Advertisement

Discriminative Stimulus Effects of Abused Inhalants

  • Keith L. Shelton
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 39)

Abstract

Inhalants are a loosely organized category of abused compounds defined entirely by their common route of administration. Inhalants include volatile solvents, fuels, volatile anesthetics, gasses, and liquefied refrigerants, among others. They are ubiquitous in modern society as ingredients in a wide variety of household, commercial, and medical products. Persons of all ages abuse inhalants but the highest prevalence of abuse is in younger adolescents. Although inhalants have been shown to act upon a host of neurotransmitter receptors, the stimulus effects of the few inhalants which have been trained or tested in drug discrimination procedures suggest that their discriminative stimulus properties are mediated by a few key neurotransmitter receptor systems. Abused volatile solvent inhalants have stimulus effects that are similar to a select group of GABAA positive modulators comprised of benzodiazepines and barbiturates. In contrast the stimulus effects of nitrous oxide gas appear to be at least partially mediated by uncompetitive antagonism of NMDA receptors. Finally, volatile anesthetic inhalants have stimulus effects in common with both GABAA positive modulators as well as competitive NMDA antagonists. In addition to a review of the pharmacology underlying the stimulus effects of inhalants, the chapter also discusses the scientific value of utilizing drug discrimination as a means of functionally grouping inhalants according to their abuse-related pharmacological properties.

Keywords

1,1,1-trichloroethane Abuse Drug discrimination Inhalant Isoflurane Nitrous oxide Toluene Trichloroethylene Volatile vapor 

References

  1. 1.
    Johnston LD, O’Malley PM, Miech RA, Bachman JG, Schulenberg JE (2014) Monitoring the future national results on adolescent drug use 1975–2014: overview of key findings on adolescent drug use. Institute for Social Research, The University of Michigan, Ann ArborGoogle Scholar
  2. 2.
    Bruckner JV, Peterson RG (1981) Evaluation of toluene and acetone inhalant abuse. II. Model development and toxicology. Toxicol Appl Pharmacol 61:302–312PubMedCrossRefGoogle Scholar
  3. 3.
    Hannigan JH, Bowen SE (2010) Reproductive toxicology and teratology of abused toluene. Syst Biol Reprod Med 56:184–200PubMedCrossRefGoogle Scholar
  4. 4.
    Takagi M, Lubman DI, Yucel M (2011) Solvent-induced leukoencephalopathy: a disorder of adolescence? Subst Use Misuse 46(Suppl 1):95–98PubMedCrossRefGoogle Scholar
  5. 5.
    Tormoehlen LM, Tekulve KJ, Nanagas KA (2014) Hydrocarbon toxicity: a review. Clin Toxicol (Phila) 52:479–489CrossRefGoogle Scholar
  6. 6.
    Bowen SE, Batis JC, Paez-Martinez N, Cruz SL (2006) The last decade of solvent research in animal models of abuse: mechanistic and behavioral studies. Neurotoxicol Teratol 28:636–647PubMedCrossRefGoogle Scholar
  7. 7.
    Cruz SL (2012) The latest evidence in the neuroscience of solvent misuse: an article written for service providers. Subst Use Misuse 46(Suppl 1):62–67Google Scholar
  8. 8.
    Villatoro JA, Cruz SL, Ortiz A, Medina-Mora ME (2011) Volatile substance misuse in Mexico: correlates and trends. Subst Use Misuse 46(Suppl 1):40–45PubMedCrossRefGoogle Scholar
  9. 9.
    Eggertson L (2014) Opal fuel reduces gas-sniffing and suicides in Australia. CMAJ 186:E229–E230PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Balster RL, Cruz SL, Howard MO, Dell CA, Cottler LB (2009) Classification of abused inhalants. Addiction 104:878–882PubMedCrossRefGoogle Scholar
  11. 11.
    Glennon RA (1986) Discriminative stimulus properties of phenylisopropylamine derivatives. Drug Alcohol Depend 17:119–134PubMedCrossRefGoogle Scholar
  12. 12.
    Glennon RA (1989) Stimulus properties of hallucinogenic phenalkylamines and related designer drugs: formulation of structure-activity relationships. NIDA Res Monogr 94:43–67PubMedGoogle Scholar
  13. 13.
    Balster RL (1998) Neural basis of inhalant abuse. Drug Alcohol Depend 51:207–214PubMedCrossRefGoogle Scholar
  14. 14.
    Shelton KL, Balster RL (2011) Inhalant drug discrimination: methodology, literature review and future directions. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies, 1st edn. Wiley, HobokenGoogle Scholar
  15. 15.
    Shelton KL (2009) Discriminative stimulus effects of inhaled 1,1,1-trichloroethane in mice: comparison to other hydrocarbon vapors and volatile anesthetics. Psychopharmacology (Berl) 203:431–440CrossRefGoogle Scholar
  16. 16.
