Past, Present, and Future of Antifungal Drug Development

  • P. K. Shukla
  • Pratiksha Singh
  • Ravindra Kumar Yadav
  • Smriti Pandey
  • Shome S. Bhunia
Part of the Topics in Medicinal Chemistry book series (TMC, volume 29)


Fungi are eukaryotic, single cell or multicellular organisms which cause a wide range of human diseases ranging from superficial skin to invasive life-threatening infections. Over the last couple of decades the incidence of life-threatening fungal infections has increased seriously as the patients of AIDS, cancer, organ transplant and immune-compromised population have increased. Though a significant progress has been made in the discovery of antifungal agents in the form of polyenes, azoles and allylamines yet the antifungal therapy poses severe challenge because of the side effects, narrow spectrum of activity and recently development resistance among patients against the present antifungals. This chapter deals with the current antifungal agents, their spectrum of activity, mode of action, limitations, current challenges in antifungal therapy, and new avenues for future developments.


Allylamines Antifungal therapy Azole Cell membrane Ergosterol Immunocompromise Monoclonal antibodies Pathogenic fungi Polyenes 


  1. 1.
    Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18Google Scholar
  2. 2.
    Carris LM, Little CR, Stiles CM (2012) Introduction to fungi. Plant Health Instructor. doi: 10.1094/PHI-I-2012-0426-01CrossRefGoogle Scholar
  3. 3.
    Martin DS, Jones CP (1940) Further studies on the practical classification of the Monilias. J Bacteriol 39(5):609–630PubMedPubMedCentralGoogle Scholar
  4. 4.
    Sobel JD, Vazquez J (1990) Candidemia and systemic candidiasis. Semin Respir Infect 5:123–137PubMedGoogle Scholar
  5. 5.
    Rippon JW (1982) Medical mycology: the pathogenic fungi and the pathogenic actinomycetes. Saunders, PhiladelphiaGoogle Scholar
  6. 6.
    Stein DK, Sugar AM (1989) Fungal infections in the immunocompromised host. Diagn Microbiol Infect Dis 12:221S–228SPubMedCrossRefGoogle Scholar
  7. 7.
    Larriba G, Rubio Coque JJ, Ciudad A, Andaluz E (2000) Candida albicans molecular biology reaches its maturity. Int Microbiol 3:247–252PubMedGoogle Scholar
  8. 8.
    Carrillo-Munoz AJ, Giusiano G, Ezkurra PA, Quindos G (2006) Antifungal agents: mode of action in yeast cells. Rev Esp Quimioter 19:130–139PubMedGoogle Scholar
  9. 9.
    Andriole VT (1999) Current and future antifungal therapy: new targets for antifungal agents. J Antimicrob Chemother 44:151–162PubMedCrossRefGoogle Scholar
  10. 10.
    Ahmad S, Khan Z, Mustafa AS, Khan ZU (2002) Seminested PCR for diagnosis of candidemia: comparison with culture, antigen detection, and biochemical methods for species identification. J Clin Microbiol 40:2483–2489PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Fujita S, Lasker BA, Lott TJ, Reiss E, Morrison CJ (1995) Microtitration plate enzyme immunoassay to detect PCR amplified DNA from Candida species in blood. J Clin Microbiol 33:962–967PubMedPubMedCentralGoogle Scholar
  12. 12.
    Iwastu TM, Miyaji M, Taguchi H, Okamoto S (1982) Evaluation of skin test for chromoblastomycosis using antigen prepared from cultural filtrates of Fonsecaea pedrosoi, Phlalophora verrucosa, Wangiella dermatitidis and Exophiala jeanselmei. Mycopathologia 77:59–64CrossRefGoogle Scholar
  13. 13.
    Wu Z, Tsumura Y, Blomquist G, Wang X (2003) 18S rRNA gene variation among common airborne fungi, and development of specific oligonucleotide probes for the detection of fungal isolate. Appl Environ Microbiol 69:5389–5397PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ferrer C, Colom F, Frases S, Mulet E, Abad JL, Alio JL (2001) Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J Clin Microbiol 39:2873–2879PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ferrer C, Munoz G, Alio JL, Colom F (2002) Polymerase chain reaction diagnosis in fungal keratitis caused by Alternaria alternata. Am J Ophthalmol 133:398–399PubMedCrossRefGoogle Scholar
  16. 16.
    Holmberd K, Feroze F (1996) Evaluation of an optimized system for random amplified polymorphic DNA (RAPD)-analysis for genotypic mapping of Candida albicans strains. J Clin Lab Anal 10:59–69CrossRefGoogle Scholar
  17. 17.
    Hui M, Ip M, Chan PK, Chin ML, Cheng AF (2000) Rapid identification of medically important Candida to species level by polymerase chain reaction and single-strand conformational polymorphism. Diagn Microbiol Infect Dis 38:95–99PubMedCrossRefGoogle Scholar
  18. 18.
    Humphreis SE, Gudnason V, Whittall R, Day INM (1997) Single stranded conformation polymorphism analysis with high throughput modifications and its use in mutation detection in familial hypercholesterolemia. Clin Chem 43:427–435Google Scholar
  19. 19.
    Iwen PC, Hinrichs SH, Rupp ME (2002) Utilization of the internal transcribed spacer region as molecular targets to detect and identify human fungal pathogens. Med Mycol 40:87–109PubMedCrossRefGoogle Scholar
  20. 20.
    White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322Google Scholar
  21. 21.
    Gillman LM, Gunton J, Turenne CY, Wolfe J, Kabani AM (2001) Identification of Mycobacterium species by multiple-fluorescence PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 39:3085–3091PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kumeda Y, Asao T (1996) Single-strand conformation polymorphism analysis of PCR-amplified ribosomal DNA internal transcribed spacers to differentiate species of Aspergillus section Flavi. Appl Environ Microbiol 62:2947–2952PubMedPubMedCentralGoogle Scholar
  23. 23.
    Mora D, Ricci G, Gugliemetti S, Daffonchio D, Fortina MG (2003) 16S-23S rRNA intergenic spacer region sequence variation in Streptococcus thermophilus and related dairy streptococci and development of a multiplex ITS-SSSP analysis for their identification. Microbiology 149:807–813PubMedCrossRefGoogle Scholar
  24. 24.
    Rath PM, Ansorg R (2000) Identification of medically important Aspergillus species by single stranded conformational polymorphism (SSCP) of the PCR-amplified intergenic spacer region. Mycoses 43:381–386PubMedCrossRefGoogle Scholar
  25. 25.
    Pfaller MA, Messer SA, Boyken L, Tendolkar S, Hollis RJ, Diekema DJ (2004) Geographic variation in the susceptibilities of invasive isolates of Candida glabrata to seven systemically active antifungal agents: a global assessment from the ARTEMIS Antifungal Surveillance Program conducted in 2001 and 2002. J Clin Microbiol 42:3142–3146PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hazen EL (1960) Nystatin. Ann N Y Acad Sci 89:258–266PubMedCrossRefGoogle Scholar
  27. 27.
    Mayers DL (2009) Antimicrobial drug resistance: mechanism of drug resistance vol. 1. Humana Press/Springer, Totowa/New York, p 299CrossRefGoogle Scholar
  28. 28.
    Hazen EL, Brown R (1950) Two antifungal agents produced by a soil actinomycete. Science 112:423PubMedGoogle Scholar
  29. 29.
    Hazen EL, Brown R (1951) Fungicidin, an antibiotic produced by a soil actinomycete. Proc Soc Exp Biol Med 76:93PubMedCrossRefGoogle Scholar
  30. 30.
    Harris EJ, Pritzker HG, Laski B, Eisen A, Steiner JW, Shack L (1958) The effect of nystatin (mycostatin) on neonatal candidiasis (thrush)- a method of eradicating thrush from hospital nurseries. Can Med Assoc J 79(11):891–896PubMedPubMedCentralGoogle Scholar
  31. 31.
    Sklenář Z, Ščigel V, Horáčkova K, Slanař O (2013) Compounded preparations with nystatin for oral and oromucosal administration. Acta Pol Pharm Drug Res 70:759–762Google Scholar
  32. 32.
    Lencelin JM et al (1988) Tetrahedron Lett 29:2827CrossRefGoogle Scholar
  33. 33.
    Pandey RC, Rinehart KL (1976) J Antibiot 29:1035PubMedCrossRefGoogle Scholar
  34. 34.
    Groll AH, Gonzalez CE, Giri N et al (1999) Liposomal nystatin against experimental pulmonary aspergillosis in persistently neutropenic rabbits: efficacy, safety and non-compartmental pharmacokinetics. J Antimicrob Chemother 44(3):397–401CrossRefGoogle Scholar
  35. 35.
    Wallace TL, Paetznick V, Cossum PA, Lopez-Berestein G, Rex JH, Anaissie E (1997) Activity of liposomal nystatin against disseminated Aspergillus fumigatus infection in neutropenic mice. Antimicrob Agents Chemother 41(10):2238–2243PubMedPubMedCentralGoogle Scholar
  36. 36.
    Farid MA, El-Enshasy HA, El-Diwany AI, El-Sayed ESA (2000) Optimization of the cultivation medium for natamycin production by Streptomyces natalensis. J Basic Microbiol 40(3):157–166PubMedCrossRefGoogle Scholar
  37. 37.
    Lalitha P, Kumar VR, Prajna NV, Fothergill AW (2008) In vitro natamycin susceptibility of ocular isolates of Fusarium and Aspergillus species: comparison of commercially formulated natamycin eye drops to pharmaceutical-grade powder. J Clin Microbiol 46(10):3477–3478PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:1–27. doi: 10.1155/2012/713687CrossRefGoogle Scholar
  39. 39.
    Caffrey P, Lynch S, Flood E, Finnan S, Oliynyk M (2001) Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. Chem Biol 8(7):713–723PubMedCrossRefGoogle Scholar
  40. 40.
    Matsumori N, Sawada Y, Murata M (2005) Mycosamine orientation of amphotericin B controlling interaction with ergosterol: sterol-dependent activity of conformation-restricted derivatives with an amino-carbonyl bridge. J Am Chem Soc 127:10667–10675PubMedCrossRefGoogle Scholar
  41. 41.
    Barratt G, Bretagne S (2007) Optimizing efficacy of amphotericin B through nanomodification. Int J Nanomedicine 2:301–313PubMedPubMedCentralGoogle Scholar
  42. 42.
    Ogita A, Fujita KI, Tanaka T (2012) Enhancing effects on vacuole-targeting fungicidal activity of amphotericin B. Front Microbiol 3:100PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gallis H, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12(2):308–329PubMedCrossRefGoogle Scholar
  44. 44.
    Laniado-Laborín R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26(4):223–227PubMedCrossRefGoogle Scholar
  45. 45.
    Czub J, Baginski M (2006) Modulation of amphotericin B membrane interaction by cholesterol and ergosterol--a molecular dynamics study. J Phys Chem B 110(33):16743–16753PubMedCrossRefGoogle Scholar
  46. 46.
    Palacios DS, Dailey I, Siebert DM, Wilcock BC, Burke MD (2011) Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc Natl Acad Sci U S A 108(17):6733–6738PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gray KC, Palacios DS, Dailey I et al (2012) Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A 109(7):2234–2239PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wilcock BC, Endo MM, Uno BE, Burke MD (2013) C2-OH of amphotericin B plays an important role in binding the primary sterol of human cells but not yeast cells. J Am Chem Soc 135(23):8488–8491PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Anderson TM, Clay MC, Cioffi AG et al (2014) Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10(5):400–406PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Messer SA, Jones RN, Fritsche TR (2006) International surveillance of Candida spp. and Aspergillus spp.: report from the SENTRY Antimicrobial Surveillance Program (2003). J Clin Microbiol 44:1782–1787PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sokol-Anderson ML, Brajtburg J, Medoff G (1986) Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis 154:76–83PubMedCrossRefGoogle Scholar
  52. 52.
    Maertens JA (2004) History of the development of azole derivatives. Clin Microbiol Infect 10(Suppl 1):1–10PubMedCrossRefGoogle Scholar
  53. 53.
    Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279PubMedCrossRefGoogle Scholar
  54. 54.
    Fromtling RA (1988) Overview of medically important antifungal azole derivatives. Clin Microbiol Rev 1:187–217PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sheehan DJ, Hitchcock CA, Sibley CM (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12:40–79PubMedPubMedCentralGoogle Scholar
  56. 56.
    Elkasabgy NA (2014) Ocular supersaturated self-nanoemulsifying drug delivery systems (S-SNEDDS) to enhance econazole nitrate bioavailability. Int J Pharm 460:33–44PubMedCrossRefGoogle Scholar
  57. 57.
    Thienpont D, Van Cutsem J, Van Nueten JM, Niemegeers CJ, Marsboom R (1975) Bilogical and toxicological properties of econazole, a broad-spectrum antimycotic. Arzneimittelforschung 25:224–230PubMedGoogle Scholar
  58. 58.
    Heel RC, Brogden RN, Speight TM, Avery GS (1978) Econazole: a review of its antifungal activity and therapeutic efficacy. Drugs 16(3):177–201PubMedCrossRefGoogle Scholar
  59. 59.
    Waitz JA, Moss EL, Weinstein MJ (1971) Chemotherapeutic evaluation of clotrimazole (Bay b 5097, 1 (o-chloro- - -diphenylbenzyl) imidazole). Appl Microbiol 22:891–898PubMedPubMedCentralGoogle Scholar
  60. 60.
    World Health Organization (2013) WHO model list of essential medicines. World Health Organization. October 2013. Edition 18. Retrieved 22 Apr 2014
  61. 61.
    Haller I (1985) Mode of action of clotrimazole: implications for therapy. Am J Obstet Gynecol 152(7 Pt 2):939–944PubMedCrossRefGoogle Scholar
  62. 62.
    Rai VK, Dwivedi H, Yadav NP, Chanotiya CS, Saraf SA (2014) Solubility enhancement of miconazole nitrate: binary and ternary mixture approach. Drug Dev Ind Pharm 40:363–9045CrossRefGoogle Scholar
  63. 63.
    Morita T, Nozawa Y (1985) Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole. J Invest Dermatol 85:434–437PubMedCrossRefGoogle Scholar
  64. 64.
    Puolakka J, Tuimala R (1983) Comparison between oral ketoconazole and topical miconazole in the treatment of vaginal candidiasis. Acta Obstet Gynecol Scand 62:575–577PubMedCrossRefGoogle Scholar
  65. 65.
    Rollman O (1982) Treatment of onychomycosis by partial nail avulsion and topical miconazole. Dermatologica 165:54–61PubMedCrossRefGoogle Scholar
  66. 66.
    Brugmans JB, Van Cutsem JM, Thienpont DC (1970) Treatment of long-term tinea pedis with miconazole. Arch Dermatol 102:428–432PubMedCrossRefGoogle Scholar
  67. 67.
    Van Cutsem J, Reyntjens A (1978) Miconazole treatment of pityriasis versicolor a review. Mykosen 21(3):87–91PubMedCrossRefGoogle Scholar
  68. 68.
    Sung JP, Grendahl JG, Levine HB (1977) Intravenous and intrathecal miconazole therapy for systemic mycoses. West J Med 126:5–13PubMedPubMedCentralGoogle Scholar
  69. 69.
    Balata G, Mahdi M, Bakera RA (2010) Improvement of solubility and dissolution properties of ketoconazole by solid dispersions and inclusion complexes. Asian J Pharm Sci 5:1–12Google Scholar
  70. 70.
    Rotstein DM, Kertesz DJ, Walker KAM et al (1992) J Med Chem 35:2818PubMedCrossRefGoogle Scholar
  71. 71.
    Hume AL, Kerkering TM (1983) Ketoconazole. Drug Intell Clin Pharm 17:169–174PubMedCrossRefGoogle Scholar
  72. 72.
    Terrell CL (1999) Antifungal agents. Part II. The azoles. Mayo Clin Proc 74:78–100PubMedCrossRefGoogle Scholar
  73. 73.
    Gary G (2013) Optimizing treatment approaches in seborrheic dermatitis. J Clin Aesthet Dermatol 6:44–49PubMedPubMedCentralGoogle Scholar
  74. 74.
    Venkateswarlu K, Kelly SL (1996) Biochemical characterisation of ketoconazole inhibitory action on Aspergillus fumigatus. FEMS Immunol Med Microbiol 16:11–20PubMedCrossRefGoogle Scholar
  75. 75.
    Wood A (1994) Oral azole drugs as systemic antifungal therapy. N Engl J Med 330:263–272CrossRefGoogle Scholar
  76. 76.
    Perfect JR, Durack DT (1985) Penetration of imidazoles and triazoles into cerebrospinal fluid of rabbits. J Antimicrob Chemother 16:81–86PubMedCrossRefGoogle Scholar
  77. 77.
    Van Tyle JH (1984) Ketoconazole. Mechanism of action, spectrum of activity, pharmacokinetics, drug interactions, adverse reactions and therapeutic use. Pharmacotherapy 4:343–373PubMedCrossRefGoogle Scholar
  78. 78.
    Akins RA (2005) An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43:285–318PubMedCrossRefGoogle Scholar
  79. 79.
    Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85PubMedCrossRefGoogle Scholar
  80. 80.
    Albertson GD, Niimi M, Cannon RD, Jenkinson HF (1996) Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 40:2835–2841PubMedPubMedCentralGoogle Scholar
  81. 81.
    Orozco AS, Higginbotham LM, Hitchcock CA, Parkinson T, Falconer D, Ibrahim AS, Ghannoum MA, Filler SG (1998) Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother 42:2645–2649PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kelly SL, Lamb DC, Kelly DE, Manning NJ, Loeffler J, Hebart H, Schumacher U, Einsele H (1997) Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta 5,6-desaturation. FEBS Lett 400:80–82PubMedCrossRefGoogle Scholar
  83. 83.
    Bossche HV, Marichal P, Odds FC (1994) Molecular mechanisms of drug resistance in fungi. Trends Microbiol 2:393–400CrossRefGoogle Scholar
  84. 84.
    Romani L (2004) Immunity to fungal infections. Nat Rev Immunol 4:1–23PubMedCrossRefGoogle Scholar
  85. 85.
    Stiller RL, Bennett JE, Scholer HJ, Wall M, Polak A, Stevens DA (1982) Susceptibility to 5-fluorocytosine and prevalence of serotype in 402 Candida albicans isolates from the United States. Antimicrob Agents Chemother 22:482–487PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zervos M, Meunier F (1993) Fluconazole (diflucan): a review. Int J Antimicrob Agents 3:147–170PubMedCrossRefGoogle Scholar
  87. 87.
    Philpott-Howard JN, Wade JJ, Mufti GJ, Brammer KW, Ehninger G (1993) Randomized comparison of oral fluconazole versus oral polyenes for the prevention of fungal infection in patients at risk of neutropenia. Multicentre Study Group. J Antimicrob Chemother 31:973–984PubMedCrossRefGoogle Scholar
  88. 88.
    Martin MV (1999) The use of fluconazole and itraconazole in the treatment of Candida albicans infections: a review. J Antimicrob Chemother 44:429–437PubMedCrossRefGoogle Scholar
  89. 89.
    Willems L, Geest VD, De Beule K (2001) Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J Clin Pharm Ther 26:159–169PubMedCrossRefGoogle Scholar
  90. 90.
    Jaruratanasirikul S, Kleepkaew A (1997) Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol 66:235–237CrossRefGoogle Scholar
  91. 91.
    Odds FC, Oris M, Dorsselaer PV, Gerven FV (2000) Activities of an intravenous formulation of itraconazole in experimental disseminated Aspergillus, Candida, and Cryptococcus infections. Antimicrob Agents Chemother 44:3180–3183PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kauffman CA (1996) Role of azoles in antifungal therapy. Clin Infect Dis 22(2):S148–S153PubMedCrossRefGoogle Scholar
  93. 93.
    Aftab BT, Dobromilskaya I, Liu JO, Rudin CM (2011) Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res 71:6764–6772PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Saravolatz LD, Johnson LB, Kauffman CA (2003) Voriconazole: a new triazole antifungal agent. Clin Infect Dis 36:630–637CrossRefGoogle Scholar
  95. 95.
    Van Duin D, Cleare W, Zaragoza O, Nosanchuk JD, Casadevall A (2014) Effects of voriconazole on Cryptococcus neoformans. Antimicrob Agents Chemother 48:2014–2020CrossRefGoogle Scholar
  96. 96.
    Rafael Z, Javier P (2008) Adv Sepsis 6:90Google Scholar
  97. 97.
    Ghannoum MA, Kuhn DM (2002) Eur J Med Res 7:242PubMedGoogle Scholar
  98. 98.
    Denning DW, Ribaud P, Milpied H, Raoul N, Eckhard T, Andrea H (2002) Clin Infect Dis 34:563PubMedCrossRefGoogle Scholar
  99. 99.
    Pascual A, Calandra T, Bolay S et al (2008) Clin Infect Dis 46:201PubMedCrossRefGoogle Scholar
  100. 100.
    Lewis RE (2008) Clin Infect Dis 46:212PubMedCrossRefGoogle Scholar
  101. 101.
    Zonios DL, Gea-Banacloche J, Childs R (2008) Clin Infect Dis 47:e7–e10PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Pasqualotto AC, Xavier MO, Andreolla HF, Linden R (2010) Voriconazole therapeutic drug monitoring: focus on safety. Expert Opin Drug Saf 9:125–137PubMedCrossRefGoogle Scholar
  103. 103.
    Kauffman CA, Malani AN, Easley C, Kirkpatrick P (2007) Posaconazole. Nat Rev Drug Discov 6(3):183–184PubMedCrossRefGoogle Scholar
  104. 104.
    Ullmann AJ, Lipton JH, Vesole DH (2007) N Engl J Med 356:335PubMedCrossRefGoogle Scholar
  105. 105.
    Keating GM (2005) Drugs 65:1553PubMedCrossRefGoogle Scholar
  106. 106.
    Torres HA, Hachem RY, Chemaly RF, Kantoyiannis DP, Raad I (2005) Lancet Infect Dis 5:775PubMedCrossRefGoogle Scholar
  107. 107.
    Yamazumi T, Pfaller MA, Messer SA (2000) Antimicrob Agents Chemother 44:6CrossRefGoogle Scholar
  108. 108.
    Mikamo H, Yin XH, Hayasaki Y et al (2002) Penetration of ravuconazole, a new triazole antifungal, into rat tissues. Chemotherapy 48:7–9PubMedCrossRefGoogle Scholar
  109. 109.
    Pfaller MA, Messer SA, Hollis RJ (2002) Antimicrob Agents Chemother 46:1723PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Pasqualotto AC, Denning DW (2008) New and emerging treatments for fungal infections. J Antimicrob Chemother 61(Suppl 1):19–30. doi: 10.1093/jac/dkm428CrossRefGoogle Scholar
  111. 111.
    Marino MR, Mummanei V, Norton J, et al (2001) Ravuconazole exposure-response relationship in HIV-patients with oropharyngeal candidiasis. In: Abstracts of the forty-first interscience conference on Antimicrobial Agents and Chemotherapy, Chicago. American Society for Microbiology, Washington, DC. Abstract J-1622Google Scholar
  112. 112.
    Giovanna Setzu M, Stefancich G, La Colla P, Castellano S (2002) Synthesis and antifungal properties of N-[(1,1′-biphenyl)-4-ylmethyl]-1H-imidazol-1-amine derivatives. Farmaco 57:1015–1018CrossRefGoogle Scholar
  113. 113.
    Günay NS, Çapan G, Ulusoy N, Ergenç N, Ötük G, Kaya D (1999) 5-Nitroimidazole derivatives as possible antibacterial and antifungal agents. Farmaco 54:826–831PubMedCrossRefGoogle Scholar
  114. 114.
    Olender D, Żwawiak J, Lukianchuk V, Lesyk R, Kropacz A, Fojutowski A, Zaprutko L (2009) Synthesis of some N-substituted nitroimidazole derivatives as potential antioxidant and antifungal agents. Eur J Med Chem 44:645–652PubMedCrossRefGoogle Scholar
  115. 115.
    Rossello A, Bertini S, Lapucci A, Macchia M, Martinelli A, Rapposelli S, Herreros E, Macchia B (2002) Synthesis, antifungal activity, and molecular modeling studies of new inverted oxime ethers of oxiconazole. J Med Chem 45:4903–4912PubMedCrossRefGoogle Scholar
  116. 116.
    Di Santo R, Tafi A, Costi R, Botta M, Artico M, Corelli F, Forte M, Caporuscio F, Angiolella L, Palamara AT (2005) Antifungal agents. 11. N-substituted derivatives of 1-[(aryl)(4-aryl-1H-pyrrol-3-yl)methyl]-1H-imidazole: synthesis, anti-Candida activity, and QSAR studies. J Med Chem 48:5140–5153PubMedCrossRefGoogle Scholar
  117. 117.
    Lorus Therapeutic, Inc. (2011) 2,4,5-trisubstituted imidazoles and their use as anti-microbial agents. US7884120Google Scholar
  118. 118.
    Lorus Therapeutic, Inc. (2013) 2,4,5-trisubstituted imidazoles and their use as anti-microbial agents. US8394815Google Scholar
  119. 119.
    Pore VS, Aher NG, Kumar M, Shukla PK (2006) Design and synthesis of fluconazole/bile acid conjugate using click reaction. Tetrahedron 62:11178–11186CrossRefGoogle Scholar
  120. 120.
    Zhao QJ, Song Y, Hu HG, Yu SC, Wu QY (2007) Design, synthesis and antifungal activity of novel triazole derivatives. Chin Chem Lett 18:670–672CrossRefGoogle Scholar
  121. 121.
    Lebouvier N, Pagniez F, Duflos M, Le Pape P, Na YM, Le Baut G, Le Borgne M (2007) Synthesis and antifungal activities of new fluconazole analogues with azaheterocycle moiety. Bioorg Med Chem Lett 17:3686–3689PubMedCrossRefGoogle Scholar
  122. 122.
    Uchida T, Somada A, Kagoshima Y, Konosu T, Oida S (2008) Carbon analogs of antifungal dioxane-triazole derivatives: synthesis and in vitro activities. Bioorg Med Chem Lett 18:6538–6541PubMedCrossRefGoogle Scholar
  123. 123.
    Guillon R, Giraud F, Logé C, Le Borgne M, Picot C, Pagniez F, Le Pape P (2009) Design of new antifungal agents: synthesis and evaluation of 1-[(1H-indol-5-ylmethyl)amino]-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols. Bioorg Med Chem Lett 19:5833–5836PubMedCrossRefGoogle Scholar
  124. 124.
    Dan ZG, Zhang J, Yu SC, Hu HG, Chai XY, Sun QY, Wu QY (2009) Design and synthesis of novel triazole antifungal derivatives based on the active site of fungal lanosterol 14a-demethylase (CYP51). Chin Chem Lett 20:935–938CrossRefGoogle Scholar
  125. 125.
    Borate HB, Maujan SR, Sawargave SP, Chandavarkar MA, Vaiude SR, Joshi VA, Wakharkar RD, Iyer R, Kelkar RG, Chavan SP, Kunte SS (2010) Fluconazole analogues containing 2H-1,4-benzothiazin-3(4H)-one or 2H-1,4-benzoxazin-3(4H)-one moieties, a novel class of anti-Candida agents. Bioorg Med Chem Lett 20:722–725PubMedCrossRefGoogle Scholar
  126. 126.
    He QQ, Liu CM, Li K, Cao YB (2007) Design, synthesis of novel antifungal triazole derivatives with high activities against Aspergillus fumigatus. Chin Chem Lett 18:421–423CrossRefGoogle Scholar
  127. 127.
    He QQ, Li K, Cao YB, Dong HW, Zhao LH, Liu CM, Sheng CQ (2007) Design, synthesis and molecular docking studies of novel triazole antifungal compounds. Chin Chem Lett 18:663–666CrossRefGoogle Scholar
  128. 128.
    Nam N-H, Sardari S, Selecky M, Parang K (2004) Carboxylic acid and phosphate ester derivatives of fluconazole: synthesis and antifungal activities. Bioorg Med Chem 12:6255–6269PubMedCrossRefGoogle Scholar
  129. 129.
    Upadhayaya RS, Jain S, Sinha N, Kishore N, Chandra R, Arora SK (2004) Synthesis of novel substituted tetrazoles having antifungal activity. Eur J Med Chem 39:579–592PubMedCrossRefGoogle Scholar
  130. 130.
    Wei JJ, Jin L, Wan K, Zhou CH (2011) Synthesis of novel D-glucose-derived benzyl and alkyl 1,2,3-triazoles as potential antifungal and antibacterial agents. Bull Korean Chem Soc 32:229–238CrossRefGoogle Scholar
  131. 131.
    Che X, Sheng C, Wang W, Cao Y, Xu Y, Ji H, Dong G, Miao Z, Yao J, Zhang W (2009) New azoles with potent antifungal activity: design, synthesis and molecular docking. Eur J Med Chem 44:4218–4226PubMedCrossRefGoogle Scholar
  132. 132.
    Daewoong Pharmaceutical Co. (2011) Antifungal triazole derivatives. US7968579Google Scholar
  133. 133.
    Daewoong Pharmaceutical Co. (2011) Antifungal triazole derivatives, method for the preparation thereof and pharmaceutical composition containing same. US8063229Google Scholar
  134. 134.
    Council of Scientific & Industrial Research and FDC Ltd. (2012) Antifungal compounds containing benzothiazinone, benzoxazinone, or benzoxazolinone and process thereof. US8129369Google Scholar
  135. 135.
    Loyse A, Dromer F, Day J, Lortholary O, Harrison TS (2013) Flucytosine and cryptococcosis: time to urgently address the world wide accessibility of a 50-year-old antifungal. J Antimicrob Chemother 68:2435–2444PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Perumalla S, Pedireddi V, Sun C (2013) Design, synthesis, and characterization of new 5-flucytosine salts. Mol Pharm 10:2462–2466PubMedCrossRefGoogle Scholar
  137. 137.
    Defever KS, Whelan WL, Rogers AL, Beneke ES, Veselenak JM, Soll DR (1982) Candida albicans resistance to 5-fluorocytosine: frequency of partially resistant strains among clinical isolates. Antimicrob Agents Chemother 22:810–815PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Hector RF, Domer JE, Carrow EW (1982) Immune responses to Candida albicans in genetically distinct mice. Infect Immun 38:1020–1028PubMedPubMedCentralGoogle Scholar
  139. 139.
    Polak A, Scholer HJ (1975) Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy 21:113–130PubMedCrossRefGoogle Scholar
  140. 140.
    Whelan WL, Kerridge D (1984) Decreased activity of UMP pyrophosphorylase associated with resistance to 5-fluorocytosine in Candida albicans. Antimicrob Agents Chemother 26:570–574PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Hector RF (1993) Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 6:1–21PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Cassone A, Bernardis FD, Torososantucci A (2005) An outline of the role of anti-Candida antibodies within the context of passive immunization and protection from candidiasis. Curr Mol Med 5:377–382PubMedCrossRefGoogle Scholar
  143. 143.
    Cassone A, Mason RE, Kerridge D (1981) Lysis of growing yeast-form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia 19:97–110PubMedCrossRefGoogle Scholar
  144. 144.
    Gupta AK, Shear NH (1997) Terbinafine: an update. J Am Acad Dermatol 37:979–988PubMedCrossRefGoogle Scholar
  145. 145.
    Darkes MJM, Scott LJ, Goa KL (2003) Terbinafine: a review of its use in onychomycosis in adults. Am J Clin Dermatol 4:39–65PubMedCrossRefGoogle Scholar
  146. 146.
    Callen JP, Hughes P, Kulp-Shorten C (2001) Subacute cutaneous lupus erythematosus induced or exacerbated by terbinafine: a report of 5 cases. Arch Dermatol 137L:1196–1198Google Scholar
  147. 147.
    Ryder NS (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126(Suppl 39):2–7PubMedCrossRefGoogle Scholar
  148. 148.
    Georgopoulos A, Petranyi G, Mieth H, Drews J (1981) In vitro activity of naftifine, a new antifungal agent. Antimicrob Agents Chemother 19:386–389PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Venugopal PV, Venugopal TV (1994) Antidermatophytic activity of allylamine derivatives. Indian J Pathol Microbiol 37:381–388PubMedGoogle Scholar
  150. 150.
    Gupta AK, Ryder JE, Cooper EA (2008) Naftifine: a review. J Cutan Med Surg 12:51–58PubMedCrossRefGoogle Scholar
  151. 151.
    Ghannoum M et al (2013) In vitro antifungal activity of naftifine hydrochloride against dermatophytes. Antimicrob Agents Chemother 57:4369–4372PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Ryder NS, Dupont MC (1985) Inhibition of squalene epoxidase by allylamine antimycotic compounds. A comparative study of the fungal and mammalian enzymes. Biochem J 230:765–770PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Regli P, Ferrari H (1989) In vitro action spectrum of a new antifungal agent derived from morpholine: amorolfin. Pathol Biol 37:617–620PubMedGoogle Scholar
  154. 154.
    Hänel H, Smith-Kurtz E, Pastowsky S (1991) Therapy of seborrheic eczema with an antifungal agent with an antiphlogistic effect. Mycoses 34(Suppl 1):91–93PubMedGoogle Scholar
  155. 155.
    Singal A (2008) Butenafine and superficial mycoses: current status. Expert Opin Drug Metab Toxicol 4:999–1005PubMedCrossRefGoogle Scholar
  156. 156.
    Das S, Barbhuniya JN, Biswas I, Bhattacharya S, Kundu PK (2010) Studies on comparison of the efficacy of terbinafine 1% cream and butenafine 1% cream for the treatment of Tinea cruris. Indian Dermatol Online J 1:8–9PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ryu C-K, Lee JY, Park R-E, Ma M-Y, Nho J-H (2007) Synthesis and antifungal activity of 1H-indole-4,7-diones. Bioorg Med Chem Lett 17:127–131PubMedCrossRefGoogle Scholar
  158. 158.
    Xu H, Wang Y-Y (2010) Antifungal agents. Part 5: synthesis and antifungal activities of aminoguanidine derivatives of N-arylsulfonyl-3-acylindoles. Bioorg Med Chem Lett 20:7274–7277PubMedCrossRefGoogle Scholar
  159. 159.
    Ryu C-K, Lee S-Y, Kim NY, Hong JA, Yoon JH, Kim A (2011) Synthesis and antifungal evaluation of 6-hydroxy-1H-carbazole-1,4(9H)-diones. Bioorg Med Chem Lett 21:427–430PubMedCrossRefGoogle Scholar
  160. 160.
    Na Y-M, Borgne ML, Pagniez F, Baut GL, Pape PL (2003) Synthesis and antifungal activity of new 1-halogenobenzyl-3-imidazolylmethylindole derivatives. Eur J Med Chem 38:75–87PubMedCrossRefGoogle Scholar
  161. 161.
    Tiwari RK, Verma AK, Chhillar AK, Singh D, Singh J, Kasi Sankar V et al (2006) Synthesis and antifungal activity of substituted-10-methyl-1,2,3,4-tetrahydropyrazino[1,2-a]indoles. Bioorg Med Chem 14:2747–2752PubMedCrossRefGoogle Scholar
  162. 162.
    Musiol R, Jampilek J, Buchta V, Silva L, Niedbala H, Podeszwa B et al (2006) Antifungal properties of new series of quinoline derivatives. Bioorg Med Chem 14:3592–3598PubMedCrossRefGoogle Scholar
  163. 163.
    Meléndez Gómez CM, Kouznetsov VV, Sortino MA, Álvarez SL, Zacchino SA (2008) In vitro antifungal activity of polyfunctionalized 2-(hetero)arylquinolines prepared through imino Diels–Alder reactions. Bioorg Med Chem 16:7908–7920PubMedCrossRefGoogle Scholar
  164. 164.
    Yu Z, Shi G, Sun Q, Jin H, Teng Y, Tao K et al (2009) Design, synthesis and in vitro antibacterial/antifungal evaluation of novel 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7(1-piperazinyl)quinoline-3-carboxylic acid derivatives. Eur J Med Chem 44:4726–4733PubMedCrossRefGoogle Scholar
  165. 165.
    Boateng CA, Eyunni SVK, Zhu XY, Etukala JR, Bricker BA, Ashfaq MK et al (2011) Benzothieno[3,2-b]quinolinium and 3-(phenylthio)quinolinium compounds: synthesis and evaluation against opportunistic fungal pathogens. Bioorg Med Chem 19:458–470PubMedCrossRefGoogle Scholar
  166. 166.
    Tang H, Zheng C, Lv J, Wu J, Li Y, Yang H et al (2010) Synthesis and antifungal activities in vitro of novel pyrazino [2,1-a] isoquinolin derivatives. Bioorg Med Chem Lett 20:979–982PubMedCrossRefGoogle Scholar
  167. 167.
    Jatav V, Kashaw S, Mishra P (2008) Synthesis, antibacterial and antifungal activity of some novel 3-[5-(4-substituted phenyl) 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Med Chem Res 17:169–181CrossRefGoogle Scholar
  168. 168.
    Abdel-Gawad SM, El-Gaby MSA, Ghorab MM (2000) Synthesis and antifungal activity of novel pyrano[2′,3′:4,5]thiazolo[2,3-b]quinazolines, pyrido[2′,3′:4,5]thiazolo[2,3-b]quinazolines and pyrazolo[2′,3′:4,5]thiazolo[2,3-b]quinazolines. Farmaco 55:287–292PubMedCrossRefGoogle Scholar
  169. 169.
    Jalilian AR, Sattari S, Bineshmarvasti M, Daneshtalab M, Shafiee A (2003) Synthesis and in vitro antifungal and cytotoxicity evaluation of substituted 4,5-dihydronaphtho[1,2-d][1,2,3]thia(or selena)diazoles. Farmaco 58:63–68PubMedCrossRefGoogle Scholar
  170. 170.
    Fuglseth E, Otterholt E, Høgmoen H, Sundby E, Charnock C, Hoff BH (2009) Chiral derivatives of Butenafine and Terbinafine: synthesis and antifungal activity. Tetrahedron 65:9807–9813CrossRefGoogle Scholar
  171. 171.
    Mallikarjuna BP, Sastry BS, Suresh Kumar GV, Rajendraprasad Y, Chandrashekar SM, Sathisha K (2009) Synthesis of new 4-isopropylthiazole hydrazide analogs and some derived clubbed triazole, oxadiazole ring systems – a novel class of potential antibacterial, antifungal and antitubercular agents. Eur J Med Chem 44:4739–4746PubMedCrossRefGoogle Scholar
  172. 172.
    Omar K, Geronikaki A, Zoumpoulakis P, Camoutsis C, Soković M, Ćirić A et al (2010) Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs. Bioorg Med Chem 18:426–432PubMedCrossRefGoogle Scholar
  173. 173.
    Pitta E, Tsolaki E, Geronikaki A, Petrovic J, Glamoclija J, Sokovic M et al (2015) 4-Thiazolidinone derivatives as potent antimicrobial agents: microwave-assisted synthesis, biological evaluation and docking studies. MedChemComm 6:319–326CrossRefGoogle Scholar
  174. 174.
    Chimenti F, Bizzarri B, Bolasco A, Secci D, Chimenti P, Granese A et al (2011) Synthesis and biological evaluation of novel 2,4-disubstituted-1,3-thiazoles as anti-Candida spp. agents. Eur J Med Chem 46:378–382PubMedCrossRefGoogle Scholar
  175. 175.
    Stan CD, Tuchiluş C, Stan CI (2002) Echinocandins--new antifungal agents. Rev Med Chir Soc Med Nat Iasi 118:528–536Google Scholar
  176. 176.
    Sucher AJ, Chahine EB, Balcer HE (2009) Echinocandins: the newest class of antifungals. Ann Pharmacother 43:1647–1657PubMedCrossRefGoogle Scholar
  177. 177.
    Spampinato C, Leonardi D (2013) Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int 2013:1–13Google Scholar
  178. 178.
    Vazquez J, Sobel JD (2006) Anidulafungin: a novel echinocandin. Clin Infect Dis 43:215–222PubMedCrossRefGoogle Scholar
  179. 179.
    Denning DW (2003) New drug classes echinocandin antifungal drugs. Lancet 362:1142–1151PubMedCrossRefGoogle Scholar
  180. 180.
    Letscher-Bru V, Herbrecht R (2003) Caspofungin: the first representative of a new antifungal class. J Antimicrob Chemother 51:513–521PubMedCrossRefGoogle Scholar
  181. 181.
    Chandrasekar PH, Sobel JD (2006) Micafungin: a new echinocandin. Clin Infect Dis 42:1171–1178PubMedCrossRefGoogle Scholar
  182. 182.
    Sheng C, Xu H, Wang W, Cao Y, Dong G, Wang S et al (2010) Design, synthesis and antifungal activity of isosteric analogues of benzoheterocyclic N-myristoyltransferase inhibitors. Eur J Med Chem 45:3531–3540PubMedCrossRefGoogle Scholar
  183. 183.
    Onnis V, De Logu A, Cocco MT, Fadda R, Meleddu R, Congiu C (2009) 2-Acylhydrazino-5-arylpyrrole derivatives: synthesis and antifungal activity evaluation. Eur J Med Chem 44:1288–1295PubMedCrossRefGoogle Scholar
  184. 184.
    Maruoka H, Kashige N, Eishima T, Okabe F, Fujioka T, Miake F et al (2008) Synthesis and antifungal activity of spiro[cyclopropane-1,4′-pyrazol-3-one] derivatives. J Heterocycl Chem 45:1883–1887CrossRefGoogle Scholar
  185. 185.
    Zheng Q-Z, Cheng K, Zhang X-M, Liu K, Jiao Q-C, Zhu H-L (2010) Synthesis of some N-alkyl substituted urea derivatives as antibacterial and antifungal agents. Eur J Med Chem 45:3207–3212PubMedCrossRefGoogle Scholar
  186. 186.
    Ryu C-K, Han J-Y, Jung O-J, Lee S-K, Lee JY, Jeong SH (2005) Synthesis and antifungal activity of noble 5-arylamino- and 6-arylthio-4,7-dioxobenzoselenazoles. Bioorg Med Chem Lett 15:679–682PubMedCrossRefGoogle Scholar
  187. 187.
    Ryu C-K, Song AL, Lee JY, Hong JA, Yoon JH, Kim A (2010) Synthesis and antifungal activity of benzofuran-5-ols. Bioorg Med Chem Lett 20:6777–6780PubMedCrossRefGoogle Scholar
  188. 188.
    Xu H, Fan L-L (2011) Antifungal agents. Part 4: synthesis and antifungal activities of novel indole[1,2-c]-1,2,4-benzotriazine derivatives against phytopathogenic fungi in vitro. Eur J Med Chem 46:364–369PubMedCrossRefGoogle Scholar
  189. 189.
    López SN, Castelli MV, Zacchino SA, Domínguez JN, Lobo G, Charris-Charris J et al (2001) In vitro antifungal evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg Med Chem 9:1999–2013PubMedCrossRefGoogle Scholar
  190. 190.
    Singh OM, Singh SJ, Devi MB, Devi LN, Singh NI, Lee S-G (2008) Synthesis and in vitro evaluation of the antifungal activities of dihydropyrimidinones. Bioorg Med Chem Lett 18:6462–6467PubMedCrossRefGoogle Scholar
  191. 191.
    Ravi Kumar KR, Mallesha H, Basappa, Rangappa KS (2003) Synthesis of novel isoxazolidine derivatives and studies for their antifungal properties. Eur J Med Chem 38:613–619PubMedCrossRefGoogle Scholar
  192. 192.
    Zhang F-F, Gan L-L, Zhou C-H (2010) Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorg Med Chem Lett 20:1881–1884PubMedCrossRefGoogle Scholar
  193. 193.
    Šenel P, Tichotová L, Votruba I, Buchta V, Špulák M, Kuneš J et al (2010) Antifungal 3,5-disubstituted furanones: from 5-acyloxymethyl to 5-alkylidene derivatives. Bioorg Med Chem 18:1988–2000PubMedCrossRefGoogle Scholar
  194. 194.
    Yao B, Ji H, Cao Y, Zhou Y, Zhu J, Lü J et al (2007) Synthesis and antifungal activities of novel 2-aminotetralin derivatives. J Med Chem 50:5293–5300PubMedCrossRefGoogle Scholar
  195. 195.
    Hilchie AL, Wuerth K, Hancock REW (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:761–768PubMedCrossRefGoogle Scholar
  196. 196.
    Rodrigues EG, Dobroff AS, Taborda CP, Travassos LR (2009) Antifungal and antitumor models of bioactive protective peptides. An Acad Bras Cienc 81:503–520PubMedCrossRefGoogle Scholar
  197. 197.
    Ekengren S, Hultmark D (1999) Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol 29:965–972PubMedCrossRefGoogle Scholar
  198. 198.
    De Lucca AJ, Bland JM, Jacks TJ, Grimm C, Walsh TJ (1998) Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Med Mycol 36:291–298PubMedCrossRefGoogle Scholar
  199. 199.
    Lee DG, Kim HK, Kim SA, Park Y, Park SC, Jang SH et al (2003) Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem Biophys Res Commun 305:305–310PubMedCrossRefGoogle Scholar
  200. 200.
    Raj PA, Edgerton M, Levine MJ (1990) Salivary histatin 5: dependence of sequence, chain length, and helical conformation for candidacidal activity. J Biol Chem 265:3898–3905PubMedGoogle Scholar
  201. 201.
    Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A A84:5449–5453CrossRefGoogle Scholar
  202. 202.
    Giacometti A, Cirioni O, Barchiesi F, Del Prete MS, Scalise G (1999) Antimicrobial activity of polycationic peptides. Peptides 20:1265–1273PubMedCrossRefGoogle Scholar
  203. 203.
    Mangoni ML, Grovale N, Giorgi A, Mignogna G, Simmaco M, Barra D (2000) Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides 21:1673–1679PubMedCrossRefGoogle Scholar
  204. 204.
    Simmaco M et al (2003) Defense peptides in the amphibian immune system. In: Ascenzi P, Polticelli F, Visca P (eds) Bacterial, plant, and animal toxins. Research Signpost, KeralaGoogle Scholar
  205. 205.
    Hancock REW, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149PubMedCrossRefGoogle Scholar
  206. 206.
    Pettit RK, Pettit GR, Hazen KC (1998) Specific activities of dolastatin 10 and peptide derivatives against Cryptococcus neoformans. Antimicrob Agents Chemother 42:2961–2965PubMedPubMedCentralGoogle Scholar
  207. 207.
    Cassone A, Torosantucci A, Boccanera M, Pellengrini G, Palma C, Malavasi G (1988) Production and characterization of a monoclonal antibody to a cell surface, glucomannoprotein constituent of Candida albicans and other pathogenic Candida species. J Med Microbiol 27:233–238PubMedCrossRefGoogle Scholar
  208. 208.
    De Wit MYL, Klaster PR (1988) Purification and characterization of a 36kDa antigen of Mycobacterium leprae. J Gen Microbiol 134:1541–1548PubMedGoogle Scholar
  209. 209.
    Chaturvedi AK, Kavishwar A, Shiva Keshava GB, Shukla PK (2005) Monoclonal immunoglobulin G1 directed against Aspergillus fumigatus cell wall glycoprotein protects against experimental murine aspergillosis. Clin Diagn Lab Immunol 12:1063–1068PubMedPubMedCentralGoogle Scholar
  210. 210.
    Sgro C (1995) Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicology 105:23–29PubMedCrossRefGoogle Scholar
  211. 211.
    Kettner SC et al (1999) Use of abciximab-modified thrombelastography in patients undergoing cardiac surgery. Anesth Analg 89:580–584PubMedGoogle Scholar
  212. 212.
    Zhang Y et al (2014) Daclizumab reduces CD25 levels on T cells through monocyte-mediated trogocytosis. Mult Scler 20:156–164PubMedCrossRefGoogle Scholar
  213. 213.
    Borker A, Choudhary N (2011) Rituximab. Indian Pediatr 48:627–632PubMedCrossRefGoogle Scholar
  214. 214.
    Boekhout AH, Beijnen JH, Schellens JHM (2011) Trastuzumab. Oncologist 16:800–810PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Scott LJ, Lamb HM (1999) Palivizumab. Drugs 58:303–305CrossRefGoogle Scholar
  216. 216.
    Valle E, Gross M, Bickston SJ (2001) Infliximab. Expert Opin Pharmacother 2:1015–1025PubMedCrossRefGoogle Scholar
  217. 217.
    Onrust SV, Wiseman LR (1999) Basiliximab. Drugs 57:207–213, discussion 214PubMedCrossRefGoogle Scholar
  218. 218.
    McGavin JK, Spencer CM (2001) Gemtuzumab ozogamicin. Drugs 61:1317–1324PubMedCrossRefGoogle Scholar
  219. 219.
    Frampton JE, Wagstaff AJ (2003) Alemtuzumab. Drugs 63:1229–1243, discussion 1245–6PubMedCrossRefGoogle Scholar
  220. 220.
    Savk E (2007) Efalizumab. Anti-inflamm Anti-Allergy Agents Med Chem 6:205–210CrossRefGoogle Scholar
  221. 221.
    Mease PJ (2007) Adalimumab in the treatment of arthritis. Ther Clin Risk Manag 3:133–148PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Witzig TE et al (2002) Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 20:2453–2463PubMedCrossRefGoogle Scholar
  223. 223.
    Mukherji SK (2010) Bevacizumab (Avastin). AJNR Am J Neuroradiol 31:235–236PubMedCrossRefGoogle Scholar
  224. 224.
    Graham J, Muhsin M, Kirkpatrick P (2004) Cetuximab. Nat Rev Drug Discov 3:549–550PubMedCrossRefGoogle Scholar
  225. 225.
    Corren J et al (2009) Safety and tolerability of omalizumab. Clin Exp Allergy 39:788–797PubMedCrossRefGoogle Scholar
  226. 226.
    Selewski DT, Shah GV, Segal BM, Rajdev PA, Mukherji SK (2010) Natalizumab (Tysabri). Am J Neuroradiol 31:1588–1590PubMedCrossRefGoogle Scholar
  227. 227.
    Saltz L, Easley C, Kirkpatrick P (2006) Panitumumab. Nat Rev Drug Discov 5:987–988PubMedCrossRefGoogle Scholar
  228. 228.
    Blick SK, Keating GM, Wagstaff AJ (2007) Ranibizumab. Drugs 67:1199–1206, discussion 1207–9PubMedCrossRefGoogle Scholar
  229. 229.
    Davis J (2008) Eculizumab. Am J Health Syst Pharm 65:1609–1615PubMedCrossRefGoogle Scholar
  230. 230.
    Goel N, Stephens S (2010) Certolizumab pegol. MAbs 2:137–147PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Cingoz O (2009) Ustekinumab. MAbs 1:216–221PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Mazumdar S, Greenwald D (2009) Golimumab. MAbs 1:422–431PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Dhimolea E (2010) Canakinumab. MAbs 2:3–13PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Keating MJ, Dritselis A, Yasothan U, Kirkpatrick P (2010) Ofatumumab. Nat Rev Drug Discov 9:101–102PubMedCrossRefGoogle Scholar
  235. 235.
    Venkiteshwaran A (2009) Tocilizumab. MAbs 1:430–435CrossRefGoogle Scholar
  236. 236.
    Cummings SR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765PubMedCrossRefGoogle Scholar
  237. 237.
    Sondak VK, Smalley KSM, Kudchadkar R, Grippon S, Kirkpatrick P (2011) Ipilimumab. Nat Rev Drug Discov 10:411–412PubMedCrossRefGoogle Scholar
  238. 238.
    Sanz I, Yasothan U, Kirkpatrick P (2011) Belimumab. Nat Rev Drug Discov 10:335–336PubMedCrossRefGoogle Scholar
  239. 239.
    Ansell SM (2014) Brentuximab vedotin. Blood 124:3197–3200PubMedCrossRefGoogle Scholar
  240. 240.
    Zagouri F et al (2013) Pertuzumab in breast cancer: a systematic review. Clin Breast Cancer 13:315–324PubMedCrossRefGoogle Scholar
  241. 241.
    Diéras V, Bachelot T (2014) The success story of trastuzumab emtansine, a targeted therapy in HER2-positive breast cancer. Target Oncol 9:111–122PubMedCrossRefGoogle Scholar
  242. 242.
    Shah A (2014) Obinutuzumab: a novel anti-CD20 monoclonal antibody for previously untreated chronic lymphocytic leukemia. Ann Pharmacother 48:1356–1361PubMedCrossRefGoogle Scholar
  243. 243.
    Rhee VF et al (2010) Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman’s disease. J Clin Oncol 28:3701–3708PubMedCrossRefGoogle Scholar
  244. 244.
    Mosli MH, Feagan BG (2013) Vedolizumab for Crohn’s disease. Expert Opin Biol Ther 13:455–463PubMedCrossRefGoogle Scholar
  245. 245.
    Javle M, Smyth EC, Chau I (2014) Ramucirumab: successfully targeting angiogenesis in gastric cancer. Clin Cancer Res 20:5875–5881PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Sanford M, McKeage K (2015) Secukinumab: first global approval. Drugs 75:329–338PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • P. K. Shukla
    • 1
  • Pratiksha Singh
    • 1
  • Ravindra Kumar Yadav
    • 1
  • Smriti Pandey
    • 1
  • Shome S. Bhunia
    • 2
  1. 1.Division of MicrobiologyCSIR-Central Drug Research InstituteLucknowIndia
  2. 2.Division of Medicinal & Process ChemistryCSIR-Central Drug Research InstituteLucknowIndia

Personalised recommendations