Advertisement

pp 1-14 | Cite as

Microplastics in Food: Health Risks

  • Qun Zhang
  • Yaping Zhao
  • Jiana Li
  • Huahong ShiEmail author
Chapter
  • 17 Downloads
Part of the The Handbook of Environmental Chemistry book series

Abstract

The presence and ecological risks of microplastics (MPs) are increasingly reported, whereas the impacts of MPs on human health remain largely unknown. Recent studies have confirmed the MP contamination in food items, including seafood, table salt, drinking water, etc. Dietary exposure is one of the inevitable exposure pathways of MPs, which causes concern about the potential human health risks. Whether we assess health risks or try to reduce food MP contamination, the prerequisites are to figure out the contamination pathways of MPs and their actual level in food items. At present, territorial system is facing serious environmental problems, with soil, freshwater, and air suffering from MP pollution. This leads to diversity and complexity of MP sources in food items. Therefore, we should not be confined to the food itself when considering MPs in food, but should take all pollution possibilities into account. In this chapter, we reviewed the literature concerning MPs in seafood, table salt, drinking water, and other food items. The potential MP sources of food items during the whole process from food acquisition to human ingestion were analyzed, with related human intake of MPs estimated. We also discussed possible translocation and accumulation pathways of MPs within human body. Given the lifetime inevitable exposure to MPs through multiple pathways, we urgently call for a better understanding of the potential MP sources in food items and a comprehensive assessment of human intake.

Keywords

Drinking water Health risks Microplastics Seafood Table salts 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support by the grants from the National Key Research and Development Program (2016YFC1402204).

References

  1. 1.
    Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304(5672):838–838.  https://doi.org/10.1126/science.1094559CrossRefGoogle Scholar
  2. 2.
    Rezania S, Park J, Din MFM, Taib SM, Talaiekhozani A, Yadav KK, Kamyab H (2018) Microplastics pollution in different aquatic environments and biota: a review of recent studies. Mar Pollut Bull 133:191–208.  https://doi.org/10.1016/j.marpolbul.2018.05.022CrossRefGoogle Scholar
  3. 3.
    Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: A review. Environ Pollut 178:483–492.  https://doi.org/10.1016/j.envpol.2013.02.031CrossRefGoogle Scholar
  4. 4.
    Van Cauwenberghe L, Devriese L, Galgani F, Robbens J, Janssen CR (2015) Microplastics in sediments: a review of techniques, occurrence and effects. Mar Environ Res 111:5–17.  https://doi.org/10.1016/j.marenvres.2015.06.007CrossRefGoogle Scholar
  5. 5.
    Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR (2015) Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollut 199:10–17.  https://doi.org/10.1016/j.envpol.2015.01.008CrossRefGoogle Scholar
  6. 6.
    Li JN, Lusher AL, Rotchell JM, Deudero S, Turra A, Brate ILN, Sun CJ, Hossain MS, Li QP, Kolandhasamy P, Shi HH (2019) Using mussel as a global bioindicator of coastal microplastic pollution. Environ Pollut 244:522–533.  https://doi.org/10.1016/j.envpol.2018.10.032CrossRefGoogle Scholar
  7. 7.
    Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67(1–2):94–99.  https://doi.org/10.1016/j.marpolbul.2012.11.028CrossRefGoogle Scholar
  8. 8.
    Devriese LI, van der Meulen MD, Maes T, Bekaert K, Paul-Pont I, Frere L, Robbens J, Vethaak AD (2015) Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar Pollut Bull 98(1–2):179–187.  https://doi.org/10.1016/j.marpolbul.2015.06.051CrossRefGoogle Scholar
  9. 9.
    Bessa F, Barria P, Neto JM, Frias JPGL, Otero V, Sobral P, Marques JC (2018) Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar Pollut Bull 128:575–584.  https://doi.org/10.1016/j.marpolbul.2018.01.044CrossRefGoogle Scholar
  10. 10.
    Carbery M, O’Connor W, Thavamani P (2018) Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115:400–409.  https://doi.org/10.1016/j.envint.2018.03.007CrossRefGoogle Scholar
  11. 11.
    Seltenrich N (2015) New link in the food chain? Marine plastic pollution and seafood safety. Environ Health Perspect 123(2):A34–A41.  https://doi.org/10.1289/ehp.123-A34CrossRefGoogle Scholar
  12. 12.
    Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M, Rio-Echevarria IM, Eede GVD (2019) Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 36:1–35.  https://doi.org/10.1080/19440049.2019.1583381CrossRefGoogle Scholar
  13. 13.
    Liebezeit G, Liebezeit E (2013) Non-pollen particulates in honey and sugar. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(12):2136–2140.  https://doi.org/10.1080/19440049.2013.843025CrossRefGoogle Scholar
  14. 14.
    Liebezeit G, Liebezeit E (2014) Synthetic particles as contaminants in German beers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31(9):1574–1578.  https://doi.org/10.1080/19440049.2014.945099CrossRefGoogle Scholar
  15. 15.
    Liebezeit G, Liebezeit E (2015) Origin of synthetic particles in honeys. Pol J Food Nutr Sci 65(2):143–147.  https://doi.org/10.1515/pjfns-2015-0025CrossRefGoogle Scholar
  16. 16.
    Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P (2015) Microplastic pollution in table salts from China. Environ Sci Technol 49(22):13622–13627.  https://doi.org/10.1021/acs.est.5b03163CrossRefGoogle Scholar
  17. 17.
    Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d’Errico G, Pauletto M, Bargelloni L, Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222.  https://doi.org/10.1016/j.envpol.2014.12.021CrossRefGoogle Scholar
  18. 18.
    Lu YF, Zhang Y, Deng YF, Jiang W, Zhao YP, Geng JJ, Ding LL, Ren HQ (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50(7):4054–4060.  https://doi.org/10.1021/acs.est.6b00183CrossRefGoogle Scholar
  19. 19.
    Besseling E, Redondo-Hasselerharm P, Foekema EM, Koelmans AA (2019) Quantifying ecological risks of aquatic micro- and nanoplastic. Crit Rev Env Sci Technol 49(1):32–80.  https://doi.org/10.1080/10643389.2018.1531688CrossRefGoogle Scholar
  20. 20.
    Lu L, Wan ZQ, Luo T, Fu ZW, Jin YX (2018) Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ 631-632:449–458.  https://doi.org/10.1016/j.scitotenv.2018.03.051CrossRefGoogle Scholar
  21. 21.
    Barboza LGA, Vethaak AD, Lavorante BRBO, Lundebye AK, Guilhermino L (2018) Marine microplastic debris: an emerging issue for food security, food safety and human health. Mar Pollut Bull 133:336–348.  https://doi.org/10.1016/j.marpolbul.2018.05.047CrossRefGoogle Scholar
  22. 22.
    Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70.  https://doi.org/10.1016/j.envpol.2014.06.010CrossRefGoogle Scholar
  23. 23.
    Santana MFM, Moreira FT, Turra A (2017) Trophic transference of microplastics under a low exposure scenario: insights on the likelihood of particle cascading along marine food-webs. Mar Pollut Bull 121(1–2):154–159.  https://doi.org/10.1016/j.marpolbul.2017.05.061CrossRefGoogle Scholar
  24. 24.
    Hantoro I, Lohr AJ, Van Belleghem FGAJ, Widianarko B, Ragas AMJ (2019) Microplastics in coastal areas and seafood: implications for food safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 36(5):674–711.  https://doi.org/10.1080/19440049.2019.1585581CrossRefGoogle Scholar
  25. 25.
    Peixoto D, Pinheiro C, Amorim J, Oliva-Teles L, Guilhermino L, Vieira MN (2019) Microplastic pollution in commercial salt for human consumption: a review. Estuar Coast Shelf Sci 219:161–168Google Scholar
  26. 26.
    Koelmans AA, Nor NHM, Hermsen E, Kooi M, Mintenig SM, De France J (2019) Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res 155:410–422.  https://doi.org/10.1016/j.watres.2019.02.054CrossRefGoogle Scholar
  27. 27.
    Li JN, Yang DQ, Li L, Jabeen K, Shi HH (2015) Microplastics in commercial bivalves from China. Environ Pollut 207:190–195.  https://doi.org/10.1016/j.envpol.2015.09.018CrossRefGoogle Scholar
  28. 28.
    Li JN, Green C, Reynolds A, Shi HH, Rotchell JM (2018) Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environ Pollut 241:35–44.  https://doi.org/10.1016/j.envpol.2018.05.038CrossRefGoogle Scholar
  29. 29.
    Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, Teh FC, Werorilangi S, Teh SJ (2015) Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep 5:14340.  https://doi.org/10.1038/srep14340CrossRefGoogle Scholar
  30. 30.
    Akhbarizadeh R, Moore F, Keshavarzi B (2018) Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environ Pollut 232:154–163.  https://doi.org/10.1016/j.envpol.2017.09.028CrossRefGoogle Scholar
  31. 31.
    Bellas J, Martinez-Armental J, Martinez-Camara A, Besada V, Martinez-Gomez C (2016) Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar Pollut Bull 109(1):55–60.  https://doi.org/10.1016/j.marpolbul.2016.06.026CrossRefGoogle Scholar
  32. 32.
    Renzi M, Blaskovic A (2018) Litter & microplastics features in table salts from marine origin: Italian versus Croatian brands. Mar Pollut Bull 135:62–68.  https://doi.org/10.1016/j.marpolbul.2018.06.065CrossRefGoogle Scholar
  33. 33.
    Kim JS, Lee HJ, Kim SK, Kim HJ (2018) Global pattern of microplastics (MPs) in commercial food-grade salts: sea salt as an indicator of seawater MP pollution. Environ Sci Technol 52(21):12819–12828.  https://doi.org/10.1021/acs.est.8b04180CrossRefGoogle Scholar
  34. 34.
    Iniguez ME, Conesa JA, Fullana A (2017) Microplastics in Spanish table salt. Sci Rep 7:8620.  https://doi.org/10.1038/S41598-017-09128-XCrossRefGoogle Scholar
  35. 35.
    Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V (2018) Occurrence of microplastics in raw and treated drinking water. Sci Total Environ 643:1644–1651.  https://doi.org/10.1016/j.scitotenv.2018.08.102CrossRefGoogle Scholar
  36. 36.
    Kosuth M, Mason SA, Wattenberg EV (2018) Anthropogenic contamination of tap water, beer, and sea salt. PLoS One 13(4):e0194970.  https://doi.org/10.1371/journal.pone.0194970CrossRefGoogle Scholar
  37. 37.
    Ossmann BE, Sarau G, Holtmannspotter H, Pischetsrieder M, Christiansen SH, Dicke W (2018) Small-sized microplastics and pigmented particles in bottled mineral water. Water Res 141:307–316.  https://doi.org/10.1016/j.watres.2018.05.027CrossRefGoogle Scholar
  38. 38.
    Mason SA, Welch VG, Neratko J (2018) Synthetic polymer contamination in bottled water. Front Chem 6:407.  https://doi.org/10.3389/Fchem.2018.00407CrossRefGoogle Scholar
  39. 39.
    Karami A, Golieskardi A, Choo CK, Larat V, Karbalaei S, Salamatinia B (2018) Microplastic and mesoplastic contamination in canned sardines and sprats. Sci Total Environ 612:1380–1386.  https://doi.org/10.1016/j.scitotenv.2017.09.005CrossRefGoogle Scholar
  40. 40.
    Phillips MB, Bonner TH (2015) Occurrence and amount of microplastic ingested by fishes in watersheds of the Gulf of Mexico. Mar Pollut Bull 100(1):264–269.  https://doi.org/10.1016/j.marpolbul.2015.08.041CrossRefGoogle Scholar
  41. 41.
    Nie H, Wang J, Xu K, Huang Y, Yan M (2019) Microplastic pollution in water and fish samples around Nanxun Reef in Nansha Islands, South China Sea. Sci Total Environ 696:134022.  https://doi.org/10.1016/j.scitotenv.2019.134022CrossRefGoogle Scholar
  42. 42.
    Pazos RS, Maiztegui T, Colautti DC, Paracampo AH, Gomez N (2017) Microplastics in gut contents of coastal freshwater fish from Rio de la Plata estuary. Mar Pollut Bull 122(1–2):85–90.  https://doi.org/10.1016/j.marpolbul.2017.06.007CrossRefGoogle Scholar
  43. 43.
    Feng Z, Zhang T, Li Y, He X, Wang R, Xu J, Gao G (2019) The accumulation of microplastics in fish from an important fish farm and mariculture area, Haizhou Bay, China. Sci Total Environ 696:133948.  https://doi.org/10.1016/j.scitotenv.2019.133948CrossRefGoogle Scholar
  44. 44.
    Guven O, Gokdag K, Jovanovic B, Kideys AE (2017) Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environ Pollut 223:286–294.  https://doi.org/10.1016/j.envpol.2017.01.025CrossRefGoogle Scholar
  45. 45.
    Karami A, Golieskardi A, Ho YB, Larat V, Salamatinia B (2017) Microplastics in eviscerated flesh and excised organs of dried fish. Sci Rep 7:5473.  https://doi.org/10.1038/s41598-017-05828-6CrossRefGoogle Scholar
  46. 46.
    Thushari GGN, Senevirathna JDM, Yakupitiyage A, Chavanich S (2017) Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: an approach to coastal zone conservation. Mar Pollut Bull 124(1):349–355.  https://doi.org/10.1016/j.marpolbul.2017.06.010CrossRefGoogle Scholar
  47. 47.
    Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62(6):1207–1217.  https://doi.org/10.1016/j.marpolbul.2011.03.032CrossRefGoogle Scholar
  48. 48.
    Li JN, Qu XY, Su L, Zhang WW, Yang DQ, Kolandhasamy P, Li DJ, Shi HH (2016) Microplastics in mussels along the coastal waters of China. Environ Pollut 214:177–184.  https://doi.org/10.1016/j.envpol.2016.04.012CrossRefGoogle Scholar
  49. 49.
    Taylor ML, Gwinnett C, Robinson LF, Woodall LC (2016) Plastic microfibre ingestion by deep-sea organisms. Sci Rep 6:33997.  https://doi.org/10.1038/srep33997CrossRefGoogle Scholar
  50. 50.
    Seth CK, Shriwastav A (2018) Contamination of Indian sea salts with microplastics and a potential prevention strategy. Environ Sci Pollut Res 25:1–10.  https://doi.org/10.1007/s11356-018-3028-5CrossRefGoogle Scholar
  51. 51.
    Karami A, Golieskardi A, Choo CK, Larat V, Galloway TS, Salamatinia B (2017) The presence of microplastics in commercial salts from different countries (vol 7, 46173, 2017). Sci Rep 7:46838.  https://doi.org/10.1038/Srep46838CrossRefGoogle Scholar
  52. 52.
    Schymanski D, Goldbeck C, Humpf HU, Furst P (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162.  https://doi.org/10.1016/j.watres.2017.11.011CrossRefGoogle Scholar
  53. 53.
    Muhlschlegel P, Hauk A, Walter U, Sieber R (2017) Lack of evidence for microplastic contamination in honey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34(11):1982–1989.  https://doi.org/10.1080/19440049.2017.1347281CrossRefGoogle Scholar
  54. 54.
    Lwanga EH, Vega JM, Quej VK, Chi JD, del Cid LS, Chi C, Segura GE, Gertsen H, Salanki T, van der Ploeg M, Koelmans AA, Geissen V (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7:14071.  https://doi.org/10.1038/s41598-017-14588-2CrossRefGoogle Scholar
  55. 55.
    Hernandez LM, Xu EG, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N (2019) Plastic teabags release billions of microparticles and nanoparticles into tea. Environ Sci Technol 53(21):12300–12310.  https://doi.org/10.1021/acs.est.9b02540CrossRefGoogle Scholar
  56. 56.
    Li LZ, Zhou Q, Yin N et al (2019) Uptake and accumulation of microplastics in an edible plant (in Chinese). Chin Sci Bull 64:928–934.  https://doi.org/10.1360/N972018-00845CrossRefGoogle Scholar
  57. 57.
    Ng EL, Lwanga EH, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen DL (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388.  https://doi.org/10.1016/j.scitotenv.2018.01.341CrossRefGoogle Scholar
  58. 58.
    Li Q, Sun C, Wang Y, Cai H, Li L, Li J, Shi H (2019) Fusion of microplastics into the mussel byssus. Environ Pollut 252:420–426.  https://doi.org/10.1016/j.envpol.2019.05.093CrossRefGoogle Scholar
  59. 59.
    Su L, Deng H, Li B, Chen Q, Pettigrove V, Wu C, Shi H (2019) The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. J Hazard Mater 365:716–724.  https://doi.org/10.1016/j.jhazmat.2018.11.024CrossRefGoogle Scholar
  60. 60.
    Vianello A, Jensen RL, Liu L, Vollertsen J (2019) Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci Rep 9:8670.  https://doi.org/10.1038/s41598-019-45054-wCrossRefGoogle Scholar
  61. 61.
    Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458.  https://doi.org/10.1016/j.envpol.2016.12.013CrossRefGoogle Scholar
  62. 62.
    Catarino AI, Macchia V, Sanderson WG, Thompson RC, Henry TB (2018) Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ Pollut 237:675–684.  https://doi.org/10.1016/j.envpol.2018.02.069CrossRefGoogle Scholar
  63. 63.
    Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi PL, Ezzati M, Engell RE, Lim SS, Danaei G, Mozaffarian D, Dis GBDNC (2013) Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3(12):e003733.  https://doi.org/10.1136/bmjopen-2013-003733CrossRefGoogle Scholar
  64. 64.
    Hantoro I, Lohr AJ, Van Belleghem F, Widianarko B, Ragas AMJ (2019) Microplastics in coastal areas and seafood: implications for food safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 36(5):1–38.  https://doi.org/10.1080/19440049.2019.1585581CrossRefGoogle Scholar
  65. 65.
    Kim SK, Kho YL, Shoeib M, Kim KS, Kim KR, Park JE, Shin YS (2011) Occurrence of perfluorooctanoate and perfluorooctanesulfonate in the Korean water system: Implication to water intake exposure. Environ Pollut 159(5):1167–1173.  https://doi.org/10.1016/j.envpol.2011.02.004CrossRefGoogle Scholar
  66. 66.
    Liebmann B, Köppel S, Königshofer P, Bucsics T, Reiberger T, Schwabl P (2018) Assessment of microplastic concentrations in human stool – preliminary results of a prospective study.  https://doi.org/10.13140/RG.2.2.16638.02884CrossRefGoogle Scholar
  67. 67.
    Jani P, Halbert GW, Langridge J, Florence AT (2011) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42(12):821–826.  https://doi.org/10.1111/j.2042-7158.1990.tb07033.xCrossRefGoogle Scholar
  68. 68.
    Schirinzi GF, Perez-Pomeda I, Sanchis J, Rossini C, Farre M, Barcelo D (2017) Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res 159:579–587.  https://doi.org/10.1016/j.envres.2017.08.043CrossRefGoogle Scholar
  69. 69.
    von Moos N, Burkhardt-Holm P, Kohler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46(20):11327–11335.  https://doi.org/10.1021/es302332wCrossRefGoogle Scholar
  70. 70.
    Greven AC, Merk T, Karagoz F, Mohr K, Klapper M, Jovanovic B, Palic D (2016) Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environ Toxicol Chem 35(12):3093–3100.  https://doi.org/10.1002/etc.3501CrossRefGoogle Scholar
  71. 71.
    Jones AE, Watts JA, Debelak JP, Thornton LR, Younger JG, Kline JA (2003) Inhibition of prostaglandin synthesis during polystyrene microsphere-induced pulmonary embolism in the rat. Am J Physiol Lung Cell Mol Physiol 284(6):1072–1081.  https://doi.org/10.1152/ajplung.00283.2002CrossRefGoogle Scholar
  72. 72.
    Churg A, Brauer M (2000) Ambient atmospheric particles in the airways of human lungs. Ultrastruct Pathol 24(6):353–361.  https://doi.org/10.1080/019131200750060014CrossRefGoogle Scholar
  73. 73.
    Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Hof VI, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560.  https://doi.org/10.1289/ehp.8006CrossRefGoogle Scholar
  74. 74.
    Yacobi NR, DeMaio L, Xie JS, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED (2008) Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine 4(2):139–145.  https://doi.org/10.1016/j.nano.2008.02.002CrossRefGoogle Scholar
  75. 75.
    Oliveira M, Ribeiro A, Hylland K, Guilhermino L (2013) Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecol Indic 34(11):641–647.  https://doi.org/10.1016/j.ecolind.2013.06.019CrossRefGoogle Scholar
  76. 76.
    Oberbeckmann S, Loder MGJ, Labrenz M (2015) Marine microplastic-associated biofilms – a review. Environ Chem 12(5):551–562.  https://doi.org/10.1071/EN15069CrossRefGoogle Scholar
  77. 77.
    Iniguez ME, Conesa JA, Fullana A (2017) Pollutant content in marine debris and characterization by thermal decomposition. Mar Pollut Bull 117(1–2):359–365.  https://doi.org/10.1016/j.marpolbul.2017.02.022CrossRefGoogle Scholar
  78. 78.
    Bouwmeester H, Hollman PCH, Peters RJB (2015) Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol 49(15):8932–8947.  https://doi.org/10.1021/acs.est.5b01090CrossRefGoogle Scholar
  79. 79.
    Liu X, Shi H, Xie B, Dionysiou DD, Zhao Y (2019) Microplastics as both a sink and a source of bisphenol A in the marine environment. Environ Sci Technol 53(17):10188–10196.  https://doi.org/10.1021/acs.est.9b02834CrossRefGoogle Scholar
  80. 80.
    Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35(2):318–324.  https://doi.org/10.1021/es0010498CrossRefGoogle Scholar
  81. 81.
    Hussain N, Jaitley V, Florence AT (2001) Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50(1–2):107–142.  https://doi.org/10.1016/S0169-409x(01)00152-1CrossRefGoogle Scholar
  82. 82.
    Prata JC (2018) Airborne microplastics: consequences to human health? Environ Pollut 234:115–126.  https://doi.org/10.1016/j.envpol.2017.11.043CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
  2. 2.College of OceanographyHohai UniversityNanjingChina
  3. 3.State Key Laboratory of Estuarine and Coastal ResearchEast China Normal UniversityShanghaiChina

Personalised recommendations