pp 1-23 | Cite as

Why Biodegradable Chemicals Persist in the Environment? A Look at Bioavailability

  • J. J. Ortega-CalvoEmail author
  • Felix Stibany
  • Kirk T. Semple
  • Andreas Schaeffer
  • John R. Parsons
  • Kilian E. C. Smith
Part of the The Handbook of Environmental Chemistry book series


Biodegradable chemicals may become persistent due to reductions in their bioavailability thereby impacting on the rate and extent of biodegradation in soils and sediments. This chapter examines this – commonly neglected – contradictory face of persistence assessments from the light of the latest advancements in bioavailability science. They include the microbial influences on bioavailability, the different sorption capacities of carbonaceous components of soils and sediments, and the dissimilar bioavailability shown by chemicals when they are present as non-extractable residues. We also discuss possible pathways to improve the realism in persistence assessments from standardized biodegradation tests by incorporating new bioavailability-based approaches. Innovations of the standard tests are possible through the modified chemical application of enhanced dispersion and passive dosing. In addition, we offer a proposal for integrating bioavailability measurements into standard simulation tests with soils and sediments, by using desorption extraction and passive sampling methods to assess the removal of the bioavailable fractions, in addition to the total extractable concentration of the chemical.


Bioavailability Biodegradation Microorganisms Non-extractable residues Persistence Sorption Standardized tests 



We thank the Spanish Ministry of Science, Innovation and Universities (CGL2016-77497-R), for supporting the work of J.J Ortega-Calvo.


  1. 1.
    Ortega-Calvo JJ, Harmsen J, Parsons JR, Semple KT, Aitken MD, Ajao C, Eadsforth C, Galay-Burgos M, Naidu R, Oliver R, Peijnenburg W, Rombke J, Streck G, Versonnen B (2015) From bioavailability science to regulation of organic chemicals. Environ Sci Technol 49(17):10255–10264Google Scholar
  2. 2.
    Reiche D (2003) Roche Lexikon Medizin. Urban & Fischer, MunichGoogle Scholar
  3. 3.
    Jorgensen SE, Fath BD (2014) Encyclopedia of ecology. Elsevier Science, AmsterdamGoogle Scholar
  4. 4.
    Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31(1):248–252Google Scholar
  5. 5.
    Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38(12):228A–231AGoogle Scholar
  6. 6.
    Harms H (1996) Bacterial growth on distant naphthalene diffusing through water, air, and water-saturated and nonsaturated porous media. Appl Environ Microbiol 62(7):2286–2293Google Scholar
  7. 7.
    Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133(1):71–84Google Scholar
  8. 8.
    Huesemann MH, Hausmann TS, Fortman TJ (2004) Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15(4):261–274Google Scholar
  9. 9.
    Cheng GH, Sun MY, Lu JR, Ge XL, Zhang HH, Xu XH, Lou LP, Lin Q (2017) Role of biochar in biodegradation of nonylphenol in sediment: increasing microbial activity versus decreasing bioavailability. Sci Rep 7:11Google Scholar
  10. 10.
    Umeh AC, Naidu R, Owojori OJ, Semple KT (2020) Bioavailability, bioaccessibility of hydrophobic organic contaminants in soil and associated desorption-based measurements. In: Ortega-Calvo JJ, Parsons JR (eds) Bioavailability of organic chemicals in soil and sediment. Handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  11. 11.
    Smith K (2020) Passive sampling for determination of the dissolved concentrations and chemical activities of organic contaminants in soil and sediment pore waters. In: Ortega-Calvo JJ, Parsons JR (eds) Bioavailability of organic chemicals in soil and sediment. Handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  12. 12.
    Thullner M, Kampara M, Richnow HH, Harms H, Wick LY (2008) Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 1. Theoretical calculation. Environ Sci Technol 42(17):6544–6551Google Scholar
  13. 13.
    Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31(12):3341–3347Google Scholar
  14. 14.
    Ortega-Calvo JJ, Tejeda-Agredano MC, Jimenez-Sanchez C, Congiu E, Sungthong R, Niqui-Arroyo JL, Cantos M (2013) Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? J Hazard Mater 261:733–745Google Scholar
  15. 15.
    Ortega-Calvo JJ, Posada-Baquero R, Garcia JL, Cantos M (2017) Bioavailability of polycyclic aromatic hydrocarbons in soil as affected by microorganisms and plants. In: Lukac M, Grenni P, Gamboni M (eds) Soil biological communities and ecosystem resilience, pp 305–319Google Scholar
  16. 16.
    Alexander M (1999) Biodegradation and bioremediation. Academic Press, San DiegoGoogle Scholar
  17. 17.
    Randhawa KKS, Rahman PKSM (2014) Rhamnolipid biosurfactants-past, present, and future scenario of global market. Front Microbiol 5:454Google Scholar
  18. 18.
    Jahan R, Bodratti AM, Tsianou M, Alexandridis P (2020) Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interf Sci 275:102061Google Scholar
  19. 19.
    Posada-Baquero R, Grifoll M, Ortega-Calvo J-J (2019) Rhamnolipid-enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation. Sci Total Environ 668:790–796Google Scholar
  20. 20.
    Congiu E, Ortega-Calvo J-J (2014) Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons. Environ Sci Technol 48:10869–10877Google Scholar
  21. 21.
    Posada-Baquero R, Lopez-Martin M, Ortega-Calvo J-J (2019) Implementing standardized desorption extraction into bioavailability-oriented bioremediation of PAH-polluted soils. Sci Total Environ 696:134011Google Scholar
  22. 22.
    Posada-Baquero R, Nienke Jimenez-Volkerink S, García JL, Vila J, Cantos M, Grifoll M, Ortega-Calvo JJ (2020) Rhizosphere-enhanced biosurfactant action on slowly desorbing PAHs in contaminated soil. Sci Total Environ 720:137608Google Scholar
  23. 23.
    Jimenez-Sanchez C, Wick LY, Ortega-Calvo JJ (2018) Impact of chemoeffectors on bacterial motility, transport, and contaminant degradation in sand-filled percolation columns. Environ Sci Technol 52(18):10673–10679Google Scholar
  24. 24.
    Jimenez-Sanchez C, Wick LY, Cantos M, Ortega-Calvo JJ (2015) Impact of dissolved organic matter on bacterial tactic motility, attachment, and transport. Environ Sci Technol 49:4498–4505Google Scholar
  25. 25.
    Ortega-Calvo JJ, Jimenez-Sanchez C, Pratarolo P, Pullin H, Scott TB, Thompson IP (2016) Tactic response of bacteria to zero-valent iron nanoparticles. Environ Pollut 213:438–445Google Scholar
  26. 26.
    Rolando L, Vila J, Baquero RP, Castilla-Alcantara JC, Barra Caracciolo A, Ortega-Calvo J-J (2020) Impact of bacterial motility on biosorption and cometabolism of pyrene in a porous medium. Sci Total Environ 717:137210Google Scholar
  27. 27.
    Sungthong R, van West P, Cantos M, Ortega-Calvo JJ (2015) Development of eukaryotic zoospores within polycyclic aromatic hydrocarbon (PAH)-polluted environments: a set of behaviors that are relevant for bioremediation. Sci Total Environ 511:767–776Google Scholar
  28. 28.
    Sungthong R, Van West P, Heyman F, Jensen DF, Ortega-Calvo JJ (2016) Mobilization of pollutant-degrading bacteria by eukaryotic zoospores. Environ Sci Technol 50(14):7633–7640Google Scholar
  29. 29.
    Sungthong R, Tauler M, Grifoll M, Julio Ortega-Calvo J (2017) Mycelium-enhanced bacterial degradation of organic pollutants under bioavailability restrictions. Environ Sci Technol 51(20):11935–11942Google Scholar
  30. 30.
    Wick LY, Worrich A, Banitz T (2020) Conceptualizing bioavailability of contaminant degradation as an ecosystem property: lessons learnt from mycosphere ecology. In: Ortega-Calvo JJ, Parsons JR (eds) Bioavailability of organic chemicals in soil and sediment. Handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  31. 31.
    Tejeda-Agredano MC, Mayer P, Ortega-Calvo JJ (2014) The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime. Environ Pollut 184:435–442Google Scholar
  32. 32.
    Congiu E, Parsons JR, Ortega-Calvo J-J (2015) Dual partitioning and attachment effects of Rhamnolipid on Pyrene biodegradation under bioavailability restrictions. Environ Pollut 205:378–384Google Scholar
  33. 33.
    Akbari A, Ghoshal S (2015) Bioaccessible porosity in soil aggregates and implications for biodegradation of high molecular weight petroleum compounds. Environ Sci Technol 49(24):14368–14375Google Scholar
  34. 34.
    Akbari A, Rahim AA, Ehrlicher AJ, Ghoshal S (2016) Growth and attachment-facilitated entry of bacteria into submicrometer pores can enhance bioremediation and oil recovery in low-permeability and microporous media. Environ Sci Technol Lett 3:399–403Google Scholar
  35. 35.
    Semple KT, Riding MJ, McAllister LE, Sopena-Vazquez F, Bending GD (2013) Impact of black carbon on the bioaccessibility of organic contaminants in soil. J Hazard Mater 261:808–816Google Scholar
  36. 36.
    Pignatello JJ, Nason SL (2020) Importance of soil properties and processes on bioavailability of organic compounds. In: Ortega-Calvo JJ, Parsons JR (eds) Bioavailability of organic chemicals in soil and sediment. Handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  37. 37.
    Parsons JR (2020) Impact of sorption to dissolved organic matter on the bioavailability of organic chemicals. In: Ortega-Calvo JJ, Parsons JR (eds) Bioavailability of organic chemicals in soil and sediment. Handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  38. 38.
    Zhang M, Shen XF, Zhang HY, Cai F, Chen WX, Gao Q, Ortega-Calvo JJ, Tao S, Wang XL (2016) Bioavailability of phenanthrene and nitrobenzene sorbed on carbonaceous materials. Carbon 110:404–413Google Scholar
  39. 39.
    Vasilyeva G, Kondrashina V, Strijakova E, Ortega-Calvo J-J (2020) Adsorptive bioremediation of soil highly contaminated with crude oil. Sci Total Environ 706:135739Google Scholar
  40. 40.
    Schaffer A, Kastner M, Trapp S (2018) A unified approach for including non-extractable residues (NER) of chemicals and pesticides in the assessment of persistence. Environ Sci Eur 30:51Google Scholar
  41. 41.
    Kaestner M, Nowak KM, Miltner A, Trapp S, Schaeffer A (2014) Classification and Modelling of nonextractable residue (NER) formation of Xenobiotics in soil – a synthesis. Crit Rev Environ Sci Technol 44(19):2107–2171Google Scholar
  42. 42.
    Kästner M, Nowak KM, Miltner A, Schaffer A (2016) (Multiple) isotope probing approaches to trace the fate of environmental chemicals and the formation of non-extractable 'bound' residues. Curr Opin Biotechnol 41:73–82Google Scholar
  43. 43.
    Nowak K, Miltner A, Kästner M (2020) Environmental fate assessment of chemicals and the formation of biogenic non-extractable residues (bioNER). In: Ortega-Calvo JJ, Parsons JR (eds) Bioavailability of organic chemicals in soil and sediment. Handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  44. 44.
    Possberg C, Schmidt B, Nowak K, Telscher M, Lagojda A, Schaeffer A (2016) Quantitative identification of biogenic nonextractable pesticide residues in soil by C-14-analysis. Environ Sci Technol 50(12):6415–6422Google Scholar
  45. 45.
    Eschenbach A, Wienberg R, Mahro B (1998) Fate and stability of nonextractable residues of 14C-PAH in contaminated soils under environmental stress conditions. Environ Sci Technol 32(17):2585–2590Google Scholar
  46. 46.
    Dec J, Haider K, Benesi A, Rangaswamy V, Schaffer A, Plucken U, Bollag JM (1997) Analysis of soil-bound residues of C-13-labeled fungicide cyprodinil by NMR spectroscopy. Environ Sci Technol 31(4):1128–1135Google Scholar
  47. 47.
    Berns AE, Bertmer M, Schaffer A, Meier RJ, Vereecken H, Lewandowski H (2007) The N-15-CPMAS spectra of simazine and its metabolites: measurements and quantum chemical calculations. Eur J Soil Sci 58(4):882–888Google Scholar
  48. 48.
    Riefer P, Klausmeyer T, Adams A, Schmidt B, Schaffer A, Schwarzbauer J (2013) Incorporation mechanisms of a branched Nonylphenol isomer in soil-derived Organo-clay complexes during a 180-day experiment. Environ Sci Technol 47(13):7155–7162Google Scholar
  49. 49.
    Junge T, Meyer KC, Ciecielski K, Adams A, Schaffer A, Schmidt B (2011) Characterization of non-extractable C-14- and C-13-sulfadiazine residues in soil including simultaneous amendment of pig manure. J Environ Sci Health Part B 46(2):137–149Google Scholar
  50. 50.
    Junge T, Classen N, Schaffer A, Schmidt B (2012) Fate of the veterinary antibiotic C-14-difloxacin in soil including simultaneous amendment of pig manure with the focus on non-extractable residues. J Environ Sci Health Part B 47(9):858–868Google Scholar
  51. 51.
    Classen D, Siedt M, Nguyen KT, Ackermann J, Schaeffer A (2019) Formation, classification and identification of non-extractable residues of C-14-labelled ionic compounds in soil. Chemosphere 232:164–170Google Scholar
  52. 52.
    MacLeod M, Scheringer M, McKone TE, Hungerbuhler K (2010) The state of multimedia mass-balance modeling in environmental science and decision-making. Environ Sci Technol 44(22):8360–8364Google Scholar
  53. 53.
    Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341(6147):752–758Google Scholar
  54. 54.
    Haws NW, Ball WP, Bouwer EJ (2006) Modeling and interpreting bioavailability of organic contaminant mixtures in subsurface environments. J Contam Hydrol 82(3–4):255–292Google Scholar
  55. 55.
    OECD. Guidelines for the testing of chemicals, Section 3. Environmental fate and behaviour.
  56. 56.
    Shrestha P, Junker T, Fenner K, Hahn S, Honti M, Bakkour R, Diaz C, Hennecke D (2016) Simulation studies to explore biodegradation in water-sediment systems: from OECD 308 to OECD 309. Environ Sci Technol 50(13):6856–6864Google Scholar
  57. 57.
    Kowalczyk A, Martin TJ, Price OR, Snape JR, van Egmond RA, Finnegan CJ, Schafer H, Davenport RJ, Bending GD (2015) Refinement of biodegradation tests methodologies and the proposed utility of new microbial ecology techniques. Ecotox Environ Safe 111:9–22Google Scholar
  58. 58.
    Martin TJ, Snape JR, Bartram A, Robson A, Acharya K, Davenport RJ (2017) Environmentally relevant inoculum concentrations improve the reliability of persistent assessments in biodegradation screening tests. Environ Sci Technol 51(5):3065–3073Google Scholar
  59. 59.
    Wick LY, Colangelo T, Harms H (2001) Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ Sci Technol 35(2):354–361Google Scholar
  60. 60.
    Adam IKU, Rein A, Miltner A, Fulgencio ACD, Trapp S, Kastner M (2014) Experimental results and integrated modeling of bacterial growth on an insoluble hydrophobic substrate (Phenanthrene). Environ Sci Technol 48(15):8717–8726Google Scholar
  61. 61.
    Sweetlove C, Cheneble JC, Barthel Y, Boualam M, L'Haridon J, Thouand G (2016) Evaluating the ready biodegradability of two poorly water-soluble substances: comparative approach of bioavailability improvement methods (BIMs). Environ Sci Pollut Res 23(17):17592–17602Google Scholar
  62. 62.
    ISO (2018) ISO 10634:2018 Water quality: preparation and treatment of poorly water-soluble organic compounds for the subsequent evaluation of their biodegradability in an aqueous mediumGoogle Scholar
  63. 63.
    ECHA (2017) E. C. A., Guidance on information requirements and chemical safety assessment chapter R.7b: Endpoint specific guidance.
  64. 64.
    Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34(20):4259–4265Google Scholar
  65. 65.
    Smith KEC, Rein A, Trapp S, Mayer P, Karlson UG (2012) Dynamic passive dosing for studying the biotransformation of hydrophobic organic chemicals: microbial degradation as an example. Environ Sci Technol 46(9):4852–4860Google Scholar
  66. 66.
    Birch H, Hammershoj R, Mayer P (2018) Determining biodegradation kinetics of hydrocarbons at low concentrations: covering 5 and 9 orders of magnitude of K-ow and K-aw. Environ Sci Technol 52(4):2143–2151Google Scholar
  67. 67.
    Hammershoj R, Birch H, Redman AD, Mayer P (2019) Mixture effects on biodegradation kinetics of hydrocarbons in surface water: increasing concentrations inhibited degradation whereas multiple substrates did not. Environ Sci Technol 53(6):3087–3094Google Scholar
  68. 68.
    ISO/TS16751 (2018) Soil quality – environmental availability of non-polar organic compounds- determination of the potential bioavailable fraction using a strong adsorbent or complexing agent. International Organization for Standardization: Geneva, SwitzerlandGoogle Scholar
  69. 69.
    Burkhard LP, Mount DR, Burgess RM (2017) Developing sediment remediation goals at superfund sites based on pore water for the protection of benthic organisms from direct toxicity to nonionic organic contaminants EPA/600/R 15/289. U.S. Environmental Protection Agency Office of Research and Development: Washington, DCGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • J. J. Ortega-Calvo
    • 1
    Email author
  • Felix Stibany
    • 2
  • Kirk T. Semple
    • 3
  • Andreas Schaeffer
    • 2
  • John R. Parsons
    • 4
  • Kilian E. C. Smith
    • 5
  1. 1.Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC)SevilleSpain
  2. 2.Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
  3. 3.Lancaster Environment CentreLancaster UniversityLancasterUK
  4. 4.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
  5. 5.Department of Water, Environment, Construction and SafetyUniversity of Applied Sciences Magdeburg-StendalMagdeburgGermany

Personalised recommendations