pp 1-23 | Cite as

Lysine-Specific Histone Demethylases 1/2 (LSD1/2) and Their Inhibitors

  • Takayoshi SuzukiEmail author
Part of the Topics in Medicinal Chemistry book series


Histone lysine methylation, one of the epigenetic mechanisms, plays a pivotal role in various biological events, including cell cycle progression, immune response, and signal transduction. Histone methylation is closely associated with the oncogenesis and proliferation of cancer cells, and its alteration has been identified in many cancer cells. In addition, histone methylation is involved in such non-cancerous diseases as globin disorders and neurological disorders. Several enzymes that control histone methylation have been identified, including lysine-specific histone demethylases 1/2 (LSD1/2). As LSD1/2 are involved in various diseases, their inhibitors are considered useful not only as a chemical tool for probing the biology of LSD1/2 but also as therapeutic agents. In this chapter, the biology, pharmacology, and inhibitors of LSD1/2 are presented, and the potential of LSD inhibitors as therapeutic agents is discussed.


Demethylase Disease Epigenetics Histone Inhibitor Lysine Methylation 



Antibody-drug conjugates


Acute myelogenous leukemia


Androgen receptor


All-trans-retinoic acid


Central nervous system


Drug delivery systems


Estrogen receptor α


Flavin adenine dinucleotide


Glioma stem cells


Host cell factor-1


Herpes simplex virus


Lysine demethylase


Lysine methyltransferase


Lysine-specific histone demethylase


Monoamine oxidase


Myelodysplastic syndrome


Non-small cell lung cancer




PCPA-drug conjugate


Small cell lung carcinoma


Small interfering RNA


Varicella zoster virus


Compliance with Ethical Standards

Funding: This work was partially supported by the JST CREST program (T.S.; JPMJCR14L2).

Conflict of Interest: The author declares no conflict of interest.

Ethical Approval: Not applicable.

Informed Consent: Not applicable.