    Richardson KJ, Shelton KL (2014) Discriminative stimulus effects of nitrous oxide in mice: comparison with volatile hydrocarbons and vapor anesthetics. Behav Pharmacol 25:2–11PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wood RW (1978) Stimulus properties of inhaled substances. Environ Health Perspect 26:69–76PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wood RW, Rees DC, Laties VG (1983) Behavioral effects of toluene are modulated by stimulus control. Toxicol Appl Pharmacol 68:462–472PubMedCrossRefGoogle Scholar
  19. 19.
    Rees DC, Knisely JS, Jordan S, Balster RL (1987) Discriminative stimulus properties of toluene in the mouse. Toxicol Appl Pharmacol 88:97–104PubMedCrossRefGoogle Scholar
  20. 20.
    Knisely JS, Rees DC, Balster RL (1990) Discriminative stimulus properties of toluene in the rat. Neurotoxicol Teratol 12:129–133PubMedCrossRefGoogle Scholar
  21. 21.
    Benignus VA (1981) Health effects of toluene: a review. Neurotoxicology 2:567–588PubMedGoogle Scholar
  22. 22.
    Baker LE, Pynnonen D, Poling A (2004) Influence of reinforcer type and route of administration on gamma-hydroxybutyrate discrimination in rats. Psychopharmacology (Berl) 174:220–227CrossRefGoogle Scholar
  23. 23.
    Balster RL, Grech DM, Bobelis DJ (1992) Drug discrimination analysis of ethanol as an N-methyl-D-aspartate receptor antagonist. Eur J Pharmacol 222:39–42PubMedCrossRefGoogle Scholar
  24. 24.
    Bienkowski P, Stefanski R, Kostowski W (1996) Competitive NMDA receptor antagonist, CGP 40116, substitutes for the discriminative stimulus effects of ethanol. Eur J Pharmacol 314:277–280PubMedCrossRefGoogle Scholar
  25. 25.
    Grant KA, Colombo G (1993) Pharmacological analysis of the mixed discriminative stimulus effects of ethanol. Alcohol Alcohol Suppl 2:445–449PubMedGoogle Scholar
  26. 26.
    Shelton KL, Balster RL (1994) Ethanol drug discrimination in rats: substitution with GABA agonists and NMDA antagonists. Behav Pharmacol 5:441–451PubMedGoogle Scholar
  27. 27.
    Haney M, Hart C, Collins ED, Foltin RW (2005) Smoked cocaine discrimination in humans: effects of gabapentin. Drug Alcohol Depend 80:53–61PubMedCrossRefGoogle Scholar
  28. 28.
    Katz JL, Sharpe LG, Jaffe JH, Shores EI, Witkin JM (1991) Discriminative stimulus effects of inhaled cocaine in squirrel monkeys. Psychopharmacology (Berl) 105:317–321CrossRefGoogle Scholar
  29. 29.
    Wessinger WD, Martin BR, Balster RL (1985) Discriminative stimulus properties and brain distribution of phencyclidine in rats following administration by injection and smoke inhalation. Pharmacol Biochem Behav 23:607–612PubMedCrossRefGoogle Scholar
  30. 30.
    Macenski MJ, Shelton KL (2001) Self-administered ethanol as a discriminative stimulus in rats. Drug Alcohol Depend 64:243–247PubMedCrossRefGoogle Scholar
  31. 31.
    Shelton KL, Macenski MJ (1998) Discriminative stimulus effects of self-administered ethanol. Behav Pharmacol 9(4):329–336PubMedCrossRefGoogle Scholar
  32. 32.
    Shelton KL (2007) Inhaled toluene vapor as a discriminative stimulus. Behav Pharmacol 18:219–229PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cometto-Muniz JE, Cain WS, Abraham MH, Gola JM (2001) Ocular and nasal trigeminal detection of butyl acetate and toluene presented singly and in mixtures. Toxicol Sci 63:233–244PubMedCrossRefGoogle Scholar
  34. 34.
    Cometto-Muniz JE, Cain WS, Abraham MH, Gola JM (2002) Psychometric functions for the olfactory and trigeminal detectability of butyl acetate and toluene. J Appl Toxicol 22:25–30PubMedCrossRefGoogle Scholar
  35. 35.
    Winters W, Devriese S, Eelen P, Veulemans H, Nemery B, van den Bergh O (2001) Symptom learning in response to odors in a single odor respiratory learning paradigm. Ann N Y Acad Sci 933:315–318PubMedCrossRefGoogle Scholar
  36. 36.
    Rees DC, Coggeshall E, Balster RL (1985) Inhaled toluene produces pentobarbital-like discriminative stimulus effects in mice. Life Sci 37:1319–1325PubMedCrossRefGoogle Scholar
  37. 37.
    DE Vry J, Slangen JL (1986) Effects of training dose on discrimination and cross-generalization of chlordiazepoxide, pentobarbital and ethanol in the rat. Psychopharmacology (Berl) 88:341–345CrossRefGoogle Scholar
  38. 38.
    Stolerman IP, Naylor C, Elmer GI, Goldberg SR (1999) Discrimination and self-administration of nicotine by inbred strains of mice. Psychopharmacology (Berl) 141:297–306CrossRefGoogle Scholar
  39. 39.
    York JL (1978) Efficacy of ethanol as a discriminative stimulus in ethanol-preferring and ethanol-nonpreferring rats. Experientia 34:224–225PubMedCrossRefGoogle Scholar
  40. 40.
    Shelton KL, Slavova-Hernandez G (2009) Characterization of an inhaled toluene drug discrimination in mice: effect of exposure conditions and route of administration. Pharmacol Biochem Behav 92:614–620PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Benignus VA, Muller KE, Graham JA, Barton CN (1984) Toluene levels in blood and brain of rats as a function of toluene level in inspired air. Environ Res 33:39–46PubMedCrossRefGoogle Scholar
  42. 42.
    Lammers JH, van Asperen J, DE Groot D, Rijcken WR (2005) Behavioural effects and kinetics in brain in response to inhalation of constant or fluctuating toluene concentrations in the rat. Environ Toxicol Pharmacol 19:625–634PubMedCrossRefGoogle Scholar
  43. 43.
    Shelton KL (2010) Pharmacological characterization of the discriminative stimulus of inhaled 1,1,1-trichloroethane. J Pharmacol Exp Ther 333:612–620PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Shelton KL, Nicholson KL (2012) GABAA-positive modulator selective discriminative stimulus effects of 1,1,1-trichloroethane vapor. Drug Alcohol Depend 121:103–109PubMedCrossRefGoogle Scholar
  45. 45.
    Shelton KL, Nicholson KL (2014) Pharmacological classification of the abuse-related discriminative stimulus effects of trichloroethylene vapor. J Drug Alcohol Res 3:235839PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shelton KL, Nicholson KL (2010) GABA(A) positive modulator and NMDA antagonist-like discriminative stimulus effects of isoflurane vapor in mice. Psychopharmacology (Berl) 212:559–569CrossRefGoogle Scholar
  47. 47.
    Richardson KJ, Shelton KL (2015) N-methyl-D-aspartate receptor channel blocker-like discriminative stimulus effects of nitrous oxide gas. J Pharmacol Exp Ther 352:156–165PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Urban BW, Bleckwenn M, Barann M (2006) Interactions of anesthetics with their targets: non-specific, specific or both? Pharmacol Ther 111:729–770PubMedCrossRefGoogle Scholar
  49. 49.
    Duncan JR, Lawrence AJ (2013) Conventional concepts and new perspectives for understanding the addictive properties of inhalants. J Pharmacol Sci 122:237–243PubMedCrossRefGoogle Scholar
  50. 50.
    Del Re AM, Dopico AM, Woodward JJ (2006) Effects of the abused inhalant toluene on ethanol-sensitive potassium channels expressed in oocytes. Brain Res 1087:75–82Google Scholar
  51. 51.
    Shelton KL, Nicholson KL (2013) Benzodiazepine-like discriminative stimulus effects of toluene vapor. Eur J Pharmacol 720:131–137PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Richardson KJ (2014) Characterization of the discriminative stimulus effects of nitrous oxide. Doctoral dissertation, Virginia Commonwealth University, RichmondGoogle Scholar
  53. 53.
    Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148PubMedCrossRefGoogle Scholar
  54. 54.
    Mohler H (2006) GABA(A) receptor diversity and pharmacology. Cell Tissue Res 326:505–516PubMedCrossRefGoogle Scholar
  55. 55.
    Greiner AS, Larach DR (1989) The effect of benzodiazepine receptor antagonism by flumazenil on the MAC of halothane in the rat. Anesthesiology 70:644–648PubMedCrossRefGoogle Scholar
  56. 56.
    Hapfelmeier G, Zieglgansberger W, Haseneder R, Schneck H, Kochs E (2000) Nitrous oxide and xenon increase the efficacy of GABA at recombinant mammalian GABA(A) receptors. Anesth Analg 91:1542–1549PubMedCrossRefGoogle Scholar
  57. 57.
    Czech DA, Quock RM (1993) Nitrous oxide induces an anxiolytic-like effect in the conditioned defensive burying paradigm, which can be reversed with a benzodiazepine receptor blocker. Psychopharmacology (Berl) 113:211–216CrossRefGoogle Scholar
  58. 58.
    Beckstead MJ, Weiner JL, Eger EI 2nd, Gong D. H, Mihic SJ (2000) Glycine and gamma-aminobutyric acid(A) receptor function is enhanced by inhaled drugs of abuse. Mol Pharmacol 57:1199–1205Google Scholar
  59. 59.
    Beckley JT, Woodward JJ (2011) The abused inhalant toluene differentially modulates excitatory and inhibitory synaptic transmission in deep-layer neurons of the medial prefrontal cortex. Neuropsychopharmacology 36:1531–1542PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Maciver MB (2009) Abused inhalants enhance GABA-mediated synaptic inhibition. Neuropsychopharmacology 34:2296–2304PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    WILLIAMS JM, Stafford D, Steketee JD (2005) Effects of repeated inhalation of toluene on ionotropic GABA A and glutamate receptor subunit levels in rat brain. Neurochem Int 46:1–10PubMedCrossRefGoogle Scholar
  62. 62.
    Grasshoff C, Drexler B, Rudolph U, Antkowiak B (2006) Anaesthetic drugs: linking molecular actions to clinical effects. Curr Pharm Des 12:3665–3679PubMedCrossRefGoogle Scholar
  63. 63.
    Nagashima K, Zorumski CF, Izumi Y (2005) Nitrous oxide (laughing gas) facilitates excitability in rat hippocampal slices through gamma-aminobutyric acid A receptor-mediated disinhibition. Anesthesiology 102:230–234PubMedCrossRefGoogle Scholar
  64. 64.
    Orii R, Ohashi Y, Halder S, Giombini M, Maze M, Fujinaga M (2003) GABAergic interneurons at supraspinal and spinal levels differentially modulate the antinociceptive effect of nitrous oxide in Fischer rats. Anesthesiology 98:1223–1230PubMedCrossRefGoogle Scholar
  65. 65.
    Yamakura T, Harris RA (2000) Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology 93:1095–1101PubMedCrossRefGoogle Scholar
  66. 66.
    Greenblatt EP, Meng X (2001) Divergence of volatile anesthetic effects in inhibitory neurotransmitter receptors. Anesthesiology 94:1026–1033PubMedCrossRefGoogle Scholar
  67. 67.
    Harris BD, Moody EJ, Basile AS, Skolnick P (1994) Volatile anesthetics bidirectionally and stereospecifically modulate ligand binding to GABA receptors. Eur J Pharmacol 267:269–274PubMedCrossRefGoogle Scholar
  68. 68.
    Jia F, Yue M, Chandra D, Homanics GE, Goldstein PA, Harrison NL (2008) Isoflurane is a potent modulator of extrasynaptic GABA(A) receptors in the thalamus. J Pharmacol Exp Ther 324:1127–1135PubMedCrossRefGoogle Scholar
  69. 69.
    Rau V, Iyer SV, Oh I, Chandra D, Harrison N, Eger EI 2nd, Fanselow MS, Homanics GE, Sonner JM (2009) Gamma-aminobutyric acid type A receptor alpha 4 subunit knockout mice are resistant to the amnestic effect of isoflurane. Anesth Analg 109:1816–1822Google Scholar
  70. 70.
    Wood RW, Coleman JB, Schuler R, Cox C (1984) Anticonvulsant and antipunishment effects of toluene. J Pharmacol Exp Ther 230:407–412PubMedGoogle Scholar
  71. 71.
    Wiley JL, Bale AS, Balster RL (2003) Evaluation of toluene dependence and cross-sensitization to diazepam. Life Sci 72:3023–3033PubMedCrossRefGoogle Scholar
  72. 72.
    Bowen SE, Wiley JL, Balster RL (1996) The effects of abused inhalants on mouse behavior in an elevated plus-maze. Eur J Pharmacol 312:131–136PubMedCrossRefGoogle Scholar
  73. 73.
    Rago L, Kiivet RA, Harro J, Pold M (1988) Behavioral differences in an elevated plus-maze: correlation between anxiety and decreased number of GABA and benzodiazepine receptors in mouse cerebral cortex. Naunyn Schmiedebergs Arch Pharmacol 337:675–678PubMedCrossRefGoogle Scholar
  74. 74.
    Bowen SE, Wiley JL, Jones HE, Balster RL (1999) Phencyclidine- and diazepam-like discriminative stimulus effects of inhalants in mice. Exp Clin Psychopharmacol 7:28–37PubMedCrossRefGoogle Scholar
  75. 75.
    Grant KA (1999) Strategies for understanding the pharmacological effects of ethanol with drug discrimination procedures. Pharmacol Biochem Behav 64:261–267PubMedCrossRefGoogle Scholar
  76. 76.
    Mariathasan EA, Garcha HS, Stolerman IP (1991) Discriminative stimulus effects of amphetamine and pentobarbitone separately and as mixtures in rats. Behav Pharmacol 2:405–415PubMedCrossRefGoogle Scholar
  77. 77.
    Shoaib M, Baumann MH, Rothman RB, Goldberg SR, Schindler CW (1997) Behavioural and neurochemical characteristics of phentermine and fenfluramine administered separately and as a mixture in rats. Psychopharmacology (Berl) 131:296–306CrossRefGoogle Scholar
  78. 78.
    Stolerman IP, Mariathasan EA, Garcha HS (1991) NIDA Res Monogr 116:277–306Google Scholar
  79. 79.
    Stolerman IP, Mariathasan EA, White JA, Olufsen KS (1999) Drug mixtures and ethanol as compound internal stimuli. Pharmacol Biochem Behav 64:221–228PubMedCrossRefGoogle Scholar
  80. 80.
    Rees DC, Knisely JS, Balster RL, Jordan S, Breen TJ (1987) Pentobarbital-like discriminative stimulus properties of halothane, 1,1,1-trichloroethane, isoamyl nitrite, flurothyl and oxazepam in mice. J Pharmacol Exp Ther 241:507–515PubMedGoogle Scholar
  81. 81.
    Mcbain CJ, Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74:723–760PubMedCrossRefGoogle Scholar
  82. 82.
    Wroblewski JT, Danysz W (1989) Modulation of glutamate receptors: molecular mechanisms and functional implications. Annu Rev Pharmacol Toxicol 29:441–474PubMedCrossRefGoogle Scholar
  83. 83.
    Cruz SL, Balster RL, Woodward JJ (2000) Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Br J Pharmacol 131:1303–1308PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jevtovic-Todorovic V, Todorovic SM, Mennerick S, Powell S, Dikranian K, Benshoff N, Zorumski CF, Olney JW (1998) Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 4:460–463PubMedCrossRefGoogle Scholar
  85. 85.
    Mennerick S, Jevtovic-Todorovic V, Todorovic SM, Shen W, Olney JW, Zorumski CF (1998) Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 18:9716–9726PubMedCrossRefGoogle Scholar
  86. 86.
    Ogata J, Shiraishi M, Namba T, Smothers CT, Woodward JJ, Harris RA (2006) Effects of anesthetics on mutant N-methyl-D-aspartate receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther 318:434–443PubMedCrossRefGoogle Scholar
  87. 87.
    Balon N, Dupenloup L, Blanc F, Weiss M, Rostain JC (2003) Nitrous oxide reverses the increase in striatal dopamine release produced by N-methyl-D-aspartate infusion in the substantia nigra pars compacta in rats. Neurosci Lett 343:147–149PubMedCrossRefGoogle Scholar
  88. 88.
    DE Sousa SL, Dickinson R, Lieb WR, Franks NP (2000) Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 92:1055–1066PubMedCrossRefGoogle Scholar
  89. 89.
    Keita H, Henzel-Rouelle D, Dupont H, Desmonts JM, Mantz J (1999) Halothane and isoflurane increase spontaneous but reduce the N-methyl-D-aspartate-evoked dopamine release in rat striatal slices: evidence for direct presynaptic effects. Anesthesiology 91:1788–1797PubMedCrossRefGoogle Scholar
  90. 90.
    Ranft A, Kurz J, Deuringer M, Haseneder R, Dodt HU, Zieglgansberger W, Kochs E, Eder M, Hapfelmeier G (2004) Isoflurane modulates glutamatergic and GABAergic neurotransmission in the amygdala. Eur J Neurosci 20:1276–1280PubMedCrossRefGoogle Scholar
  91. 91.
    Wakasugi M, Hirota K, Roth SH, Ito Y (1999) The effects of general anesthetics on excitatory and inhibitory synaptic transmission in area CA1 of the rat hippocampus in vitro. Anesth Analg 88:676–680PubMedCrossRefGoogle Scholar
  92. 92.
    Cruz SL, Gauthereau MY, Camacho-Munoz C, Lopez-Rubalcava C, Balster RL (2003) Effects of inhaled toluene and 1,1,1-trichloroethane on seizures and death produced by N-methyl-D-aspartic acid in mice. Behav Brain Res 140:195–202PubMedCrossRefGoogle Scholar
  93. 93.
    Lo PS, Wu CY, Sue HZ, Chen HH (2009) Acute neurobehavioral effects of toluene: involvement of dopamine and NMDA receptors. Toxicology 265:34–40Google Scholar
  94. 94.
    Balster RL (1991) Discriminative stimulus properties of phencyclidine and other NMDA antagonists. NIDA Res Monogr 116:163–180Google Scholar
  95. 95.
    Nicholson KL, Balster RL (2009) The discriminative stimulus effects of N-methyl-D-aspartate glycine-site ligands in NMDA antagonist-trained rats. Psychopharmacology (Berl) 203:441–451CrossRefGoogle Scholar
  96. 96.
    Nicholson KL, Jones HE, Balster RL (1997) Evaluation of the reinforcing and discriminative stimulus effects of the N-methyl-D-aspartate competitive antagonist NPC 17742 in rhesus monkeys. Behav Pharmacol 8:396–407PubMedCrossRefGoogle Scholar
  97. 97.
    Shelton KL, Balster RL (2004) Effects of abused inhalants and GABA-positive modulators in dizocilpine discriminating inbred mice. Pharmacol Biochem Behav 79:219–228PubMedCrossRefGoogle Scholar
  98. 98.
    Balster RL (1989) Behavioral pharmacology of PCP, NMDA and sigma receptors. NIDA Res Monogr 95:270–274PubMedGoogle Scholar
  99. 99.
    Jackson A, Sanger DJ (1988) Is the discriminative stimulus produced by phencyclidine due to an interaction with N-methyl-D-aspartate receptors? Psychopharmacology (Berl) 96:87–92CrossRefGoogle Scholar
  100. 100.
    Willetts J, Balster RL (1988) Role of N-methyl-d-aspartate receptor stimulation and antagonism in PCP discrimination in rats. In: Domino EF, Kamenka JM (eds) Sigma and phencyclidine-like compounds as molecular probes in biology. NPP Books, Ann Arbor, pp 397–406Google Scholar
  101. 101.
    Crosby MJ, Hanson JE, Fleckenstein AE, Hanson GR (2002) Phencyclidine increases vesicular dopamine uptake. Eur J Pharmacol 438:75–78PubMedCrossRefGoogle Scholar
  102. 102.
    Nankai M, Klarica M, Fage D, Carter C (1998) The pharmacology of native N-methyl-D-aspartate receptor subtypes: different receptors control the release of different striatal and spinal transmitters. Prog Neuropsychopharmacol Biol Psychiatry 22:35–64PubMedCrossRefGoogle Scholar
  103. 103.
    Snell LD, Yi SJ, Johnson KM (1988) Comparison of the effects of MK-801 and phencyclidine on catecholamine uptake and NMDA-induced norepinephrine release. Eur J Pharmacol 145:223–226Google Scholar
  104. 104.
    France CP, Moerschbaecher JM, Woods JH (1991) MK-801 and related compounds in monkeys: discriminative stimulus effects and effects on a conditional discrimination. J Pharmacol Exp Ther 257:727–734PubMedGoogle Scholar
  105. 105.
    Geter-Douglass B, Witkin JM (1997) Dizocilpine-like discriminative stimulus effects of competitive NMDA receptor antagonists in mice. Psychopharmacology (Berl) 133:43–50CrossRefGoogle Scholar
  106. 106.
    Bowen SE (2006) Increases in amphetamine-like discriminative stimulus effects of the abused inhalant toluene in mice. Psychopharmacology (Berl) 186:517–524CrossRefGoogle Scholar
  107. 107.
    Martin DC, Plagenhoef M, Abraham J, Dennison RL, Aronstam RS (1995) Volatile anesthetics and glutamate activation of N-methyl-D-aspartate receptors. Biochem Pharmacol 49:809–817PubMedCrossRefGoogle Scholar
  108. 108.
    Barry H III, Krimmer EC (1978) Similarities and differences in discriminative stimulus effects of chlordiazepoxide, pentobarbital, ethanol and other sedatives. In: Colpaert FC, Rosecrans JA (eds) Stimulus properties of drugs: ten Years of progress. Elsevier, Amsterdam, pp 31–51Google Scholar
  109. 109.
    Butelman EE, Baron SS, Woods JJ (1993) Ethanol effects in pigeons trained to discriminate MK-801, PCP or CGS-19755. Behav Pharmacol 4:57–60PubMedCrossRefGoogle Scholar
  110. 110.
    York JL, Bush R (1982) Studies on the discriminative stimulus properties of ethanol in squirrel monkeys. Psychopharmacology (Berl) 77:212–216CrossRefGoogle Scholar
  111. 111.
    Rees DC, Knisely JS, Breen TJ, Balster RL (1987) Toluene, halothane, 1,1,1-trichloroethane and oxazepam produce ethanol-like discriminative stimulus effects in mice. J Pharmacol Exp Ther 243:931–937PubMedGoogle Scholar
  112. 112.
    Bowen SE, Balster RL (1997) Desflurane, enflurane, isoflurane and ether produce ethanol-like discriminative stimulus effects in mice. Pharmacol Biochem Behav 57:191–198PubMedCrossRefGoogle Scholar
  113. 113.
    Bale AS, Meacham CA, Benignus VA, Bushnell PJ, Shafer TJ (2005) Volatile organic compounds inhibit human and rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Toxicol Appl Pharmacol 205:77–88PubMedCrossRefGoogle Scholar
  114. 114.
    Suzuki T, Ueta K, Sugimoto M, Uchida I, Mashimo T (2003) Nitrous oxide and xenon inhibit the human (alpha 7)5 nicotinic acetylcholine receptor expressed in Xenopus oocyte. Anesth Analg 96:443–448PubMedCrossRefGoogle Scholar
  115. 115.
    Dilger JP, Brett RS, Mody HI (1993) The effects of isoflurane on acetylcholine receptor channels.: 2. Currents elicited by rapid perfusion of acetylcholine. Mol Pharmacol 44:1056–1063PubMedGoogle Scholar
  116. 116.
    Mowrey DD, Liu Q, Bondarenko V, Chen Q, Seyoum E, Xu Y, Wu J, Tang P (2013) Insights into distinct modulation of alpha7 and alpha7beta2 nicotinic acetylcholine receptors by the volatile anesthetic isoflurane. J Biol Chem 288:35793–35800Google Scholar
  117. 117.
    Wachtel RE, Wegrzynowicz ES (1991) Mechanism of volatile anesthetic action on ion channels. Ann N Y Acad Sci 625:116–128PubMedCrossRefGoogle Scholar
  118. 118.
    Yamashita M, Mori T, Nagata K, Yeh JZ, Narahashi T (2005) Isoflurane modulation of neuronal nicotinic acetylcholine receptors expressed in human embryonic kidney cells. Anesthesiology 102:76–84PubMedCrossRefGoogle Scholar
  119. 119.
    Krasowski MD, Harrison NL (2000) The actions of ether, alcohol and alkane general anaesthetics on GABAA and glycine receptors and the effects of TM2 and TM3 mutations. Br J Pharmacol 129:731–743PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lopreato GF, Phelan R, Borghese CM, Beckstead MJ, Mihic SJ (2003) Inhaled drugs of abuse enhance serotonin-3 receptor function. Drug Alcohol Depend 70:11–15PubMedCrossRefGoogle Scholar
  121. 121.
    Solt K, Stevens RJ, Davies PA, Raines DE (2005) General anesthetic-induced channel gating enhancement of 5-hydroxytryptamine type 3 receptors depends on receptor subunit composition. J Pharmacol Exp Ther 315:771–776PubMedCrossRefGoogle Scholar
  122. 122.
    Suzuki T, Koyama H, Sugimoto M, Uchida I, Mashimo T (2002) The diverse actions of volatile and gaseous anesthetics on human-cloned 5-hydroxytryptamine 3 receptors expressed in Xenopus oocytes. Anesthesiology 96:699–704PubMedCrossRefGoogle Scholar
  123. 123.
    Paez-Martinez N, Ambrosio E, Garcia-Lecumberri C, Rocha L, Montoya GL, Cruz SL (2008) Toluene and TCE decrease binding to mu-opioid receptors, but not to benzodiazepine and NMDA receptors in mouse brain. Ann N Y Acad Sci 1139:390–401PubMedCrossRefGoogle Scholar
  124. 124.
    Emmanouil DE, Quock RM (2007) Advances in understanding the actions of nitrous oxide. Anesth Prog 54:9–18PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Koyama T, Fukuda K (2010) Involvement of the kappa-opioid receptor in nitrous oxide-induced analgesia in mice. J Anesth 24:297–299PubMedCrossRefGoogle Scholar
  126. 126.
    Zacny JP, Janiszewski D, Sadeghi P, Black ML (1999) Reinforcing, subjective, and psychomotor effects of sevoflurane and nitrous oxide in moderate-drinking healthy volunteers. Addiction 94:1817–1828PubMedCrossRefGoogle Scholar
  127. 127.
    Zacny JP, Sparacino G, Hoffmann P, Martin R, Lichtor JL (1994) The subjective, behavioral and cognitive effects of subanesthetic concentrations of isoflurane and nitrous oxide in healthy volunteers. Psychopharmacology (Berl) 114:409–416CrossRefGoogle Scholar
  128. 128.
    Hynes MD, Hymson DL (1984) Nitrous oxide generalizes to a discriminative stimulus produced by ethylketocyclazocine but not morphine. Eur J Pharmacol 105:155–159PubMedCrossRefGoogle Scholar
  129. 129.
    Holtzman SG (1980) Phencyclidine-like discriminative effects of opioids in the rat. J Pharmacol Exp Ther 214:614–619PubMedGoogle Scholar
  130. 130.
    Hein DW, Young AM, Herling S, Woods JH (1981) Pharmacological analysis of the discriminative stimulus characteristics of ethylketazocine in the rhesus monkey. J Pharmacol Exp Ther 218:7–15PubMedGoogle Scholar
  131. 131.
    Herling S, Shannon HE (1982) Discriminative effects of ethylketazocine in the rat stereospecificity and antagonism by naloxone. Life Sci 31:2371–2374PubMedCrossRefGoogle Scholar
  132. 132.
    Shearman GT, Herz A (1982) Discriminative stimulus properties of narcotic and non-narcotic drugs in rats trained to discriminate opiate kappa-receptor agonists. Psychopharmacology (Berl) 78:63–66CrossRefGoogle Scholar
  133. 133.
    Celani MF, Fuxe K, Agnati LF, Andersson K, Hansson T, Gustafsson JA, Battistini N, Eneroth P (1983) Effects of subacute treatment with toluene on central monoamine receptors in the rat. Reduced affinity in [3H]5-hydroxytryptamine binding sites and in [3H]spiperone binding sites linked to dopamine receptors. Toxicol Lett 17:275–281PubMedCrossRefGoogle Scholar
  134. 134.
    Castilla-Serna L, Barragan-Mejia MG, Rodriguez-Perez RA, Garcia Rillo A, Reyes-Vazquez C. (1993) Effects of acute and chronic toluene inhalation on behavior, monoamine metabolism and specific binding (3H-serotonin and 3H-norepinephrine) of rat brain. Arch Med Res 24:169–176Google Scholar
  135. 135.
    Riegel AC, Zapata A, Shippenberg TS, French ED (2007) The abused inhalant toluene increases dopamine release in the nucleus accumbens by directly stimulating ventral tegmental area neurons. Neuropsychopharmacology 32:1558–1569PubMedCrossRefGoogle Scholar
  136. 136.
    Riegel AC, Ali SF, Torinese S, French ED (2004) Repeated exposure to the abused inhalant toluene alters levels of neurotransmitters and generates peroxynitrite in nigrostriatal and mesolimbic nuclei in rat. Ann N Y Acad Sci 1025:543–551PubMedCrossRefGoogle Scholar
  137. 137.
    Rea TM, Nash JF, Zabik JE, Born GS, Kessler WV (1984) Effects of toluene inhalation on brain biogenic amines in the rat. Toxicology 31:143–150PubMedCrossRefGoogle Scholar
  138. 138.
    Kondo H, Huang J, Ichihara G, Kamijima M, Saito I, Shibata E, Ono Y, Hisanaga N, Takeuchi Y, Nakahara D (1995) Toluene induces behavioral activation without affecting striatal dopamine metabolism in the rat: behavioral and microdialysis studies. Pharmacol Biochem Behav 51:97–101PubMedCrossRefGoogle Scholar
  139. 139.
    El-Maghrabi EA, Eckenhoff RG (1993) Inhibition of dopamine transport in rat brain synaptosomes by volatile anesthetics. Anesthesiology 78:750–756Google Scholar
  140. 140.
    Nader MA, Grant KA, Gage HD, Ehrenkaufer RL, Kaplan JR, Mach RH (1999) PET imaging of dopamine D2 receptors with [18F]fluoroclebopride in monkeys: effects of isoflurane- and ketamine-induced anesthesia. Neuropsychopharmacology 21:589–596PubMedCrossRefGoogle Scholar
  141. 141.
    Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato K, Harada N, Nakanishi S (1999) Isoflurane anesthesia enhances the inhibitory effects of cocaine and GBR12909 on dopamine transporter: PET studies in combination with microdialysis in the monkey brain. Brain Res 849:85–96PubMedCrossRefGoogle Scholar
  142. 142.
    Callahan PM, Cunningham KA (1994) Involvement of 5-HT2C receptors in mediating the discriminative stimulus properties of m-chlorophenylpiperazine (mCPP). Eur J Pharmacol 257:27–38PubMedCrossRefGoogle Scholar
  143. 143.
    Fiorella D, Helsley S, Rabin RA, Winter JC (1995) 5-HT2C receptor-mediated phosphoinositide turnover and the stimulus effects of m-chlorophenylpiperazine. Psychopharmacology (Berl) 122:237–243CrossRefGoogle Scholar
  144. 144.
    Fiorella D, Rabin RA, Winter JC (1995) The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of m-chlorophenylpiperazine. Psychopharmacology (Berl) 119:222–230CrossRefGoogle Scholar
  145. 145.
    Grant KA, Colombo G, Gatto GJ (1997) Characterization of the ethanol-like discriminative stimulus effects of 5-HT receptor agonists as a function of ethanol training dose. Psychopharmacology (Berl) 133:133–141CrossRefGoogle Scholar
  146. 146.
    Ator NA, Kautz MA (2000) Differentiating benzodiazepine- and barbiturate-like discriminative stimulus effects of lorazepam, diazepam, pentobarbital, imidazenil and zaleplon in two- versus three-lever procedures. Behav Pharmacol 11:1–14PubMedCrossRefGoogle Scholar
  147. 147.
    York JL (1978) A comparison of the discriminative stimulus effects of ethanol, barbital, and phenobarbital in rats. Psychopharmacology (Berl) 60:19–23CrossRefGoogle Scholar
  148. 148.
    Gold LH, Balster RL (1993) Effects of NMDA receptor antagonists in squirrel monkeys trained to discriminate the competitive NMDA receptor antagonist NPC 12626 from saline. Eur J Pharmacol 230:285–292PubMedCrossRefGoogle Scholar
  149. 149.
    Tricklebank MD, Singh L, Oles RJ, Preston C, Iversen SD (1989) The behavioural effects of MK-801: a comparison with antagonists acting non-competitively and competitively at the NMDA receptor. Eur J Pharmacol 167:127–135PubMedCrossRefGoogle Scholar
  150. 150.
    Witkin JM, Steele TD, Sharpe LG (1997) Effects of strychnine-insensitive glycine receptor ligands in rats discriminating dizocilpine or phencyclidine from saline. J Pharmacol Exp Ther 280:46–52PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations