature 412(6848):733–736PubMedCrossRefGoogle Scholar
  197. Ohl FW et al (1999) Bilateral ablation of auditory cortex in Mongolian gerbil affects discrimination of frequency modulated tones but not of pure tones. Learn Mem 6(4):347–362PubMedPubMedCentralGoogle Scholar
  198. Oliver DL et al (1976) Tonotopic Organization and Connections of Primary Auditory-Cortex in Tree Shrew, Tupaia Glis. Anat Rec 184(3):491Google Scholar
  199. Orsini CA et al (2013) Ensemble coding of context-dependent fear memory in the amygdala. Front Behav Neurosci 7:199PubMedPubMedCentralCrossRefGoogle Scholar
  200. Oswald AM, Reyes AD (2008) Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. J Neurophysiol 99(6):2998–3008PubMedPubMedCentralCrossRefGoogle Scholar
  201. Pai S et al (2011) Minimal impairment in a rat model of duration discrimination following excitotoxic lesions of primary auditory and prefrontal cortices. Front Syst Neurosci 5:74PubMedPubMedCentralCrossRefGoogle Scholar
  202. Palmer AR, Kuwada S (2005) Binaural and spatial coding in the inferior colliculus. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer New York, New York, pp 377–410Google Scholar
  203. Pantev C et al (1995) Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol 94(1):26–40PubMedCrossRefGoogle Scholar
  204. Parto Dezfouli M, Daliri MR (2015) The effect of adaptation on the tuning curves of rat auditory cortex. PLoS ONE 10(2):e0115621PubMedPubMedCentralCrossRefGoogle Scholar
  205. Pasternak T, Greenlee MW (2005) Working memory in primate sensory systems. Nat Rev Neurosci 6(2):97–107PubMedCrossRefGoogle Scholar
  206. Pavlov IP, Anrep GV (1927) Conditioned reflexes; an investigation of the physiological activity of the cerebral cortex. London, Oxford University Press, Humphrey MilfordGoogle Scholar
  207. Pearce JM (1994) Similarity and discrimination: a selective review and a connectionist model. Psychol Rev 101(4):587–607PubMedCrossRefGoogle Scholar
  208. Penfield W (1959) The interpretive cortex; the stream of consciousness in the human brain can be electrically reactivated. Science 129(3365):1719–1725PubMedCrossRefGoogle Scholar
  209. Peter M et al (2012) Induction of immediate early genes in the mouse auditory cortex after auditory cued fear conditioning to complex sounds. Genes Brain Behav 11(3):314–324PubMedCrossRefGoogle Scholar
  210. Petkov CI et al (2004) Attentional modulation of human auditory cortex. Nat Neurosci 7(6):658–663PubMedCrossRefGoogle Scholar
  211. Pi HJ et al (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503(7477):521–524PubMedPubMedCentralCrossRefGoogle Scholar
  212. Pienkowski M, Eggermont JJ (2011) Cortical tonotopic map plasticity and behavior. Neurosci Biobehav Rev 35(10):2117–2128PubMedCrossRefGoogle Scholar
  213. Plato, Campbell L (1883) The Theaetetus of Plato, with a revised text and English notes/by Lewis Campbell. The Clarendon press, OxfordGoogle Scholar
  214. Pleger B et al (2003) Functional imaging of perceptual learning in human primary and secondary somatosensory cortex. Neuron 40(3):643–653PubMedCrossRefGoogle Scholar
  215. Poldrack RA, Foerde K (2008) Category learning and the memory systems debate. Neurosci Biobehav Rev 32(2):197–205PubMedCrossRefGoogle Scholar
  216. Polk TA, Farah MJ (1995) Brain localization for arbitrary stimulus categories: a simple account based on Hebbian learning. Proc Natl Acad Sci U S A 92(26):12370–12373PubMedPubMedCentralCrossRefGoogle Scholar
  217. Polley DB et al (2004a) Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proc Natl Acad Sci USA 101(46):16351–16356PubMedPubMedCentralCrossRefGoogle Scholar
  218. Polley DB et al (2004b) Naturalistic experience transforms sensory maps in the adult cortex of caged animals. Nature 429(6987):67–71PubMedCrossRefGoogle Scholar
  219. Polley DB et al (2006) Perceptual learning directs auditory cortical map reorganization through top-down influences. J Neurosci 26(18):4970–4982PubMedCrossRefGoogle Scholar
  220. Profant O et al (2013) The response properties of neurons in different fields of the auditory cortex in the rat. Hear Res 296:51–59PubMedCrossRefGoogle Scholar
  221. Puckett AC et al (2007) Plasticity in the rat posterior auditory field following nucleus basalis stimulation. J Neurophysiol 98(1):253–265PubMedCrossRefGoogle Scholar
  222. Quirk GJ et al (1997) Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19(3):613–624PubMedCrossRefGoogle Scholar
  223. Ramachandran VS (1993) Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain. Proc Natl Acad Sci U S A 90(22):10413–10420PubMedPubMedCentralCrossRefGoogle Scholar
  224. Read HL et al (2002) Functional architecture of auditory cortex. Curr Opin Neurobiol 12(4):433–440PubMedCrossRefGoogle Scholar
  225. Recanzone GH et al (2000) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83(4):2315–2331PubMedCrossRefGoogle Scholar
  226. Recanzone GH et al (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13(1):87–103PubMedGoogle Scholar
  227. Redgrave P et al (2010) Interactions between the midbrain superior colliculus and the basal ganglia. Front Neuroanat 4:132Google Scholar
  228. Reed A et al (2011) Cortical map plasticity improves learning but is not necessary for improved performance. Neuron 70(1):121–131PubMedCrossRefGoogle Scholar
  229. Repa JC et al (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4(7):724–731PubMedCrossRefGoogle Scholar
  230. Reynolds JN et al (2001) A cellular mechanism of reward-related learning. Nature 413(6851):67–70PubMedCrossRefGoogle Scholar
  231. Rogan MT et al (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607PubMedCrossRefGoogle Scholar
  232. Rokni U et al (2007) Motor learning with unstable neural representations. Neuron 54(4):653–666PubMedCrossRefGoogle Scholar
  233. Romanski LM, LeDoux JE (1992) Equipotentiality of thalamo-amygdala and thalamo-cortico-amygdala circuits in auditory fear conditioning. J Neurosci 12(11):4501–4509PubMedGoogle Scholar
  234. Romo R et al (2003) Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38(4):649–657PubMedCrossRefGoogle Scholar
  235. Romo R, Salinas E (2003) Flutter discrimination: neural codes, perception, memory and decision making. Nat Rev Neurosci 4(3):203–218PubMedCrossRefGoogle Scholar
  236. Ross LS et al (1988) Origin of ascending projections to an isofrequency region of the mustache bat’s inferior colliculus. J Comp Neurol 270(4):488–505PubMedCrossRefGoogle Scholar
  237. Rothschild G et al (2010) Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13(3):353–360PubMedCrossRefGoogle Scholar
  238. Rumpel S et al (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308(5718):83–88PubMedCrossRefGoogle Scholar
  239. Russ BE et al (2007) Neural and behavioral correlates of auditory categorization. Hear Res 229(1–2):204–212PubMedCrossRefGoogle Scholar
  240. Rutkowski RG, Weinberger NM (2005) Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proc Natl Acad Sci U S A 102(38):13664–13669PubMedPubMedCentralCrossRefGoogle Scholar
  241. Sadagopan S, Wang X (2008) Level invariant representation of sounds by populations of neurons in primary auditory cortex. J Neurosci 28(13):3415–3426PubMedCrossRefGoogle Scholar
  242. Sadagopan S, Wang X (2010) Contribution of inhibition to stimulus selectivity in primary auditory cortex of awake primates. J Neurosci 30(21):7314–7325PubMedPubMedCentralCrossRefGoogle Scholar
  243. Salzman CD et al (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346(6280):174–177PubMedCrossRefGoogle Scholar
  244. Sawtell NB et al (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38(6):977–985PubMedCrossRefGoogle Scholar
  245. Scheich H et al (2007) The cognitive auditory cortex: task-specificity of stimulus representations. Hear Res 229(1–2):213–224PubMedCrossRefGoogle Scholar
  246. Schnupp JW et al (2006) Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. J Neurosci 26(18):4785–4795PubMedCrossRefGoogle Scholar
  247. Schoenbaum G et al (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci 1(2):155–159PubMedCrossRefGoogle Scholar
  248. Schoenbaum G et al (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci 19(5):1876–1884PubMedGoogle Scholar
  249. Seger CA, Miller EK (2010) Category learning in the brain. Annu Rev Neurosci 33:203–219PubMedPubMedCentralCrossRefGoogle Scholar
  250. Selezneva E et al (2006) Dual time scales for categorical decision making in auditory cortex. Curr Biol 16(24):2428–2433PubMedCrossRefGoogle Scholar
  251. Sellien H, Ebner FF (2007) Rapid plasticity follows whisker pairing in barrel cortex of the awake rat. Exp Brain Res 177(1):1–14PubMedCrossRefGoogle Scholar
  252. Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86(4):1916–1936PubMedCrossRefGoogle Scholar
  253. Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17(4):417–422PubMedPubMedCentralCrossRefGoogle Scholar
  254. Sherman SM (2012) Thalamocortical interactions. Curr Opin Neurobiol 22(4):575–579PubMedPubMedCentralCrossRefGoogle Scholar
  255. Shetake JA et al (2012) Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex. Exp Neurol 233(1):342–349PubMedCrossRefGoogle Scholar
  256. Sillito AM (1975) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol 250(2):305–329PubMedPubMedCentralCrossRefGoogle Scholar
  257. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1):49–65, 111–125PubMedCrossRefGoogle Scholar
  258. Singheiser M et al (2012) The representation of sound localization cues in the barn owl’s inferior colliculus. Front Neural Circuits 6:45PubMedPubMedCentralCrossRefGoogle Scholar
  259. Siucinska E, Kossut M (1996) Short-lasting classical conditioning induces reversible changes of representational maps of vibrissae in mouse SI cortex–a 2DG study. Cereb Cortex 6(3):506–513PubMedCrossRefGoogle Scholar
  260. Siucinska E, Kossut M (2004) Experience-dependent changes in cortical whisker representation in the adult mouse: a 2-deoxyglucose study. Neuroscience 127(4):961–971PubMedCrossRefGoogle Scholar
  261. Skinner BF (1938) The behavior of organisms: an experimental analysis. B.F. Skinner Foundation, Cambridge, MassachusettsGoogle Scholar
  262. Song S et al (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3):e68PubMedPubMedCentralCrossRefGoogle Scholar
  263. Stiebler I et al (1997) The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. J Comp Physiol A 181(6):559–571PubMedCrossRefGoogle Scholar
  264. Stuermer IW et al (2003) Intraspecific allometric comparison of laboratory gerbils with Mongolian gerbils trapped in the wild indicates domestication in Meriones unguiculatus (Milne-Edwards, 1867) (Rodentia: Gerbillinae). Zoologischer Anzeiger 242(3):249–266CrossRefGoogle Scholar
  265. Stuttgen MC et al (2011) Mapping spikes to sensations. Front Neurosci 5:125PubMedPubMedCentralCrossRefGoogle Scholar
  266. Sutter ML (2000) Shapes and level tolerances of frequency tuning curves in primary auditory cortex: quantitative measures and population codes. J Neurophysiol 84(2):1012–1025PubMedCrossRefGoogle Scholar
  267. Takahashi N et al (2012) Locally synchronized synaptic inputs. Science 335(6066):353–356PubMedCrossRefGoogle Scholar
  268. Talavage TM et al (2000) Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear Res 150(1–2):225–244PubMedCrossRefGoogle Scholar
  269. Talavage TM et al (2004) Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol 91(3):1282–1296PubMedCrossRefGoogle Scholar
  270. Tan AY et al (2004) Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. J Neurophysiol 92(1):630–643PubMedCrossRefGoogle Scholar
  271. Uchida N et al (2006) Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nat Rev Neurosci 7(6):485–491PubMedCrossRefGoogle Scholar
  272. Wallace DJ, Kerr JN (2010) Chasing the cell assembly. Curr Opin Neurobiol 20(3):296–305PubMedCrossRefGoogle Scholar
  273. Wallace MN et al (2000) Identification and localisation of auditory areas in guinea pig cortex. Exp Brain Res 132(4):445–456PubMedCrossRefGoogle Scholar
  274. Wang X, Kadia SC (2001) Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J Neurophysiol 86(5):2616–2620PubMedCrossRefGoogle Scholar
  275. Wang X et al (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435(7040):341–346PubMedCrossRefGoogle Scholar
  276. Wang X et al (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 74(6):2685–2706PubMedCrossRefGoogle Scholar
  277. Wang XJ (2008) Decision making in recurrent neuronal circuits. Neuron 60(2):215–234PubMedPubMedCentralCrossRefGoogle Scholar
  278. Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426(6965):442–446PubMedCrossRefGoogle Scholar
  279. Weinberg RJ (1997) Are topographic maps fundamental to sensory processing? Brain Res Bull 44(2):113–116PubMedCrossRefGoogle Scholar
  280. Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5(4):279–290PubMedPubMedCentralCrossRefGoogle Scholar
  281. Weinberger NM (2015) New perspectives on the auditory cortex: learning and memory. Handb Clin Neurol 129:117–147PubMedCrossRefGoogle Scholar
  282. Weinberger NM et al (1984) Physiological Plasticity of Single Neurons in Auditory-Cortex of the Cat during Acquisition of the Pupillary Conditioned-Response. 1. Primary Field (Ai). Behav Neurosci 98(2):171–188PubMedCrossRefGoogle Scholar
  283. White EL (2007) Reflections on the specificity of synaptic connections. Brain Res Rev 55(2):422–429PubMedCrossRefGoogle Scholar
  284. Whitlock JR et al (2006) Learning induces long-term potentiation in the hippocampus. Science 313(5790):1093–1097PubMedCrossRefGoogle Scholar
  285. Woolsey CN, Walzl EM (1942) Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bull Johns Hopkins Hosp 71:315–344Google Scholar
  286. Xiong Q et al (2015) Selective corticostriatal plasticity during acquisition of an auditory discrimination task. Nature 521(7552):348–351PubMedPubMedCentralCrossRefGoogle Scholar
  287. Xu T et al (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462(7275):915–919PubMedPubMedCentralCrossRefGoogle Scholar
  288. Yan W, Suga N (1998) Corticofugal modulation of the midbrain frequency map in the bat auditory system. Nat Neurosci 1(1):54–58PubMedCrossRefGoogle Scholar
  289. Yang G et al (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462(7275):920–924PubMedPubMedCentralCrossRefGoogle Scholar
  290. Yoon T et al (2008) Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learn Mem 15(3):97–105PubMedPubMedCentralCrossRefGoogle Scholar
  291. Zach N et al (2008) Emergence of novel representations in primary motor cortex and premotor neurons during associative learning. J Neurosci 28(38):9545–9556PubMedCrossRefGoogle Scholar
  292. Zagha E et al (2013) Motor cortex feedback influences sensory processing by modulating network state. Neuron 79(3):567–578PubMedPubMedCentralCrossRefGoogle Scholar
  293. Zhang S et al (2014) Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345(6197):660–665PubMedPubMedCentralCrossRefGoogle Scholar
  294. Znamenskiy P, Zador AM (2013) Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature 497(7450):482–485PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical CenterJohannes Gutenberg UniversityMainzGermany

Personalised recommendations