  1. 1.
    Kubicek S, Jenuwein T (2004) A crack in histone lysine methylation. Cell 119:903–906Google Scholar
  2. 2.
    Bannister AJ, Kouzarides T (2005) Reversing histone methylation. Nature 436:1103–1106Google Scholar
  3. 3.
    Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411Google Scholar
  4. 4.
    Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837Google Scholar
  5. 5.
    Itoh Y, Suzuki T, Miyata N (2013) Small-molecular modulators of cancer-associated epigenetic mechanisms. Mol Biosyst 9:873–896Google Scholar
  6. 6.
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953Google Scholar
  7. 7.
    Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AH, Günther T, Buettner R, Schüle R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439Google Scholar
  8. 8.
    Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, Berger SL (2007) p53 is regulated by the lysine demethylase LSD1. Nature 449:105–108Google Scholar
  9. 9.
    Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41:125–129Google Scholar
  10. 10.
    Yang J, Huang J, Dasgupta M, Sears N, Miyagi M, Wang B, Chance MR, Chen X, Du Y, Wang Y, An L, Wang Q, Lu T, Zhang X, Wang Z, Stark GR (2010) Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci U S A 107:21499–21504Google Scholar
  11. 11.
    Kontaki H, Talianidis I (2010) Lysine methylation regulates E2F1-induced cell death. Mol Cell 39:152–160Google Scholar
  12. 12.
    Cho HS, Suzuki T, Dohmae N, Hayami S, Unoki M, Yoshimatsu M, Toyokawa G, Takawa M, Chen T, Kurash JK, Field HI, Ponder BA, Nakamura Y, Hamamoto R (2011) Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. Cancer Res 71:655–660Google Scholar
  13. 13.
    Karytinos A, Forneris F, Profumo A, Ciossani G, Battaglioli E, Binda C, Mattevi A (2009) A novel mammalian flavin-dependent histone demethylase. J Biol Chem 284:17775–17782Google Scholar
  14. 14.
    Fang R, Barbera AJ, Xu Y, Rutenberg M, Leonor T, Bi Q, Lan F, Mei P, Yuan GC, Lian C, Peng J, Cheng D, Sui G, Kaiser UB, Shi Y, Shi YG (2010) Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol Cell 39:222–233Google Scholar
  15. 15.
    Yang Z, Jiang J, Stewart MD, Qi S, Yamane K, Li J, Zhang Y, Wong J (2010) AOF1 is a histone H3K4 demethylase possessing demethylase activity-independent repression function. Cell Res 20:276–287Google Scholar
  16. 16.
    Yang Y, Yin X, Yang H, Xu Y (2015) Histone demethylase LSD2 acts as an E3 ubiquitin ligase and inhibits cancer cell growth through promoting proteasomal degradation of OGT. Mol Cell 58:47–59Google Scholar
  17. 17.
    Yang M, Culhane JC, Szewczuk LM, Gocke CB, Brautigam CA, Tomchick DR, Machius M, Cole PA, Yu H (2007) Structural basis of histone demethylation by LSD1 revealed by suicide inactivation. Nat Struct Mol Biol 14:535–539Google Scholar
  18. 18.
    Baron R, Binda C, Tortorici M, McCammon JA, Mattevi A (2011) Molecular mimicry and ligand recognition in binding and catalysis by the histone demethylase LSD1-CoREST complex. Structure 19:212–220Google Scholar
  19. 19.
    Forneris F, Binda C, Dall’Aglio A, Fraaije MW, Battaglioli E, Mattevi A (2006) A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1. J Biol Chem 281:35289–35295Google Scholar
  20. 20.
    Fang R, Chen F, Dong Z, Hu D, Barbera AJ, Clark EA, Fang J, Yang Y, Mei P, Rutenberg M, Li Z, Zhang Y, Xu Y, Yang H, Wang P, Simon MD, Zhou Q, Li J, Marynick MP, Li X, Lu H, Kaiser UB, Kingston RE, Xu Y, Shi YG (2013) LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol Cell 49:558–570Google Scholar
  21. 21.
    Chen F, Yang H, Dong Z, Fang J, Wang P, Zhu T, Gong W, Fang R, Shi YG, Li Z, Xu Y (2013) Structural insight into substrate recognition by histone demethylase LSD2/KDM1b. Cell Res 23:306–309Google Scholar
  22. 22.
    Zhu X, Wang J, Ju BG, Rosenfeld MG (2007) Signaling and epigenetic regulation of pituitary development. Curr Opin Cell Biol 19:605–611Google Scholar
  23. 23.
    Hirano K, Namihira M (2016) LSD1 mediates neuronal differentiation of human fetal neural stem cells by controlling the expression of a novel target gene, HEYL. Stem Cells 34:1872–1882Google Scholar
  24. 24.
    Chen Y, Kim J, Zhang R, Yang X, Zhang Y, Fang J, Chen Z, Teng L, Chen X, Ge H, Atadja P, Li E, Chen T, Qi W (2016) Histone demethylase LSD1 promotes adipocyte differentiation through repressing Wnt signaling. Cell Chem Biol 23:1228–1240Google Scholar
  25. 25.
    Schulte JH, Lim S, Schramm A, Friedrichs N, Koster J, Versteeg R, Ora I, Pajtler K, Klein-Hitpass L, Kuhfittig-Kulle S, Metzger E, Schűle R, Eggert A, Buettner R, Kirfel J (2009) Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 69:2065–2071Google Scholar
  26. 26.
    Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, Metzger E, Schüle R (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9:347–353Google Scholar
  27. 27.
    Scoumanne A, Chen X (2007) The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners. J Biol Chem 282:15471–15475Google Scholar
  28. 28.
    Lim S, Janzer A, Becker A, Zimmer A, Schüle R, Buettner R, Kirfel J (2010) Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 31:512–520Google Scholar
  29. 29.
    Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L, Yang X, Shi L, Li R, Li Y, Zhang Y, Li Q, Yi X, Shang Y (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138:660–672Google Scholar
  30. 30.
    Hayami S, Kelly JD, Cho H, Yoshimatsu M, Unoki M, Tsunoda T, Field HI, Neal DE, Yamaue H, Ponder BAJ, Nakamura Y, Hamamoto R (2011) Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer 128:574–586Google Scholar
  31. 31.
    Huang Y, Stewart TM, Wu Y, Baylin SB, Marton LJ, Perkins B, Jones RJ, Woster PM, Casero RA Jr (2009) Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin Cancer Res 15:7217–7228Google Scholar
  32. 32.
    Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z, Chen S, Nelson PS, Liu XS, Brown M, Balk SP (2011) Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20:457–471Google Scholar
  33. 33.
    Pollock JA, Larrea MD, Jasper JS, McDonnell DP, McCafferty DG (2012) Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERα-dependent and -independent manners. ACS Chem Biol 7:1221–1231Google Scholar
  34. 34.
    Park UH, Kang MR, Kim EJ, Kwon YS, Hur W, Yoon SK, Song BJ, Park JH, Hwang JT, Jeong JC, Um SJ (2016) ASXL2 promotes proliferation of breast cancer cells by linking ERα to histone methylation. Oncogene 35:3742–3752Google Scholar
  35. 35.
    Lv T, Yuan D, Miao X, Lv Y, Zhan P, Shen X, Song Y (2012) Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS One 7:e35065Google Scholar
  36. 36.
    Fu X, Zhang P, Yu B (2017) Advances toward LSD1 inhibitors for cancer therapy. Future Med Chem 9:1227–1242Google Scholar
  37. 37.
    Wang J, Lu F, Ren Q, Sun H, Xu Z, Lan R, Liu Y, Ward D, Quan J, Ye T, Zhang H (2011) Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res 71:7238–7249Google Scholar
  38. 38.
    Zhang X, Lu F, Wang J, Yin F, Xu Z, Qi D, Wu X, Cao Y, Liang W, Liu Y, Sun H, Ye T, Zhang H (2013) Pluripotent stem cell protein Sox2 confers sensitivity to LSD1 inhibition in cancer cells. Cell Rep 5:445–457Google Scholar
  39. 39.
    Stewart CA, Byers LA (2015) Altering the course of small cell lung cancer: targeting cancer stem cells via LSD1 inhibition. Cancer Cell 28:4–6Google Scholar
  40. 40.
    Chen L, Vasilatos SN, Qin Y, Katz TA, Cao C, Wu H, Tasdemir N, Levine KM, Oesterreich S, Davidson NE, Huang Y (2017) Functional characterization of lysine-specific demethylase 2 (LSD2/KDM1B) in breast cancer progression. Oncotarget 8:81737–81753Google Scholar
  41. 41.
    Liang Y, Vogel JL, Narayanan A, Peng H, Kristie TM (2009) Inhibition of the histone demethylase LSD1 blocks α-herpesvirus lytic replication and reactivation from latency. Nat Med 15:1312–1317Google Scholar
  42. 42.
    Narayanan A, Ruyechan WT, Kristie TM (2007) The coactivator host cell factor-1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection. Proc Natl Acad Sci U S A 104:10835–10840Google Scholar
  43. 43.
    Sakane N, Kwon HS, Pagans S, Kaehlcke K, Mizusawa Y, Kamada M, Lassen KG, Chan J, Greene WC, Schnoelzer M, Ott M (2011) Activation of HIV transcription by the viral Tat protein requires a demethylation step mediated by lysine-specific demethylase 1 (LSD1/KDM1). PLoS Pathog 7:e1002184Google Scholar
  44. 44.
    Andrisani OM (2013) Deregulation of epigenetic mechanisms by the hepatitis B virus X protein in hepatocarcinogenesis. Viruses 5:858–872Google Scholar
  45. 45.
    Xu J, Bauer DE, Kerenyi MA, Vo TD, Hou S, Hsu YJ, Yao H, Trowbridge JJ, Mandel G, Orkin SH (2013) Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci U S A 110:6518–6523Google Scholar
  46. 46.
    Cui S, Kolodziej KE, Obara N, Amaral-Psarris A, Demmers J, Shi L, Engel JD, Grosveld F, Strouboulis J, Tanabe O (2011) Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol 31:3298–3311Google Scholar
  47. 47.
    Shi L, Cui S, Engel JD, Tanabe O (2013) Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat Med 19:291–294Google Scholar
  48. 48.
    Hino S, Sakamoto A, Nagaoka K, Anan K, Wang Y, Mimasu S, Umehara T, Yokoyama S, Kosai K, Nakao M (2012) FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 3:758Google Scholar
  49. 49.
    Buesa C, Mascaró C, Rotllant D, Griñan-Ferré C, Pallàs M, Maes T (2015) The dual LSD1/MAOB inhibitor ORY2001 prevents the development of the memory deficit in SAMP8 mice through induction of neuronal plasticity and reduction of neuroinflammation. Alzheimers Dement 11:P905Google Scholar
  50. 50.
    Rusconi F, Grillo B, Ponzoni L, Bassani S, Toffolo E, Paganini L, Mallei A, Braida D, Passafaro M, Popoli M, Sala M, Battaglioli E (2016) LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior. Proc Natl Acad Sci U S A 113:3651–3656Google Scholar
  51. 51.
    Schmidt DM, McCafferty DG (2007) trans-2-Phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry 46:4408–4416Google Scholar
  52. 52.
    Yang M, Culhane JC, Szewczuk LM, Jalili P, Ball HL, Machius M, Cole PA, Yu H (2007) Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine. Biochemistry 46:8058–8065Google Scholar
  53. 53.
    Kauffman EC, Robinson BD, Downes MJ, Powell LG, Lee MM, Scherr DS, Gudas LJ, Mongan NP (2011) Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. Mol Carcinog 50:931–944Google Scholar
  54. 54.
    Schenk T, Chen WC, Göllner S, Howell L, Jin L, Hebestreit K, Klein HU, Popescu AC, Burnett A, Mills K, Casero RA Jr, Marton L, Woster P, Minden MD, Dugas M, Wang JC, Dick JE, Müller-Tidow C, Petrie K, Zelent A (2012) Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med 18:605–611Google Scholar
  55. 55.
    Tsutsumi T, Iwao K, Hayashi H, Kirihara T, Kawaji T, Inoue T, Hino S, Nakao M, Tanihara H (2016) Potential neuroprotective effects of an LSD1 inhibitor in retinal ganglion cells via p38 MAPK activity. Invest Ophthalmol Vis Sci 57:6461–6473Google Scholar
  56. 56.
    Ueda R, Suzuki T, Mino K, Tsumoto H, Nakagawa H, Hasegawa M, Sasaki R, Mizukami T, Miyata N (2009) Identification of cell-active lysine specific demethylase 1-selective inhibitors. J Am Chem Soc 131:17536–17537Google Scholar
  57. 57.
    Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci U S A 105:5739–5744Google Scholar
  58. 58.
    Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A (2003) Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci U S A 100:9750–9755Google Scholar
  59. 59.
    Etani T, Suzuki T, Naiki T, Naiki-Ito A, Ando R, Iida K, Kawai N, Tozawa K, Miyata N, Kohri K, Takahashi S (2015) NCL1, a highly selective lysine-specific demethylase 1 inhibitor, suppresses prostate cancer without adverse effect. Oncotarget 6:2865–2878Google Scholar
  60. 60.
    Ogasawara D, Itoh Y, Tsumoto H, Kakizawa T, Mino K, Fukuhara K, Nakagawa H, Hasegawa M, Sasaki R, Mizukami T, Miyata N, Suzuki T (2013) Lysine-specific demethylase 1-selective inactivators: protein-targeted drug delivery mechanism. Angew Chem Int Ed 52:8620–8624Google Scholar
  61. 61.
    Kakizawa T, Mizukami T, Itoh Y, Hasegawa M, Sasaki R, Suzuki T (2016) Evaluation of phenylcyclopropylamine compounds by enzymatic assay of lysine-specific demethylase 2 in the presence of NPAC peptide. Bioorg Med Chem Lett 26:1193–1195Google Scholar
  62. 62.
    Sugino N, Kawahara M, Tatsumi G, Kanai A, Matsui H, Yamamoto R, Nagai Y, Fujii S, Shimazu Y, Hishizawa M, Inaba T, Andoh A, Suzuki T, Takaori-Kondo A (2017) A novel LSD1 inhibitor NCD38 ameliorates MDS-related leukemia with complex karyotype by attenuating leukemia programs via activating super-enhancers. Leukemia 31:2303–2314Google Scholar
  63. 63.
    Rao S, Zafar A (2014) Methods and compositions comprising lysine-specific demethylase inhibitors (LSD) for inhibiting growth of cancer stem cells. Patent Appl WO2014205511A1Google Scholar
  64. 64.
    Sareddy GR, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi RK (2017) Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene 36:2423–2434Google Scholar
  65. 65.
    Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, van Aller GS, Schneck JL, Carson JD, Liu Y, Butticello M, Bonnette WG, Gorman SA, Degenhardt Y, Bai Y, McCabe MT, Pappalardi MB, Kasparec J, Tian X, McNulty KC, Rouse M, McDevitt P, Ho T, Crouthamel M, Hart TK, Concha NO, McHugh CF, Miller WH, Dhanak D, Tummino PJ, Carpenter CL, Johnson NW, Hann CL, Kruger RG (2015) A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28:57–69Google Scholar
  66. 66.
    Maes T, Mascaró C, Ortega A, Lunardi S, Ciceri F, Somervaille TC, Buesa C (2015) KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics 7:609–626Google Scholar
  67. 67.
    Vianello P, Botrugno OA, Cappa A, Dal Zuffo R, Dessanti P, Mai A, Marrocco B, Mattevi A, Meroni G, Minucci S, Stazi G, Thaler F, Trifiró P, Valente S, Villa M, Varasi M, Mercurio C (2016) Discovery of a novel inhibitor of histone lysine-specific demethylase 1A (KDM1A/LSD1) as orally active antitumor agent. J Med Chem 59:1501–1517Google Scholar
  68. 68.
    Rotili D, Tomassi S, Conte M, Benedetti R, Tortorici M, Ciossani G, Valente S, Marrocco B, Labella D, Novellino E, Mattevi A, Altucci L, Tumber A, Yapp C, King ON, Hopkinson RJ, Kawamura A, Schofield CJ, Mai A (2014) Pan-histone demethylase inhibitors simultaneously targeting Jumonji C and lysine-specific demethylases display high anticancer activities. J Med Chem 57:42–55Google Scholar
  69. 69.
    Ota Y, Itoh Y, Kaise A, Ohta K, Endo Y, Masuda M, Sowa Y, Sakai T, Suzuki T (2016) Targeting cancer with PCPA-drug conjugates: LSD1 inhibition-triggered release of 4-hydroxytamoxifen. Angew Chem Int Ed 55:16115–16118Google Scholar
  70. 70.
    Schmitt ML, Hauser AT, Carlino L, Pippel M, Schulz-Fincke J, Metzger E, Willmann D, Yiu T, Barton M, Schüle R, Sippl W, Jung M (2013) Nonpeptidic propargylamines as inhibitors of lysine specific demethylase 1 (LSD1) with cellular activity. J Med Chem 56:7334–7342Google Scholar
  71. 71.
    Lee MG, Wynder C, Schmidt DM, McCafferty DG, Shiekhattar R (2006) Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem Biol 13:563–567Google Scholar
  72. 72.
    Culhane JC, Wang D, Yen PM, Cole PA (2010) Comparative analysis of small molecules and histone substrate analogues as LSD1 lysine demethylase inhibitors. J Am Chem Soc 132:3164–3176Google Scholar
  73. 73.
    Prusevich P, Kalin JH, Ming SA, Basso M, Givens J, Li X, Hu J, Taylor MS, Cieniewicz AM, Hsiao PY, Huang R, Roberson H, Adejola N, Avery LB, Casero RA Jr, Taverna SD, Qian J, Tackett AJ, Ratan RR, McDonald OG, Feinberg AP, Cole PA (2014) A selective phenelzine analogue inhibitor of histone demethylase LSD1. ACS Chem Biol 9:1284–1293Google Scholar
  74. 74.
    Hazeldine S, Pachaiyappan B, Steinbergs N, Nowotarski S, Hanson AS, Casero RA Jr, Woster PM (2012) Low molecular weight amidoximes that act as potent inhibitors of lysine-specific demethylase 1. J Med Chem 55:7378–7391Google Scholar
  75. 75.
    Wu F, Zhou C, Yao Y, Wei L, Feng Z, Deng L, Song Y (2016) 3-(Piperidin-4-ylmethoxy)pyridine containing compounds are potent inhibitors of lysine specific demethylase 1. J Med Chem 59:253–263Google Scholar
  76. 76.
    Sorna V, Theisen ER, Stephens B, Warner SL, Bearss DJ, Vankayalapati H, Sharma S (2013) High-throughput virtual screening identifies novel N′-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors. J Med Chem 56:9496–9508Google Scholar
  77. 77.
    Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740Google Scholar
  78. 78.
    Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SG, Liu K, Iyer SP, Bearss D, Bhalla KN (2014) Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia 28:2155–2164Google Scholar
  79. 79.
    Mould DP, Alli C, Bremberg U, Cartic S, Jordan AM, Geitmann M, Maiques-Diaz A, McGonagle AE, Somervaille TCP, Spencer GJ, Turlais F, Ogilvie DJ (2017) Development of (4-cyanophenyl)glycine derivatives as reversible inhibitors of lysine specific demethylase 1. J Med Chem 60:7984–7999Google Scholar
  80. 80.
    Mould DP, Bremberg U, Jordan AM, Geitmann M, Maiques-Diaz A, McGonagle AE, Small HF, Somervaille TCP, Ogilvie DJ (2017) Development of 5-hydroxypyrazole derivatives as reversible inhibitors of lysine specific demethylase 1. Bioorg Med Chem Lett 27:3190–3195Google Scholar
  81. 81.
    Mould DP, Bremberg U, Jordan AM, Geitmann M, McGonagle AE, Somervaille TCP, Spencer GJ, Ogilvie DJ (2017) Development and evaluation of 4-(pyrrolidin-3-yl)benzonitrile derivatives as inhibitors of lysine specific demethylase 1. Bioorg Med Chem Lett 27:4755–4759Google Scholar
  82. 82.
    Vianello P, Sartori L, Amigoni F, Cappa A, Fagá G, Fattori R, Legnaghi E, Ciossani G, Mattevi A, Meroni G, Moretti L, Cecatiello V, Pasqualato S, Romussi A, Thaler F, Trifiró P, Villa M, Botrugno OA, Dessanti P, Minucci S, Vultaggio S, Zagarrí E, Varasi M, Mercurio C (2017) Thieno[3,2-b]pyrrole-5-carboxamides as new reversible inhibitors of histone lysine demethylase KDM1A/LSD1. Part 2: structure-based drug design and structure-activity relationship. J Med Chem 60:1693–1715Google Scholar
  83. 83.
    Sartori L, Mercurio C, Amigoni F, Cappa A, Fagá G, Fattori R, Legnaghi E, Ciossani G, Mattevi A, Meroni G, Moretti L, Cecatiello V, Pasqualato S, Romussi A, Thaler F, Trifiró P, Villa M, Vultaggio S, Botrugno OA, Dessanti P, Minucci S, Zagarrí E, Carettoni D, Iuzzolino L, Varasi M, Vianello P (2017) Thieno[3,2-b]pyrrole-5-carboxamides as new reversible inhibitors of histone lysine demethylase KDM1A/LSD1. Part 1: high-throughput screening and preliminary exploration. J Med Chem 60:1673–1692Google Scholar
  84. 84.
    Speranzini V, Rotili D, Ciossani G, Pilotto S, Marrocco B, Forgione M, Lucidi A, Forneris F, Mehdipour P, Velankar S, Mai A, Mattevi A (2016) Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features. Sci Adv 2:e1601017Google Scholar

Copyright information

© Springer Nature Switzerland AG  2019

Authors and Affiliations

  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan

Personalised recommendations