Advertisement

pp 1-23 | Cite as

Impact of Pollution on Rivers in Montenegro: Ecotoxicological Perspective

  • Margareta Kračun-KolarevićEmail author
  • Stoimir Kolarević
  • Jovana Jovanović
  • Jelena Đorđević
  • Marija Ilić
  • Karolina Sunjog
  • Jovana Kostić-Vuković
  • Aleksandra Divac Rankov
  • Bojan Ilić
  • Vladimir Pešić
  • Branka Vuković-Gačić
  • Momir Paunović
Chapter
  • 2 Downloads
Part of the The Handbook of Environmental Chemistry book series

Abstract

Montenegrin surface water and groundwater are important for the Balkan Peninsula since they are connected by the transboundary Dinaric Karst Aquifer System with the waters of additional five countries. The pollution from the surface water can rapidly infiltrate in aquifer and endanger this sensible ecosystem and the health of humans through drinking water supply. This chapter gives insights in the pressures of pollution on Montenegrin waters and in a limited literature data regarding freshwater ecotoxicological studies in Montenegro. Also, this chapter provides new ecotoxicological data obtained during survey in 2019, with a focus on the sites which are identified as hotspots of fecal pollution. The highest responses of biomarkers which indicate embryotoxic, genotoxic, and phytotoxic effects in zebrafish embryo test and in roots of Allium cepa were obtained at Ćehotina – downstream of Pljevlja. Similar results were detected at the site downstream Mojkovac at Tara, yet this site is affected by different type of pollution. Genotoxic endpoints in zebrafish stressed out sites on Morača and Lim rivers which are under pressures of fecal pollution. The data in this chapter provides an insight into current status obtained by the ex situ bioassays and indicates need for more comprehensive in situ assessment.

Keywords

Allium cepa root tip assay Ecotoxicology FET Montenegro Pollution Rivers 

Notes

Acknowledgment

The authors are grateful to Luka Gačić who provided improvements to our English.

References

  1. 1.
    DIKTAS (2012) Protection and sustainable use of the Dinaric Karst transboundary aquifer system – Montenegro country reportGoogle Scholar
  2. 2.
    Stevanovic Z, Kukuric N, Treidel H, Pekas Z, Jalovic B, Radojevic D, Pambuku A (2012) Characterization of transboundary aquifers in Dinaric karst – a base study for sustainable water management at regional and local scale. IAH Congress, Niagara Falls SeptGoogle Scholar
  3. 3.
    Stevanović Z, Pekaš Ž,Jolović B, Pambuku A, Radojević D (2014) Classical Dinaric Karst aquifer – an overview of its past and future. The international conference and field seminar “Karst Withut Boundaries”, extended abstract of plenary paper, pp 1–6Google Scholar
  4. 4.
    Bonacci O (1987) Karst hydrology; with special reference to the Dinaric Karst. Springer, BerlinGoogle Scholar
  5. 5.
    MONSTAT, Census 2011, Statistical YearbookGoogle Scholar
  6. 6.
    Richardson SD, Ternes TA (2005) Water analysis: emerging contaminants and current issues. Anal Chem 77(12):3807–3838Google Scholar
  7. 7.
    Kümmerer K (2010) Pharmaceuticals in the environment. Annu Rev Env Resour 35:57–75Google Scholar
  8. 8.
    Richardson SD, Ternes TA (2014) Water analysis: emerging contaminants and current issues. Anal Chem 86(6):2813–2848Google Scholar
  9. 9.
    Castillo GC, Vila IC, Neild E (2000) Ecotoxicity assessment of metals and wastewater using multitrophic assays. Environ Toxicol 15(5):370–375Google Scholar
  10. 10.
    Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239(1–3):229–246Google Scholar
  11. 11.
    Cuklev F, Kristiansson E, Fick J, Asker N, Förlin L, Larsson DJ (2011) Diclofenac in fish: blood plasma levels similar to human therapeutic levels affect global hepatic gene expression. Environ Toxicol Chem 30(9):2126–2134Google Scholar
  12. 12.
    Galus M, Jeyaranjaan J, Smith E, Li H, Metcalfe C, Wilson JY (2013) Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. Aquat Toxicol 132:212–222Google Scholar
  13. 13.
    Kostić J, Kolarević S, Kračun-Kolarević M, Aborgiba M, Gačić Z, Paunović M, Višnjić-Jeftić Ž, Rašković B, Poleksić V, Lenhardt M, Vuković-Gačić B (2017) The impact of multiple stressors on the biomarkers response in gills and liver of freshwater breams during different seasons. Sci Total Environ 601:1670–1681Google Scholar
  14. 14.
    International Commission for the Protection of the Danube River (2015) Danube river basin management plan. ICPDR, Vienna. https://www.icpdr.org/main/sites/default/files/nodes/documents/drbmp-update2015-annexes.pdf
  15. 15.
    Rastall AC, Neziri A, Vukovic Z, Jung C, Mijovic S, Hollert H, Nikcevic S, Erdinger L (2004) The identification of readily bioavailable pollutants in Lake Shkodra/Skadar using semipermeable membrane devices (SPMDs), bioassays and chemical analysis. Environ Sci Pollut Res 11(4):240Google Scholar
  16. 16.
    Stesevic D, Feiler U, Sundic D, Mijovic S, Erdinger L, Seiler TB, Heininger P, Hollert H (2007) Application of a new sediment contact test with Myriophyllum aquaticum and of the aquatic Lemna test to assess the sediment quality of Lake Skadar. J Soil Sediment 7(5):342–349Google Scholar
  17. 17.
    Perović A, Perović S, Erdinger L, Hollert H (2012) Assessment of the genotoxic potential of Lake Skadar sediments using Ames test and comet assay on the fish cell line RTL-W1. Arch Biol Sci 64(1):249–256Google Scholar
  18. 18.
    Perović S, Perović A, Erdinger L, Hollert H (2013) Assessment of the mutagenic potential of Skadar Lake sediments using the Salmonella microsomal assay. Arch Biol Sci 65(3):1189–1194Google Scholar
  19. 19.
    Perović A, Perović S, Seiler TB, Hollert H (2013) In vitro cytotoxic and teratogenic potential of sediment extracts from Skadar Lake using fish cells RTL-W1 and Danio rerio embryos. Arch Boil Sci 65(4):1539–1546Google Scholar
  20. 20.
    Perović S, Sljukic B, Šrut M, Perović A, Klobučar GI (2019) Evaluation of DNA damage in haemolymph of freshwater mussels Unio pictorum from Lake Skadar. Biologia:1–6Google Scholar
  21. 21.
    Kastratović V, Krivokapić S, Đurović D, Blagojević N (2013) Seasonal changes in metal accumulation and distribution in the organs of Phragmites australis (common reed) from Lake Skadar, Montenegro. J Serb Chem Soc 78(8):1241Google Scholar
  22. 22.
    Kastratović V, Bigović M, Jaćimović Ž, Kosović M, Đurović D, Krivokapić S (2018) Levels and distribution of cobalt and nickel in the aquatic macrophytes found in Skadar Lake, Montenegro. Environ Sci Pollut Res 25(27):26823–26830Google Scholar
  23. 23.
    Petrović D, Jančić D, Furdek M, Mikac N, Krivokapić S (2016) Aquatic plant Trapa natans L. as bioindicator of trace metal contamination in a freshwater lake (Skadar Lake, Montenegro). Acta Bot Croat 75(2):236–243Google Scholar
  24. 24.
    Mesi A, Kopliku D (2013) Toxicity bio-monitoring of Shkodra Lake surface water using a higher plant assay. Acad J Interdiscipl Stud 2(8):133Google Scholar
  25. 25.
    Rakocevic J, Sukovic D, Maric D (2018) Distribution and relationships of eleven trace elements in muscle of six fish species from Skadar Lake (Montenegro). Turk J Fish Aquat Sci 18(5):647–657Google Scholar
  26. 26.
    Vukašinović-Pešić V, Blagojević N, Vukanović S, Savić A, Pešić V (2017) Heavy metal concentrations in different tissues of the snail Viviparusmamillatus (Küster, 1852) from lacustrine and riverine environments in Montenegro. Turk J Fish Aquat Sci 17(3):557–563Google Scholar
  27. 27.
    Vukašinović-Pešić V, Blagojević N (2018) Metal pollution: evidences from plants, aquatic invertebrates and fish from Lake Skadar. In: The Skadar/Shkodra Lake environment. Springer, Cham, pp 141–151Google Scholar
  28. 28.
    Kolarević S, Kračun-Kolarević M, Jovanović J, Ilić M, Paunović M, Kostić-Vuković J, Martinović R, Jokanović S, Joksimović D, Pešić V, Kirschner A, Linke R, Ixenmaier S, Farnleitner A, Savio D, Reischer G, Tomić N, Vuković-Gačić B (2019) Microbiological water quality of rivers in Montenegro. In: Pešić V, Paunović M, Kostianoy A (eds) The rivers of Montenegro. The handbook of environmental chemistry. Springer, ChamGoogle Scholar
  29. 29.
    Tomović S (2008) Ciljevi vodoprivrednog razvoja Crne Gore. Vodoprivreda 40:127–137Google Scholar
  30. 30.
    EPA (2013) Report on the state of the environment in Montenegro based on indicators. Environmental Protection Agency of Montenegro, PodgoricaGoogle Scholar
  31. 31.
    EPA (2017) Report on the state of the environment in Montenegro based on indicators. Environmental Protection Agency of Montenegro, PodgoricaGoogle Scholar
  32. 32.
    Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149Google Scholar
  33. 33.
    Smit MGD, Bechmann RK, Hendriks AJ, Skadsheim A, Larsen BK, Baussant T, Bamber S, Sanni S (2009) Relating biomarkers to whole-organism effects using species sensitivity distributions: a pilot study for marine species exposed to oil. Environ Toxicol Chem 28:1104–1109Google Scholar
  34. 34.
    Hook SE, Gallagher EP, Batley GE (2014) The role of biomarkers in the assessment of aquatic ecosystem health. Integr Environ Assess Manag 10(3):327–341Google Scholar
  35. 35.
    Broeg K, Westernhagen HV, Zander S, Korting W, Koehler A (2005) The “bioeffect assessment index” (BAI), a concept for the quantification of effects of marine pollution by an integrated biomarker approach. Mar Pollut Bull 50:495–503Google Scholar
  36. 36.
    Timbrell JA (1998) Biomarkers in toxicology. Toxicology 129(1):1–12Google Scholar
  37. 37.
    Mussali-Galante P, Tovar-Sánchez E, Valverde M, del Castillo ER (2013) Biomarkers of exposure for assessing environmental metal pollution: from molecules to ecosystems. Rev Int Contam Ambient 29(1):117–140Google Scholar
  38. 38.
    EU (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy (EU Water Framework Directive). Off J EU 327:1–72Google Scholar
  39. 39.
    Nagel R, Isberner K (1998) Testing of chemicals with fish – a critical evaluation of tests with special regard to zebrafish. In: Fish ecotoxicology. Birkhäuser, Basel, pp 337–352Google Scholar
  40. 40.
    Keiter S, Rastall A, Kosmehl T, Wurm K, Erdinger L, Braunbeck T, Hollert H (2006) Ecotoxicological assessment of sediment, suspended matter and water samples in the Upper Danube River. A pilot study in search for the causes for the decline of fish catches (12 pp). Environ Sci Pollut Res 13(5):308–319Google Scholar
  41. 41.
    Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test. Comp Biochem Physiol C 149:196–209Google Scholar
  42. 42.
    Braunbeck T, Kais B, Lammer E, Otte J, Schneider K, Stengel D, Strecker R (2015) The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res 22(21):16247–16261Google Scholar
  43. 43.
    Schulte C, Nagel R (1994) Testing acute toxicity in the embryo of zebrafish, Brachydanio rerio, as an alternative to the acute fish test: preliminary results. Atla 22(1):12–19Google Scholar
  44. 44.
    ISO (2007) Water quality – determination of the acute toxicity of waste water to zebrafish eggs (Danio rario). ISO 15088:2007Google Scholar
  45. 45.
    EU (2010) Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off J EU 276:33–79Google Scholar
  46. 46.
    Dai YJ, Jia YF, Chen N, Bian WP, Li QK, Ma YB, Chen YL, Pei DS (2014) Zebrafish as a model system to study toxicology. Environ Toxicol Chem 33:11–17Google Scholar
  47. 47.
    Babić T, Dinić J, Stojković Burić S, Hadžić S, Pešić M, Radojković D, Divac Rankov A (2018) Comparative toxicity evaluation of targeted anticancer therapeutics in embryonic zebrafish and sea urchin models. Acta Biol Hung 69:395–410Google Scholar
  48. 48.
    Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23(3):207–221Google Scholar
  49. 49.
    Kolarević S, Milovanović D, Kračun-Kolarević M, Kostić J, Sunjog K, Martinović R, Đorđević J, Novaković I, Sladić D, Vuković-Gačić B (2017) Evaluation of genotoxic potential of avarol, avarone, and its methoxy and methylamino derivatives in prokaryotic and eukaryotic test models. Drug Chem Toxicol:1–10Google Scholar
  50. 50.
    Đorđević J, Kolarević S, Jovanović J, Kostić J, Novaković I, Sladić D, Vuković-Gačić B (2018) Evaluation of genotoxic potential of tert-butylquinone and its derivatives in prokaryotic and eukaryotic test models. Drug Chem Toxicol.  https://doi.org/10.1080/01480545.2018.1514043
  51. 51.
    Martinović R, Kolarević S, Kračun-Kolarević M, Kostić J, Marković S, Gačić Z, Kljajić Z, Vuković-Gačić B (2015) Genotoxic potential and heart rate disorders in the Mediterranean mussel Mytilus galloprovincialis exposed to Superdispersant-25 and dispersed diesel oil. Mar Environ Res 108:83–90Google Scholar
  52. 52.
    Martinović R, Kolarević S, Kračun-Kolarević M, Kostić J, Jokanović S, Gačić Z, Vuković-Gačić B (2016) Comparative assessment of cardiac activity and DNA damage in haemocytes of the Mediterranean mussel Mytilus galloprovincialis in exposure to tributyltin chloride. Environ Toxicol Pharmacol 47:165–174. Environmental Sciences: 91/229; IF: 2.313 (2016)Google Scholar
  53. 53.
    Gačić Z, Kolarević S, Sunjog K, Kračun-Kolarević M, Paunović M, Knežević-Vukčević J, Vuković-Gačić B (2014) The impact of in vivo and in vitroexposure to base analogue 5-FU on the level of DNA damage in haemocytes of freshwater mussels Unio pictorum and Unio tumidus. Environ Pollut 191:145–150Google Scholar
  54. 54.
    Kolarević S, Knežević-Vukčević J, Paunović M, Kračun M, Vasiljević B, Tomović J, Vuković-Gačić B, Gačić Z (2013) Monitoring of DNA damage in haemocytes of freshwater mussel Sinanodonta woodiana sampled from the Velika Morava River in Serbia with the comet assay. Chemosphere 93:243–251Google Scholar
  55. 55.
    Vuković-Gačić B, Kolarević S, Sunjog K, Tomović J, Knežević-Vukčević J, Paunović M, Gačić Z (2014) Comparative study of the genotoxic response of freshwater mussels Unio tumidus and Unio pictorum to environmental stress. Hydrobiologia 735:221–231Google Scholar
  56. 56.
    Kolarević S, Kračun-Kolarević M, Kostić J, Slobodnik J, Liška I, Gačić Z, Paunović M, Knežević-Vukčević J, Vuković-Gačić B (2016) Assessment of the genotoxic potential along the Danube River by application of the comet assay on haemocytes of freshwater mussels: the joint Danube survey 3. Sci Total Environ 540:377–385Google Scholar
  57. 57.
    Kolarević S, Gačić Z, Kostić J, Sunjog K, Kračun-Kolarević M, Paunović M, Knežević-Vukčević J, Vuković-Gačić B (2016) Impact of common cytostatics on DNA damage in freshwater mussels Unio pictorum and Unio tumidus. CLEAN Soil Air Water 44:1471–1476Google Scholar
  58. 58.
    Sunjog K, Gačić Z, Kolarević S, Višnjić-Jeftić Z, Jarić I, Knežević-Vukcević J, Vuković-Gačić B, Lenhardt M (2012) Heavy мetal аccumulation and the genotoxicity in barbel (Barbus barbus) as indicators of the Danube river pollution. Sci World J.  https://doi.org/10.1100/2012/351074Google Scholar
  59. 59.
    Sunjog K, Kolarević S, Kračun-Kolarević M, Gačić Z, Skorić S, Đikanović V, Lenhardt M, Vuković-Gačić B (2014) Variability in DNA damage of chub (Squalius cephalus L.) blood, gill and liver cells during the annual cycle. Environ Toxicol Pharmacol 37:967–974Google Scholar
  60. 60.
    Deutschmann B, Kolarevic S, Brack W, Kaisarevic S, Kostic J, Kracun-Kolarevic M, Liska I, Paunovic M, Seiler T-B, Shao Y, Sipos S, Slobodnik J, Teodorovic I, Vukovic-Gacic B, Hollert H (2016) Longitudinal profile of the genotoxic potential of the River Danube on erythrocytes of wild common bleak (Alburnus alburnus) assessed using the comet and micronucleus assay. Sci Total Environ 573:1441–1449Google Scholar
  61. 61.
    Kolarević S, Aborgiba M, Kračun-Kolarević M, Kostić J, Simonović P, Simić V, Milošković A, Reischer G, Farnleitner A, Gačić Z, Milačič R, Zuliani T, Vidmar J, Pergal M, Piria M, Paunović M, Vuković-Gačić B (2016) Evaluation of genotoxic pressure along the Sava River. PLoS One 11:e0162450.  https://doi.org/10.1371/journal.pone.0162450CrossRefGoogle Scholar
  62. 62.
    Kostić J, Kolarević S, Kračun-Kolarević M, Aborgiba M, Gačić Z, Lenhardt M, Vuković-Gačić B (2016) Genotoxicity assessment of the Danube River using tissues of freshwater bream (Abramis brama). Environ Sci Pollut Res 23:20783–20795Google Scholar
  63. 63.
    Kračun-Kolarević M, Kolarević S, Jovanović J, Marković V, Ilić M, Simonović P, Simić V, Gačić Z, Diamantini E, Stella E, Petrović M, Majone B, Bellin A, Paunović M, Vuković-Gačić B (2016) Evaluation of genotoxic potential throughout the upper and middle stretches of Adige river basin. Sci Total Environ 571:1383–1391. Environmental Sciences: 22/229; IF: 4.9 (2016)Google Scholar
  64. 64.
    Jovanović J, Kolarević S, Milošković A, Radojković N, Simić V, Dojčinović B, Kračun-Kolarević M, Paunović M, Kostić J, Sunjog K, Timilijić J, Djordjević J, Gačić Z, Žegura B, Vuković-Gačić B (2017) Evaluation of genotoxic potential in the Velika Morava River basin in vitro and in situ. Sci Total Environ 621:1289–1299Google Scholar
  65. 65.
    Matić D, Vlahović M, Kolarević S, Mataruga VP, Ilijin L, Mrdaković M, Vuković-Gačić B (2016) Genotoxic effects of cadmium and influence on fitness components of Lymantria dispar caterpillars. Environ Pollut 218:1270–1277Google Scholar
  66. 66.
    Kračun-Kolarević M, Kolarević S, Atanacković A, Marković V, Gačić Z, Paunović M, Vuković-Gačić B (2015) Effects of 5-fluorouracil, etoposide and CdCl2 in aquatic Oligochaeta Limnodrilus udekemianus Claparede (Tubificidae) measured by comet assay. Water Air Soil Pollut 226:1–9Google Scholar
  67. 67.
    Aborgiba M, Kostić J, Kolarević S, Kračun-Kolarević M, Elbahi S, Knežević-Vukčević J, Lenhardt M, Paunović M, Gačić Z, Vuković-Gačić B (2016) Flooding modifies the genotoxic effects of pollution on a worm, a mussel and two fish species from the Sava River. Sci Total Environ 540:358–367Google Scholar
  68. 68.
    Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment – applications beyond acute toxicity testing. Environ Sci Pollut Res 15(5):394–404Google Scholar
  69. 69.
    Jarvis RB, Knowles JF (2003) DNA damage in zebrafish larvae induced by exposure to low-dose rate γ-radiation: detection by the alkaline comet assay. Mutat Res 541(1–2):63–69Google Scholar
  70. 70.
    Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Braunbeck T, Hollert H (2006) A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ Toxicol Chem 25(8):2097–2106Google Scholar
  71. 71.
    Kosmehl T, Krebs F, Manz W, Braunbeck T, Hollert H (2007) Differentiation between bioavailable and total hazard potential of sediment-induced DNA fragmentation as measured by the comet assay with zebrafish embryos. J Soil Sediment 7(6):377–387Google Scholar
  72. 72.
    Kosmehl T, Hallare AV, Braunbeck T, Hollert H (2008) DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutat Res 650(1):1–14Google Scholar
  73. 73.
    Eleršek T, Plazar J, Filipič M (2013) A method for the assessment of DNA damage in individual, one day old, zebrafish embryo (Danio rerio), without prior cell isolation. Toxicol In Vitro 27(8):2156–2159Google Scholar
  74. 74.
    Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soil Sediment 3(3):197Google Scholar
  75. 75.
    Levan A (1938) The effect of colchicine on root mitoses in Allium. ~. Hereditas 24:471–486Google Scholar
  76. 76.
    Fiskesjo G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112Google Scholar
  77. 77.
    Fiskesjo G (1985) Allium test on river water from brain and Saxdn before and after closure of a chemical factory. Ambio 14(2):99–I03Google Scholar
  78. 78.
    Bosio S, Laughinghouse IV HD (2012) Bioindicator of genotoxicity: the allium cepa test. Environ Contam.  https://doi.org/10.5772/31371Google Scholar
  79. 79.
    Rank J, Nielsen MH (1994) Evaluation of the Allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutat Res 312:17–24Google Scholar
  80. 80.
    Chauhan LKS, Saxena PN, Gupta SK (1999) Cytogenetic effects of cypermethrin and fenvalerate on the root meristem cells of Allium cepa. Environ Exp Bot 42:181–189Google Scholar
  81. 81.
    Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682(1):71–81Google Scholar
  82. 82.
    Roberto MM, Jamal CM, Malaspina O, Marin-Morales MA (2016) Antigenotoxicity and antimutagenicity of ethanolic extracts of Brazilian green propolis and its main botanical source determined by the Allium cepa test system. Genet Mol Biol 39(2):257–269.  https://doi.org/10.1590/1678-4685-gmb-2015-0130CrossRefGoogle Scholar
  83. 83.
    Vujošević M, Anđelković S, Savić G, Blagojević J (2008) Genotoxicity screening of the river Rasina in Serbia using the Allium anaphase–telophase test. Environ Monit Assess 147(1–3):75–81Google Scholar
  84. 84.
    Radić S, Stipaničev D, Vujčić V, Rajčić MM, Širac S, Pevalek-Kozlina B (2010) The evaluation of surface and wastewater genotoxicity using the Allium cepa test. Sci Total Environ 408(5):1228–1233Google Scholar
  85. 85.
    Ma T-H, Xu Z, Xu C, McConnell H, ValtierraRabago E, Adriana Arreola G, Zhang H (1995) The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res 334(2):185–195.  https://doi.org/10.1016/0165-1161(95)90010-1CrossRefGoogle Scholar
  86. 86.
    Dane F, Ekici N, Aktas YK (2006) The effect of waste water on root growth and mitosis in onion (Allium cepa) root apical meristem. Asian J Plant Sci 5(2):331–334Google Scholar
  87. 87.
    Abdissa Y, Tekalign T, Pant LM (2011) Growth, bulb yield and quality of onion (Allium cepa L.) as influenced by nitrogen and phosphorus fertilization on vertisol I. growth attributes, biomass production and bulb yield. Afr J Agric Res 6(14):3252–3258Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Margareta Kračun-Kolarević
    • 1
    Email author
  • Stoimir Kolarević
    • 2
  • Jovana Jovanović
    • 1
  • Jelena Đorđević
    • 3
  • Marija Ilić
    • 1
  • Karolina Sunjog
    • 3
  • Jovana Kostić-Vuković
    • 3
  • Aleksandra Divac Rankov
    • 4
  • Bojan Ilić
    • 6
  • Vladimir Pešić
    • 5
  • Branka Vuković-Gačić
    • 2
  • Momir Paunović
    • 1
  1. 1.Institute for Biological Research “Siniša Stanković” National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
  2. 2.Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  3. 3.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  4. 4.Institute for Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
  5. 5.Faculty of Science and MathematicsUniversity of MontenegroPodgoricaMontenegro
  6. 6.Institute of Zoology, Faculty of BiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations